CN110880953B - 空间90°光混频器分光比自适应控制***的控制方法 - Google Patents

空间90°光混频器分光比自适应控制***的控制方法 Download PDF

Info

Publication number
CN110880953B
CN110880953B CN201911249159.6A CN201911249159A CN110880953B CN 110880953 B CN110880953 B CN 110880953B CN 201911249159 A CN201911249159 A CN 201911249159A CN 110880953 B CN110880953 B CN 110880953B
Authority
CN
China
Prior art keywords
path
stepping motor
module
signal
spatial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911249159.6A
Other languages
English (en)
Other versions
CN110880953A (zh
Inventor
张鹏
吴潇杰
郭代芳
宫喜宇
南航
杨静宇
佟首峰
姜会林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Science and Technology
Original Assignee
Changchun University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Science and Technology filed Critical Changchun University of Science and Technology
Priority to CN201911249159.6A priority Critical patent/CN110880953B/zh
Publication of CN110880953A publication Critical patent/CN110880953A/zh
Application granted granted Critical
Publication of CN110880953B publication Critical patent/CN110880953B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

空间90°光混频器分光比自适应控制***及其控制方法,属于空间光通信领域,为了解决现有技术无法实现空间型90°光混频器分光比自适应调控的问题,该***包括可旋转半波片、空间型90°光混频器、I路平衡光电探测器、Q路平衡光电探测器、电乘法器、锁相模块、可调谐激光器、ADC、FPGA模块、步进电机驱动电路、步进电机、电源、存储模块和信号解调模块;本发明利用FPGA模块通过拟人算法实现对空间型90°光混频器分光比进行自适应控制,本发明可自适应调节空间型90°光混频器分光比实现***快速锁相,本发明可根据不同工作环境自适应得到在不失锁条件下最优通信性能的分光比阈值,实现对分光比的控制,降低通信误码率。

