CN110883340A - 一种负电性超细银粉及其制备方法 - Google Patents

一种负电性超细银粉及其制备方法 Download PDF

Info

Publication number
CN110883340A
CN110883340A CN201811055434.6A CN201811055434A CN110883340A CN 110883340 A CN110883340 A CN 110883340A CN 201811055434 A CN201811055434 A CN 201811055434A CN 110883340 A CN110883340 A CN 110883340A
Authority
CN
China
Prior art keywords
silver powder
electronegative
solution
silver
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811055434.6A
Other languages
English (en)
Inventor
沈仙林
周斌
胡晓斌
齐振龙
曲邦定
周彦森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Jin Qu Yitong Metal Material Co Ltd
Original Assignee
Henan Jin Qu Yitong Metal Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Jin Qu Yitong Metal Material Co Ltd filed Critical Henan Jin Qu Yitong Metal Material Co Ltd
Priority to CN201811055434.6A priority Critical patent/CN110883340A/zh
Publication of CN110883340A publication Critical patent/CN110883340A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种负电性超细银粉及其制备方法,该方法为:配置硝酸银溶液,再用水稀释,然后加入单宁溶液,再加入K2CO3溶液,得到红棕色的胶态超细银粉,并通过电泳实验证实其表面带负电。硝酸银溶液的质量浓度为1.7%。用水稀释是将硝酸银溶液加水稀释到原体积的50倍。单宁溶液的质量浓度为1%。单宁溶液的加入量与硝酸银溶液的体积比为1∶2。K2CO3溶液的质量浓度为1%。K2CO3溶液的加入量与单宁溶液的加入量的体积比为(3~4)∶20。本发明还提供了该方法制备的负电性超细银粉。本发明提供的负电性超细银粉及其制备方法,工艺条件容易控制,能够制备表面带负电的胶态超细银粉,所得的纳米银粉的粒径分布均匀。