Description

空间90°光混频器分光比自适应控制***的控制方法
技术领域
本发明涉及一种基于拟人算法的空间90°光混频器分光比自适应控制***及其控制方法,属于空间光通信领域。
背景技术
自由空间激光通信相比于传统的无线通信,空间光通信技术具有信息容量大,速率高,功耗低,天线尺寸小,重量轻,光束窄,方向性好等优点,能较好的解决卫星间电磁波干扰和保密问题。因此自用空间激光通信具有非常广阔的应用前景。
目前BPSK零差相干接收技术广泛应用于星间、星地间激光通信。空间型 90°光混频器是影响BPSK零差相干光通信性能的核心器件。起作用是将接收到的信号光和本振光进行相干混频,残留中频信号用于信号解调以及环路锁相。空间链路中,由于受到大气湍流、恶劣天气等的影响,信号光偏振态会发生变化,这将导致信号光IQ支路功率分配比变化,对相干接收机的通信性能和锁相性能造成影响。而且无法在某一特定分光比条件下实现通信性能和锁相性能同时达到最优,因此分光比自适应调控***非常具有研究和实用价值。
中国专利公开号为“CN 107132663A”,专利名称为“一种分光比自适应调控的空间光90°混频器”,该空间光90°混频器通过控制信号光输入端的半波片快轴角度来实现不同工作条件下信号光I/Q路光功率分配比,实现通信性能的提高。但该专利只提出了可变分光比空间光90°混频器结构,该结构无法实现混频器分光比自适应调控。
发明内容
本发明为了解决现有技术无法实现空间型90°光混频器分光比自适应调控的问题,提出一种空间90°光混频器分光比自适应控制***及其控制方法,实现相干接收机在不同工作条件下分配信号光,提高锁相性能和通信性能。
本发明的技术方案是:
本发明空间90°光混频器分光比自适应控制***,该***包括可旋转半波片、空间型90°光混频器、I路平衡光电探测器、Q路平衡光电探测器、电乘法器、锁相模块、可调谐激光器、ADC、FPGA模块、步进电机驱动电路、步进电机、电源、存储模块和信号解调模块;
可旋转半波片置于空间型90°光混频器信号光输入端口前,用于调整输入信号光偏振状态;I路平衡光电探测器和Q路平衡光电探测器分别置于空间型90°光混频器的输出端口处,用于将空间型90°光混频器输出的中频光信号转化为电信号;I路平衡光电探测器和Q路平衡光电探测器的输出端口分别与电乘法器输入端口和ADC连接;电乘法器输出端口分两路,其中一路输出端口连接到锁相模块输入端口,锁相模块输出端口连接到可调谐激光器,可调谐激光器的激光输出端口对准空间型90°光混频器的本振光输入端口;电乘法器另一路输出端口连接到ADC,ADC将电乘法器以及I路平衡探测器和Q路平衡探测器输出的模拟电信号进行模数转换;ADC与FPGA模块连接,将数模转换后的信号传输到 FPGA模块的IO端口输入端;FPGA模块的IO输出端口连接到步进电机驱动电路输入端,步进电机驱动电路输出端连接到步进电机,步进电机与可旋转半波片连接,驱动可旋转半波片;存储器模块和FPGA模块连接;电源模块与FPGA 模块和步进电机驱动电路连接;信号解调模块接收I路平衡光电探测器输出的I 路电信号用于信号解调。
空间90°光混频器分光比自适应控制***的控制方法,该方法包括以下步骤:
步骤一,***接收信号光通过可旋转半波片调整其偏振态,然后信号光进入空间型90°混频器2,空间型90°混频器接收的信号光与可调谐激光器发出的本振光相干混频,输出中频信号被I路平衡光电探测器和Q路平衡光电探测器转换为I、Q两路电信号;I、Q两路电信号经电乘法器输出鉴相信号;
步骤二,鉴相信号通过ADC转换为数字信号传输给FPGA模块,由FPGA 模块判决,若鉴相信号为0,***完成锁相,FPGA模块调用通信分光比子程序,***进行通信,I路平衡光电探测器输出电信号,再通过信号解调模块进行通信;若鉴相信号不为0时,***失锁,则***失锁,FPGA模块调用锁相分光比子程序,***进行可调谐激光器和信号光锁相;