Description

一种负电性超细银粉及其制备方法
技术领域
本发明涉及一种新能源和新材料领域的超细银粉及其制备方法,具体地,涉及一种负电性超细银粉及其制备方法。
背景技术
随着科技的发展,电子产品的应用,电子仪器中配电层、电极等的质量决定了电子仪器的使用寿命。银因具有良好的天然的高导电性、灭菌性、导热性和抗氧化能力强被广泛用于电子工业、污水处理、建筑材料等诸多领域,通过将银粉制成的银糊剂涂布或印刷在各种基材上,然后进行加热固化或加热焙烧,形成导电膜,从而形成通路。因此,全年银粉的消耗量巨大,且做成的产品,性能不够稳定且易脱落,因此,需要对银粉性能进行改进。
目前主要研究集中于纳米银粉,由于纳米银粉活性高,在常温下容易发生***结或团聚现象,造成了纳米银粉分散性很差,振实密度低。纳米银粉调制浆料不易被有机载体完全润湿,导致印刷效果不好,烧结后银膜收缩率大、孔洞多和连接不致密。此外,纳米银粉难以提高导电银浆的银含量,导电性能较差。太阳能电池用银粉需要满足粒径适中、结晶度高、振实密度大、分散性好、球形或类球形等条件。
银粉的制备方法有高能球磨法、喷雾热分解法(SP法)、等离子体蒸发冷凝法、化学液相还原法和微乳液法等,其中化学液相还原法因生产设备简单、工艺容易控制、低成本、低能耗等优点得到了广泛重视。
液相还原法原理就是用还原剂从银盐或银络合物的溶液中将银离子以银粉的形式沉积出来。采用的银盐通常是硝酸银[AgNO3]、碳酸银[Ag2CO3]及银氨络离子[Ag(NH3)2+]。
在整个还原反应过程中,还原剂的选择非常重要。文献报道的无机还原剂主要有水合肼、双氧水、次亚磷酸钠、连二亚硫酸钠、硼氢化钠、硫酸亚铁、硫代硫酸钠、亚硫酸钾等;文献报道的有机还原剂主要有抗坏血酸、甲醛、甲酸、酒石酸钾钠、乙醇、甘油、葡萄糖、还原糖、三乙醇胺、氢醌等。如果还原剂的还原性太强,则得到的银粒子不易转移,粒径容易增长过大、包含杂质或发生团聚,得不到均匀和易分散的银颗粒。一般需要加入分散剂对生成的银粒子进行分散保护,阻止银粉的团聚。
现有银粉制备技术还存在许多不足:(1)还原剂水合肼、甲醛和氢醌有毒,刺激性很强,环保和安全方面问题难以解决;(2)硼氢化钠、氢醌还原剂成本过高,影响银粉生产效益;(3)还原剂抗坏血酸对体系酸度、浓度和温度等条件变化敏感,生产条件不易控制;(4)常用还原剂还原性过强,通常需与大量分散剂配合使用,导致后续的银粉分离困难。
发明内容
本发明的目的是提供一种超细银粉及其制备方法,能够克服现有技术的缺陷,制备表面带负电的胶态超细银粉。
为了达到上述目的,本发明提供了一种负电性超细银粉的制备方法,其中,所述的方法为:配置硝酸银溶液,再用水稀释,然后加入单宁溶液,再加入K2CO3溶液,得到红棕色的银溶胶,即胶态超细银粉,并通过电泳实验证实其表面带负电。
上述的负电性超细银粉的制备方法,其中,所述的水采用二次去离子水。
上述的负电性超细银粉的制备方法,其中,所述的硝酸银溶液的质量浓度为1.7%。硝酸银溶液通过硝酸银和二次去离子水配置。
上述的负电性超细银粉的制备方法,其中,所述的用水稀释是将硝酸银溶液加水稀释到原体积的50倍。
上述的负电性超细银粉的制备方法,其中,所述的单宁溶液的质量浓度为1%。单宁溶液的溶剂采用二次去离子水。
上述的负电性超细银粉的制备方法,其中,所述的单宁溶液的加入量与配置的硝酸银溶液的体积比为1∶2。
上述的负电性超细银粉的制备方法,其中,所述的K2CO3溶液的质量浓度为1%。K2CO3溶液的溶剂采用二次去离子水。
上述的负电性超细银粉的制备方法,其中,所述的K2CO3溶液的加入量与单宁溶液的加入量的体积比为(3~4)∶20。
本发明还提供了上述的方法制备的负电性超细银粉。
上述的负电性超细银粉,其中,所述的银粉,其颗粒的平均粒径为11nm,吸收峰为422nm。
本发明提供的负电性超细银粉及其制备方法具有以下优点:
本发明采用单宁还原硝酸银,能够制备表面带负电的胶态超细银粉,所得的纳米银粉的粒径分布均匀,平均粒径为11nm,吸收峰为422nm,常温下放置7个月仍具有较强的SERS(Surface-enhanced Raman scattering,表面增强拉曼散射)活性。并且制备过程简单易行,能够降低生产成本、提高生产效益,还具有生产条件更加可控,易于后续银粉分离,利于环保,安全性显著提升等优点。
具体实施方式
以下对本发明的具体实施方式作进一步地说明。
本发明提供的负电性超细银粉的制备方法,该方法为:配置硝酸银溶液,再用水稀释,然后加入单宁溶液,再加入K2CO3溶液,得到红棕色的胶态超细银粉,并通过电泳实验证实其表面带负电。
水采用二次去离子水。
硝酸银溶液的质量浓度为1.7%。硝酸银溶液通过硝酸银和二次去离子水配置。
用水稀释是将硝酸银溶液加水稀释到原体积的50倍。
单宁溶液的质量浓度为1%。单宁溶液的溶剂采用二次去离子水。
单宁溶液的加入量与配置的硝酸银溶液的体积比为1∶2。
K2CO3溶液的质量浓度为1%。K2CO3溶液的溶剂采用二次去离子水。
K2CO3溶液的加入量与单宁溶液的加入量的体积比为(3~4)∶20。
本发明还提供了该方法制备的负电性超细银粉。
该银粉的颗粒的平均粒径为11nm,吸收峰为422nm。
下面结合实施例对本发明提供的负电性超细银粉及其制备方法做更进一步描述。
实施例1
一种负电性超细银粉的制备方法,该方法为:用二次去离子水配置质量浓度为1.7%硝酸银溶液,将2ml的1.7%硝酸银溶液用二次去离子水稀释到100ml,然后加入1ml的质量浓度为1%的单宁溶液,再加入3~4滴质量浓度为1%的K2CO3溶液,得到红棕色的银溶胶,即胶态超细银粉,并通过电泳实验证实其表面带负电。溶液的溶剂均采用二次去离子水。
本实施例还提供了该方法制备的负电性超细银粉。
该银粉的颗粒的平均粒径为11nm,吸收峰为422nm。
对制备的表面带负电的胶态超细银粉,用透射电镜、吸收光谱、SERS谱对该纳米银进行了研究。发现纳米银的粒径分布均匀,平均粒径为11nm,吸收峰为422nm,常温下放置7个月仍具有较强的SERS活性。当阴离子型分子吲哚丁酸、阳离子型分子碱性品红、亚甲兰及中性分子邻菲罗邻分别吸附在其上时,观察到阳离子型分子碱性品红和亚甲兰及中性分子邻菲罗邻的SERS谱,而阴离子型分子吲哚丁酸则无SERS谱出现。
SERS(Surface-enhanced Raman scattering)即表面增强拉曼散射效应,是指在特殊制备的一些金属良导体表面或溶胶中,在激发区域内,由于样品表面或近表面的电磁场的增强导致吸附分子的拉曼散射信号比普通拉曼散射(NRS)信号大大增强的现象。SERS克服了拉曼光谱灵敏度低的缺点,可以获得常规拉曼光谱所不易得到的结构信息,被广泛用于表面研究、吸附界面表面状态研究、生物大小分子的界面取向及构型、构象研究、结构分析等,可以有效分析化合物在界面的吸附取向、吸附态的变化、界面信息等。
本发明提供的负电性超细银粉及其制备方法,工艺条件容易控制,采用单宁还原硝酸银,制备表面带负电的胶态超细银粉,所得的纳米银粉的粒径分布均匀,平均粒径为11nm,吸收峰为422nm,常温下放置7个月仍具有较强的SERS活性。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (10)

1.一种负电性超细银粉的制备方法,其特征在于,所述的方法为:配置硝酸银溶液,再用水稀释,然后加入单宁溶液,再加入K2CO3溶液,得到红棕色的胶态超细银粉,并通过电泳实验证实其表面带负电。
2.如权利要求1所述的负电性超细银粉的制备方法,其特征在于,所述的水采用二次去离子水。
3.如权利要求1所述的负电性超细银粉的制备方法,其特征在于,所述的硝酸银溶液的质量浓度为1.7%。
4.如权利要求1所述的负电性超细银粉的制备方法,其特征在于,所述的用水稀释是将硝酸银溶液加水稀释到原体积的50倍。
5.如权利要求1所述的负电性超细银粉的制备方法,其特征在于,所述的单宁溶液的质量浓度为1%。
6.如权利要求5所述的负电性超细银粉的制备方法,其特征在于,所述的单宁溶液的加入量与配置的硝酸银溶液的体积比为1∶2。
7.如权利要求1所述的负电性超细银粉的制备方法,其特征在于,所述的K2CO3溶液的质量浓度为1%。
8.如权利要求7所述的负电性超细银粉的制备方法,其特征在于,所述的K2CO3溶液的加入量与单宁溶液的加入量的体积比为(3~4)∶20。
9.一种如权利要求1~8中任意一项所述的方法制备的负电性超细银粉。
10.如权利要求9所述的负电性超细银粉,其特征在于,所述的银粉,其颗粒的平均粒径为11nm,吸收峰为422nm。
CN201811055434.6A 2018-09-10 2018-09-10 一种负电性超细银粉及其制备方法 Pending CN110883340A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811055434.6A CN110883340A (zh) 2018-09-10 2018-09-10 一种负电性超细银粉及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811055434.6A CN110883340A (zh) 2018-09-10 2018-09-10 一种负电性超细银粉及其制备方法

Publications (1)

Publication Number Publication Date
CN110883340A true CN110883340A (zh) 2020-03-17

Family

ID=69745455

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811055434.6A Pending CN110883340A (zh) 2018-09-10 2018-09-10 一种负电性超细银粉及其制备方法

Country Status (1)