步骤三,锁相分光比子程序,I路平衡光电探测器和Q路平衡光电探测器接收到的电压模拟信号经ADC转换为数字信号传递给FPGA模块,FPGA模块对两者进行比较;当两者信号大小不同时,FPGA模块运行拟人算法,发出电机工作信号,步进电机驱动电路发出脉冲信号控制步进电机驱动可旋转半波片向随机方向转动;若I路平衡光电探测器和Q路平衡光电探测器输出电压差值的绝对值减小,则拟人算法启动奖励机制,步进电机驱动可旋转半波片继续向该方向转动;若I路平衡光电探测器和Q路平衡光电探测器输出电压差值的绝对值增大,则拟人算法启动惩罚机制,步进电机驱动可旋转半波片向反方向转动;当I路平衡光电探测器和Q路平衡光电探测器输出电压信号相同时,FPGA模块向步进电机驱动电路发出终止信号,步进电机运动停止;锁相模块对可调谐激光器进行调谐,当鉴相信号为0时,***完成锁相;
步骤四,通信分光比子程序,FPGA模块运行拟人算法,测量通信分光比阈值;FPGA模块向步进电机驱动电路发出电机工作信号,步进电机驱动电路发出脉冲信号控制步进电机驱动可旋转半波片向随机方向转动;若I路平衡光电探测器输出电压增大,则拟人算法启动奖励机制,步进电机驱动可旋转半波片继续向该方向转动;若I路平衡光电探测器输出电压减小,则拟人算法启动惩罚机制,步进电机驱动可旋转半波片向反方向转动;当鉴相信号不为零时,***失锁, FPGA模块发出步进电机终止信号,并将步进电机运动步长N存储在存储模块, FPGA模块生成步长为N=N-1的控制电机运动的配置文件M存储于存储模块;之后FPGA模块调用锁相分光比子程序,***重新锁相;完成锁相后,FPGA模块调用配置文件M,步进电机运行N步,若鉴相信号不为0,则步进电机运动步长N=N-1,生成新的配置文件M并覆盖之前的配置文件;若鉴相信号为0,则结束。
本发明的有益效果是:
本发明利用FPGA模块通过拟人算法实现对空间型90°光混频器分光比进行自适应控制。本发明可自适应调节空间型90°光混频器分光比实现***快速锁相。本发明可根据不同工作环境自适应得到在不失锁条件下最优通信性能的分光比阈值,实现对分光比的控制,降低通信误码率。该***不需要对FPGA模块内部功能进行修改即可实现空间型90°光混频器分光比的闭环自适应控制,灵活度高,结构简单。
附图说明
图1为本发明空间90°光混频器分光比自适应控制***结构示意图。
图2为本发明本发明空间90°光混频器分光比自适应控制方法的控制流程图。
图3为本发明的控制方法对应步骤三所述的锁相分光比控制的流程示意图。
图4为本发明的控制方法对应步骤四和步骤五所述的通信分光比控制的流程示意图。
具体实施方式
下面结合附图对本发明实施例作详细说明。
如图1所示,本发明空间90°光混频器分光比自适应控制***,该***包括可旋转半波片1、空间型90°光混频器2、I路平衡光电探测器3、Q路平衡光电探测器4、电乘法器5、锁相模块6、可调谐激光器7、模数转换器(ADC)8、 FPGA模块9、步进电机驱动电路10、步进电机11、电源12、存储模块13和信号解调模块14。
可旋转半波片1置于空间型90°光混频器2信号光输入端口前,用于调整输入信号光偏振状态。I路平衡光电探测器3和Q路平衡光电探测器4分别置于空间型90°光混频器2的输出端口处,用于将空间型90°光混频器2输出的中频光信号转化为电信号。I路平衡光电探测器3和Q路平衡光电探测器4的输出端口分两路通过电缆分别和电乘法器5输入端口和ADC8连接。
电乘法器5的输出端口分两路,其中一路输出端口通过电缆连接到锁相模块6输入端口,锁相模块6输出端口通过电缆连接到可调谐激光器7,可调谐激光器7激光输出端口对准空间型90°光混频器2本振光输入端口。电乘法器5另一路输出端口通过电缆连接到ADC8,ADC8将电乘法器5以及I路平衡探测器 3和Q路平衡探测器4输出的模拟电信号进行模数转换。
ADC8与FPGA模块9连接,将数模转换后的信号通过电缆传输到FPGA 模块9IO端口输入端。FPGA模块9的IO输出端口连接到步进电机驱动电路10 输入端,步进电机驱动电路10输出端连接到步进电机11驱动可旋转半波片1。
存储器模块13和FPGA模块9连接;电源模块12连接到步进电机驱动电路10提供12V直流电源。电源模块12与FPGA模块9连接,电源模块12通过稳压、滤波后输出5V电源,为FPGA模块9以供电。信号解调模块14通过电缆接收I路平衡光电探测器3输出的I路电信号,用于信号解调。
本发明空间90°光混频器分光比自适应控制方法,包括以下步骤,具体流程如图2所示:
步骤一:***接收信号光通过可旋转半波片1调整其偏振态,然后信号光进入空间型90°混频器2,在空间型90°混频器2内的信号光与可调谐激光器7 发出的本振光进行混频,输出中频信号通过I路平衡光电探测器3和Q路平衡光电探测器4接收转化为I、Q两路电信号,I、Q两路电信号经电乘法器5输出鉴相信号。
步骤二:鉴相信号通过ADC8转化为数字信号传输给FPGA模块9,由FPGA 模块9判决,若鉴相信号为0,***完成锁相,FPGA模块9调用通信分光比子程序,***进行通信,I路平衡探测器3输出电信号,再通过信号解调模块14 进行通信;若鉴相信号不为0,则***失锁,FPGA模块9调用锁相分光比子程序,***进行可调谐激光器和信号光锁相。
步骤三:锁相分光比子程序,如图3所示,I路平衡光电探测器3和Q路平衡光电探测器4接收到的电压模拟信号经ADC8转换为数字信号传递给FPGA 模块9,FPGA模块9对两者进行比较;当两者信号大小不同时,FPGA模块9 运行拟人算法,发出电机工作信号,步进电机驱动电路10发出脉冲信号控制步进电机11驱动可旋转半波片1向随机方向转动;若I路平衡探测器3和Q路平衡探测器4输出电压差值的绝对值减小,则拟人算法启动奖励机制,步进电机 11驱动可旋转半波片1继续向该方向转动。若I路平衡光电探测器3和Q路平衡光电探测器4输出电压差值的绝对值增大,则拟人算法启动惩罚机制,步进电机11驱动可旋转半波片1向反方向转动。当I路平衡光电探测器3和Q路平衡光电探测器4输出电压信号相同时,FPGA模块9向步进电机驱动电路10发出终止信号,步进电机11运动停止。锁相模块6对可调谐激光器7进行调谐,当鉴相信号为0时,***完成锁相。
步骤四:通信分光比子程序,如图4所示,FPGA模块9运行拟人算法,测量通信分光比阈值。
FPGA模块9向步进电机驱动电路10发出电机工作信号,步进电机驱动电路10发出脉冲信号控制步进电机11驱动可旋转半波片1向随机方向转动;若I 路平衡光电探测器3输出电压增大,则拟人算法启动奖励机制,步进电机11驱动可旋转半波片1继续向该方向转动。若I路平衡探测器3输出电压减小,则拟人算法启动惩罚机制,步进电机11驱动可旋转半波片1向反方向转动。当鉴相信号不为零时,***失锁,FPGA模块9发出步进电机终止信号,并将步进电机运动步长N存储在存储模块13,FPGA模块9生成步长为N=N-1的控制电机运动的配置文件M存储于存储模块13;之后FPGA模块9调用锁相分光比子程序,***重新锁相。完成锁相后,FPGA模块9调用配置文件M,步进电机11运行 N步,若鉴相信号不为0,则步进电机11运动步长N=N-1,生成新的配置文件 M并覆盖之前的配置文件。若鉴相信号为0,则结束。
所述拟人算法的核心是高级Rosenbrock搜索算法,这是一种无约束的直接搜索方法,当搜索成功时启动奖励机制,搜索失败时启动惩罚机制。高级 Rosenbrock搜索算法具有一种称为耐心的独特退出机制。耐心涉及一个预设参数,该参数是高级Rosenbrock搜索算法可以承受的最大连续勘探失败次数。一旦超过耐心,当前的优化将立即终止。随后,从新的随机点开始新的探索。