Country Link
CN (1) CN110883340A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111408733A (zh) * 2020-04-24 2020-07-14 安信生物科技有限公司 抗菌抗病毒的纳米银胶体溶液及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1583332A (zh) * 2004-06-08 2005-02-23 陈丽琼 一种纳米银溶胶及其制备方法
CN101147977A (zh) * 2007-10-17 2008-03-26 楚雄师范学院 高活性与长寿命负电性胶态纳米银制备方法
CN101610865A (zh) * 2006-12-20 2009-12-23 派诺尔斯工业服务公司 稳定的单分散金属银纳米颗粒的制备方法及其产品
US20100251856A1 (en) * 2009-04-03 2010-10-07 Venugopal Santhanam Methods for preparing metal and metal oxide nanoparticles
CN102554255A (zh) * 2011-12-22 2012-07-11 中国科学院合肥物质科学研究院 一种纳米银/石墨烯复合材料的制备方法
CN104014804A (zh) * 2014-05-20 2014-09-03 苏州明动新材料科技有限公司 一种粒子可控的纳米银粉的制备方法
CN104607654A (zh) * 2015-02-10 2015-05-13 济南大学 一种基于银纳米颗粒的自组装材料及其制备方法
CN106634220A (zh) * 2016-09-13 2017-05-10 江南大学 一种绿色环保的纳米银导电墨水及其制备方法和印刷应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1583332A (zh) * 2004-06-08 2005-02-23 陈丽琼 一种纳米银溶胶及其制备方法
CN101610865A (zh) * 2006-12-20 2009-12-23 派诺尔斯工业服务公司 稳定的单分散金属银纳米颗粒的制备方法及其产品
US20100143183A1 (en) * 2006-12-20 2010-06-10 Servicios Industriales Peñoles, S.A. De C.V. Process for manufacture of nanometric, monodisperse, stable metallic silver and a product obtained therefrom
CN101147977A (zh) * 2007-10-17 2008-03-26 楚雄师范学院 高活性与长寿命负电性胶态纳米银制备方法
US20100251856A1 (en) * 2009-04-03 2010-10-07 Venugopal Santhanam Methods for preparing metal and metal oxide nanoparticles
CN102554255A (zh) * 2011-12-22 2012-07-11 中国科学院合肥物质科学研究院 一种纳米银/石墨烯复合材料的制备方法
CN104014804A (zh) * 2014-05-20 2014-09-03 苏州明动新材料科技有限公司 一种粒子可控的纳米银粉的制备方法
CN104607654A (zh) * 2015-02-10 2015-05-13 济南大学 一种基于银纳米颗粒的自组装材料及其制备方法
CN106634220A (zh) * 2016-09-13 2017-05-10 江南大学 一种绿色环保的纳米银导电墨水及其制备方法和印刷应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111408733A (zh) * 2020-04-24 2020-07-14 安信生物科技有限公司 抗菌抗病毒的纳米银胶体溶液及其制备方法和应用

Similar Documents

Publication Publication Date Title
Singh et al. Electrochemical sensing and remediation of 4-nitrophenol using bio-synthesized copper oxide nanoparticles
Sun et al. 0D-1D-2D multidimensionally assembled Co9S8/CNTs/MoS2 composites for ultralight and broadband electromagnetic wave absorption
Wu et al. Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: facile synthesis and electromagnetic properties
Manno et al. Synthesis and characterization of starch-stabilized Ag nanostructures for sensors applications
CN100448570C (zh) 一种制备纳米铜银双金属复合粉的方法
Yuan et al. Reduction mechanism of Au metal ions into Au nanoparticles on molybdenum disulfide
Shang et al. Synthesis of Cu@ Ag core–shell nanoparticles for characterization of thermal stability and electric resistivity
Shin et al. Facile one-pot transformation of iron oxides from Fe2O3 nanoparticles to nanostructured Fe3O4@ C core-shell composites via combustion waves
Lin et al. Novel Silver/Poly (Vinyl Alcohol) Nanocomposites for Surface‐Enhanced Raman Scattering‐Active Substrates
Han et al. Facile synthesis of Fe3O4@ Au core–shell nanocomposite as a recyclable magnetic surface enhanced Raman scattering substrate for thiram detection
Sun et al. Sensitive and selective electrochemical sensor of diuron against indole-3-acetic acid based on core-shell structured SiO 2@ Au particles
Tan et al. Synthesis of highly environmental stable copper–silver core–shell nanoparticles for direct writing flexible electronics
Qi et al. Highly dispersive Pt–Pd nanoparticles on graphene oxide sheathed carbon fiber microelectrodes for electrochemical detection of H2O2 released from living cells
Ventura et al. Influence of heat treatment on the colour of Au and Ag glasses produced by the sol–gel pathway
Liu et al. A simple and high-performance hydrazine sensor based on graphene nano platelets supported metal nanoparticles
Zhao et al. Growth kinetics and photothermal conversion of Cu2O–Ag nanocomposites
CN110883340A (zh) 一种负电性超细银粉及其制备方法
Zhang et al. Achieving ultra-broadband electromagnetic absorption of Ag regulated hollow Ag/CuO@ CuS through balancing conduction loss and impedance matching
Dubey et al. Preparation of Ag doped MgO for electrochemical sensing and degradation of the resorcinol
Zhai et al. Effect of zeta potential on coating morphology of SiO2-coated copper powder and conductivity of copper film
Wang et al. New insights into nanostructure/functionality-dependent catalysis of pollutants by arc-designing graphite-encapsulated silver nanoparticles
Odoom‐Wubah et al. Synthesis of ZnO micro‐flowers assisted by a plant‐mediated strategy
Szymańska-Chargot et al. Formation of nanoparticles and nanorods via UV irradiation of AgNO3 solutions
CN107138154A (zh) 一种Pt@C纳米球
Yasin et al. Micro-plasma assisted synthesis of multifunctional D-fructose coated silver nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200317