Claims (2)

1.空间90°光混频器分光比自适应控制***的控制方法,其特征是,该方法包括以下步骤:
步骤一,***接收信号光通过可旋转半波片(1)调整其偏振态,然后信号光进入空间型90°混频器2,空间型90°混频器(2)接收的信号光与可调谐激光器(7)发出的本振光相干混频,输出中频信号被I路平衡光电探测器(3)和Q路平衡光电探测器(4)转换为I、Q两路电信号;I、Q两路电信号经电乘法器(5)输出鉴相信号;
步骤二,鉴相信号通过ADC(8)转换为数字信号传输给FPGA模块(9),由FPGA模块(9)判决,若鉴相信号为0,***完成锁相,FPGA模块(9)调用通信分光比子程序,***进行通信,I路平衡光电探测器(3)输出电信号,再通过信号解调模块(14)进行通信;若鉴相信号不为0时,则***失锁,FPGA模块(9)调用锁相分光比子程序,***进行可调谐激光器和信号光锁相;
步骤三,锁相分光比子程序,I路平衡光电探测器(3)和Q路平衡光电探测器(4)接收到的电压模拟信号经ADC(8)转换为数字信号传递给FPGA模块(9),FPGA模块(9)对两者进行比较;当两者信号大小不同时,FPGA模块(9)运行拟人算法,发出电机工作信号,步进电机驱动电路(10)发出脉冲信号控制步进电机(11)驱动可旋转半波片(1)向随机方向转动;若I路平衡光电探测器(3)和Q路平衡光电探测器(4)输出电压差值的绝对值减小,则拟人算法启动奖励机制,步进电机(11)驱动可旋转半波片(1)继续向该方向转动;若I路平衡光电探测器(3)和Q路平衡光电探测器(4)输出电压差值的绝对值增大,则拟人算法启动惩罚机制,步进电机(11)驱动可旋转半波片(1)向反方向转动;当I路平衡光电探测器(3)和Q路平衡光电探测器(4)输出电压信号相同时,FPGA模块(9)向步进电机驱动电路(10)发出终止信号,步进电机(11)运动停止;锁相模块(6)对可调谐激光器(7)进行调谐,当鉴相信号为0时,***完成锁相;
步骤四,通信分光比子程序,FPGA模块(9)运行拟人算法,测量通信分光比阈值;FPGA模块(9)向步进电机驱动电路(10)发出电机工作信号,步进电机驱动电路(10)发出脉冲信号控制步进电机(11)驱动可旋转半波片(1)向随机方向转动;若I路平衡光电探测器(3)输出电压增大,则拟人算法启动奖励机制,步进电机(11)驱动可旋转半波片(1)继续向该方向转动;若I路平衡光电探测器(3)输出电压减小,则拟人算法启动惩罚机制,步进电机(11)驱动可旋转半波片(1)向反方向转动;当鉴相信号不为零时,***失锁,FPGA模块(9)发出步进电机终止信号,并将步进电机运动步长N存储在存储模块(13),FPGA模块(9)生成步长为N=N-1的控制电机运动的配置文件M存储于存储模块(13);之后FPGA模块(9)调用锁相分光比子程序,***重新锁相;完成锁相后,FPGA模块(9)调用配置文件M,步进电机(11)运行N步,若鉴相信号不为0,则步进电机(11)运动步长N=N-1,生成新的配置文件M并覆盖之前的配置文件;若鉴相信号为0,则结束。
2.根据权利要求1所述的空间90°光混频器分光比自适应控制***的控制方法,其特征在于,该方法基于的结构为空间90°光混频器分光比自适应控制***,该***包括可旋转半波片(1)、空间型90°光混频器(2)、I路平衡光电探测器(3)、Q路平衡光电探测器(4)、电乘法器(5)、锁相模块(6)、可调谐激光器(7)、ADC(8)、FPGA模块(9)、步进电机驱动电路(10)、步进电机(11)、电源模块(12)、存储模块(13)和信号解调模块(14);
可旋转半波片(1)置于空间型90°光混频器(2)信号光输入端口前,用于调整输入信号光偏振状态;
I路平衡光电探测器(3)和Q路平衡光电探测器(4)分别置于空间型90°光混频器(2)的输出端口处,用于将空间型90°光混频器(2)输出的中频光信号转化为电信号;
I路平衡光电探测器(3)和Q路平衡光电探测器(4)的输出端口分别与电乘法器(5)输入端口和ADC(8)连接;
电乘法器(5)输出端口分两路,其中一路输出端口连接到锁相模块(6)输入端口,锁相模块(6)输出端口连接到可调谐激光器(7),可调谐激光器(7)的激光输出端口对准空间型90°光混频器(2)的本振光输入端口;电乘法器(5)另一路输出端口连接到ADC(8),ADC(8)将电乘法器(5)以及I路平衡探测器(3)和Q路平衡探测器(4)输出的模拟电信号进行模数转换;
ADC(8)与FPGA模块(9)连接,将数模转换后的信号传输到FPGA模块(9)的IO端口输入端;FPGA模块(9)的IO输出端口连接到步进电机驱动电路(10)输入端,步进电机驱动电路(10)输出端连接到步进电机(11),步进电机(11)与可旋转半波片(1)连接,驱动可旋转半波片(1);
存储模块(13)和FPGA模块(9)连接;
电源模块(12)与FPGA模块(9)和步进电机驱动电路(10)连接;
信号解调模块(14)接收I路平衡光电探测器(3)输出的I路电信号用于信号解调。
CN201911249159.6A 2019-12-09 2019-12-09 空间90°光混频器分光比自适应控制***的控制方法 Active CN110880953B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911249159.6A CN110880953B (zh) 2019-12-09 2019-12-09 空间90°光混频器分光比自适应控制***的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911249159.6A CN110880953B (zh) 2019-12-09 2019-12-09 空间90°光混频器分光比自适应控制***的控制方法

Publications (2)

Publication Number Publication Date
CN110880953A CN110880953A (zh) 2020-03-13
CN110880953B true CN110880953B (zh) 2022-08-16

Family

ID=69729923

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911249159.6A Active CN110880953B (zh) 2019-12-09 2019-12-09 空间90°光混频器分光比自适应控制***的控制方法

Country Status (1)

Country Link
CN (1) CN110880953B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2725724A1 (en) * 2012-10-25 2014-04-30 3M Innovative Properties Company Fibre network comprising sensors
CN104049435A (zh) * 2014-07-03 2014-09-17 徐敬亚 一种实现全光或非门的级联半导体光放大器干涉装置
CN104777697A (zh) * 2015-04-21 2015-07-15 电子科技大学 一种随机偏振反馈***光频梳产生器
CN107132663A (zh) * 2017-06-14 2017-09-05 长春理工大学 分光比自适应调控的空间光90°混频器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007006679A1 (de) * 2005-07-07 2007-01-18 Nokia Siemens Networks Gmbh & Co. Kg Mehrstufiger faserverstärker und verfahren zur anpassung einer pumpleistung eines mehrstufigen faserverstärkers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2725724A1 (en) * 2012-10-25 2014-04-30 3M Innovative Properties Company Fibre network comprising sensors
CN104049435A (zh) * 2014-07-03 2014-09-17 徐敬亚 一种实现全光或非门的级联半导体光放大器干涉装置
CN104777697A (zh) * 2015-04-21 2015-07-15 电子科技大学 一种随机偏振反馈***光频梳产生器
CN107132663A (zh) * 2017-06-14 2017-09-05 长春理工大学 分光比自适应调控的空间光90°混频器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Optimal catalyst temperature management of Plug-in Hybrid Electric Vehicles;Dongsuk Kum;《Proceedings of the 2011 American Control Conference》;20110818;全文 *
分光比连续可调的1×2光分路器的设计与实现;曹芳;《光通信技术》;20150915;全文 *

Also Published As

Publication number Publication date
CN110880953A (zh) 2020-03-13

Similar Documents

Publication Publication Date Title
Wu et al. Weighted sum power maximization for intelligent reflecting surface aided SWIPT
RU2530292C1 (ru) Антенна, базовая станция и способ обработки диаграммы направленности
US7653163B2 (en) Systems for communicating using multiple frequency bands in a wireless network
CA2021905A1 (en) Adaptive polarization combining system
US20210305708A1 (en) Electrically-Controlled Switching Multi-Polarization Horn Antenna
Song et al. Beamspace MIMO transceivers for low-complexity and near-optimal communication at mm-wave frequencies
CN109167623B (zh) 一种应用于毫米波多天线***的混合波束成形***及其毫米波多天线***
CN110493777B (zh) 一种基于四维天线阵的多目标保密通信***
Qiang et al. Hybrid A/D precoding for downlink massive MIMO in LEO satellite communications
Zhang et al. An IRS-aided GSSK scheme for wireless communication system
CN110880953B (zh) 空间90°光混频器分光比自适应控制***的控制方法
Chen et al. Pre-scaling and codebook design for joint radar and communication based on index modulation
CN110927675A (zh) 一种能级联的毫米波雷达芯片
Yue et al. RIS-assisted flexible space shift keying for wireless communication system
CN112684650A (zh) 一种基于加权调制曲线的光子模数转换方法及***
CN108227335B (zh) 一种宽带化采样的光子时间拉伸模数转换***
Song et al. Analog and successive channel equalization in strong line-of-sight MIMO communication
Song et al. Analog equalization and low resolution quantization in strong line-of-sight MIMO communication
CN113812097A (zh) 多输入多输出发送和接收
Shattil et al. Array control systems for multicarrier protocols using a frequency-shifted feedback cavity
CN110336610A (zh) 一种高安全性的反射式相干光通信***发射端及***
CN113411126B (zh) 一种基于oam跳模的无线光通信抗大气湍流方法
CN113055063A (zh) 一种基于空间场数字调制的低截获中继通信***
CN113740833A (zh) 一种微波光子雷达通信一体化***及方法
CN108683942B (zh) 一种无人机视频传输接收装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant