CN110879601B - 一种对于未知风机结构的无人机巡检方法 - Google Patents

一种对于未知风机结构的无人机巡检方法 Download PDF

Info

Publication number
CN110879601B
CN110879601B CN201911240805.2A CN201911240805A CN110879601B CN 110879601 B CN110879601 B CN 110879601B CN 201911240805 A CN201911240805 A CN 201911240805A CN 110879601 B CN110879601 B CN 110879601B
Authority
CN
China
Prior art keywords
point
inspection
aerial vehicle
unmanned aerial
coordinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911240805.2A
Other languages
English (en)
Other versions
CN110879601A (zh
Inventor
潘佳捷
张红雨
毛翔
张志鹏
吴冰航
靳一丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201911240805.2A priority Critical patent/CN110879601B/zh
Publication of CN110879601A publication Critical patent/CN110879601A/zh
Application granted granted Critical
Publication of CN110879601B publication Critical patent/CN110879601B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Multimedia (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种对于未知风机结构的无人机巡检方法,包括以下步骤:S1.远距离对风机整体进行多角度拍照,风机要全部包含在照片中且靠近照片中心部位,对照片进行处理获取关键巡检点坐标信息;S2.利用已获取的关键巡检点坐标信息计算出将叶片等分的巡检点坐标信息;S3.利用巡检点坐标信息计算出所需的巡航点坐标信息,生成航迹;S4.无人机起飞并到巡航点,利用巡检点坐标信息调整无人机位姿使其正对目标点;S5.在所在巡航点进行拍照的之前对巡检点进行一次目标识别,再次调整云台姿态,将巡检点尽量靠近照片中心。本发明能够将巡检点尽量靠近照片中心,在提升效率的同时,使得无人机自主巡检的可靠性更强。

Description

一种对于未知风机结构的无人机巡检方法
技术领域
本发明涉及风机的叶片巡检,特别是涉及一种对于风机结构信息未知的无人机巡检方法。
背景技术
叶片是风力发电机组的一个重要组成部件,由于风机所处环境较为恶劣,叶片在严苛的环境中运行时受到风沙、雨雪、雷电等自然因素的破坏,形成表面脱落、砂眼、雷击、叶边磨损等缺陷,需要通过对叶片进行定期检查和维护以预防缺陷造成的事故发生。传统的叶片检查手段是利用望远镜和绳索垂降人工检测,有危险系数大、效率低、成本高等缺点。随着风电市场的逐渐发展,大型风电机组的相继出现,叶片的长度也由原来的30-40m增长至60-70m,一般来说,风电机组的使用年限为20年,叶片重量的增长和叶片长度的增长给叶片的维护带来了挑战。
随着技术的发展,无人机在巡检工作的应用范围日益广泛。无人机由于具有悬停、低速飞行、操作简便、维护方便、性价比高等特点,因此,将无人机运用到叶片检测中,将大大提高工作效率。现有方法由操作人员通过地面站显示的实时图像观察叶片表面状态,当发现可疑点时远程操作无人机采集各角度的画面以便进一步详细检查,这需要不断的操控调整无人机的姿态方便拍摄,需要投入很大的人力,而且操控不好误差会很大,同时人力成本也很高。还有针对风机结构已知的情况下,利用风机结构信息进行算法优化实现无人机自主巡检的方法,可以很大程度上减少人力成本,效率更高,但是并没有高效的针对风机结构未知情况下的巡检方法。
发明内容
本发明的目的在于克服现有技术的不足,提供一种对于风机结构信息未知的无人机巡检方法,在提升效率的同时,使得无人机自主巡检的可靠性更强。
本发明的目的是通过以下技术方案来实现的:一种对于未知风机结构的无人机巡检方法,包括以下步骤:
S1.远距离对风机整体进行多角度拍照,风机要全部包含在照片中且靠近照片中心部位,对照片进行处理获取关键巡检点坐标信息;
S2.利用已获取的关键巡检点坐标信息计算出将叶片等分的巡检点坐标信息;
S3.利用巡检点坐标信息计算出所需的巡航点坐标信息,生成航迹;
S4.无人机起飞并到巡航点,利用巡检点坐标信息调整无人机位姿使其正对目标点;
S5.在所在巡航点进行拍照的之前对巡检点进行一次目标识别,再次调整云台姿态,将巡检点尽量靠近照片中心。
进一步地,所述关键巡检点包括风机的三个叶尖和一个轮毂中心。
进一步地,所述步骤S1包括以下子步骤:
S101.远距离对风机整体进行多角度拍照得到多张照片,每张照片中风机要全部包含在照片中且靠近照片中心部位;
S102.对于拍摄的每一张照片图像,获取关键巡检点在图像中的像素点坐标Puv(u,v)、相机的内参矩阵K;记录拍照时飞机的经纬度信息、相机的姿态角信息,确定相机坐标系到大地坐标系的旋转矩阵Rcw;设置一个北东地坐标系参考原点,并计算出拍照点在坐标系中的坐标t(X0,Y0,Z0),记录相机坐标系下拍摄点距离巡检点之间的深度Zc
S103.对于任一关键巡检点,推导相机坐标系下巡检点的归一化坐标Pc,并计算出关键巡检点的理论三维坐标Pw(Xw,Yw,Zw):
Pc=K-1ZcPuv
Figure BDA0002306160580000021
进一步地,所述步骤S102中,获取关键巡检点在图像中的像素点坐标包括如下两种方式:
方式一、在拍摄完图像之后,从存储卡中导出图像进行标注获取像素坐标;
方式二、在实时回传的视频图像上进行标注获取像素坐标。
进一步地,所述步骤S2包括:
预先设置轮毂中心与每个叶尖点之间线段的分段段数,获取风机关键巡检点坐标后,再利用叶尖点与轮毂中心之间的线段等分分割获取巡检点坐标。
进一步地,所述步骤S3包括:
根据巡检需求,预设巡检点与巡航点之间的约束条件,所述约束条件包括巡航点与巡检点之间的距离以及巡航点相对于巡检点的方向;其中巡检点指的是电力杆塔上需要巡检的目标点,巡航点是无人机拍照时的位置;
根据巡检点和约束条件,计算出所需的巡航点坐标信息,并生成航迹。
进一步地,所述步骤S4包括:
控制无人机飞到巡检点附近,根据此时无人机的姿态和位置,调节姿态到无人机正对巡检点的方向,利用空间中无人机所在的位置与巡检点的坐标信息获取空间中一个方向向量,其中,调节姿态时需要调节相应的偏航以及俯仰角度。
进一步地,所述步骤S5包括以下子步骤:
S501.在所在巡航点进行拍照的之前对巡检点进行一次目标识别;
S502.将在巡航点拍照所得的照片进行在线图像处理,识别需要巡检的叶片部分,再调节相机云台的姿态使之处于照片的中心部位;
S503.设Pw是实际目标点地理坐标位置,O是光心,Po是光心沿相机坐标系Z轴到Pw所在平面的垂足,P是Pw与Po沿相机坐标系的u轴与v轴相交点;Zc是Pw所在平面到光心的垂直距离,u`是Pw与Po在相机坐标系下沿u轴方向的实际地理距离,v`是Pw与Po在相机坐标系下沿v轴方向的实际地理距离;D是Pw与O之间的距离;d是P与O之间的距离;
在前面计算出来Pw之后,光心O的地理坐标t和Rcw已知,则:
D=|t-Pw|,
Figure BDA0002306160580000031
Pc=Rcw(Pw-t)
计算得Zc,其中fx是由αf合并、fy是由βf合并,f为相机焦距,α,β是像素坐标在u、v坐标轴上缩放倍数,[cx,cy]T是原点的平移量;
再根据:
Figure BDA0002306160580000032
Figure BDA0002306160580000033
得u`实际相机坐标系下的横向长度与v`实际相机坐标系下的长纵向度;
由Zc与u`进行勾股定理得
Figure BDA0002306160580000034
得所需的偏航角度
Figure BDA0002306160580000035
由d、v`、D得所需的俯仰角度
Figure BDA0002306160580000036
按照计算得到的偏航以及俯仰角度对航迹中巡航点的姿态信息进行调整即可。
本发明的有益效果是:本发明能够在未知风机结构的条件下,调整无人机位姿使其正对目标点;在所在巡航点进行拍照的之前对巡检点进行一次目标识别,再次调整云台姿态,将巡检点尽量靠近照片中心,在提升效率的同时,使得无人机自主巡检的可靠性更强。
附图说明
图1为本发明的方法流程图;
图2为无人机的姿态调整示意图;
图3为云台姿态的调整示意图。
具体实施方式
下面结合附图进一步详细描述本发明的技术方案,但本发明的保护范围不局限于以下所述。
如图1所示,一种对于未知风机结构的无人机巡检方法,包括以下步骤:
S1.远距离对风机整体进行多角度拍照,风机要全部包含在照片中且靠近照片中心部位,对照片进行处理获取关键巡检点坐标信息;
S2.利用已获取的关键巡检点坐标信息计算出将叶片等分的巡检点坐标信息;
S3.利用巡检点坐标信息计算出所需的巡航点坐标信息,生成航迹;
S4.无人机起飞并到巡航点,利用巡检点坐标信息调整无人机位姿使其正对目标点;
S5.在所在巡航点进行拍照的之前对巡检点进行一次目标识别,再次调整云台姿态,将巡检点尽量靠近照片中心,按照调整后的航迹,以及航迹中各个巡航点的云台姿态进行无人机自主巡检,以提高巡检精度。
在本申请的实施例中,所述关键巡检点包括风机的三个叶尖和一个轮毂中心;所述步骤S1包括以下子步骤:
S101.远距离对风机整体进行多角度拍照得到多张照片,每张照片中风机要全部包含在照片中且靠近照片中心部位;
S102.对于拍摄的每一张照片图像,获取关键巡检点在图像中的像素点坐标Puv(u,v)、相机的内参矩阵K;记录拍照时飞机的经纬度信息、相机的姿态角信息,确定相机坐标系到大地坐标系的旋转矩阵Rcw;设置一个北东地坐标系参考原点,并计算出拍照点在坐标系中的坐标t(X0,Y0,Z0),记录相机坐标系下拍摄点距离巡检点之间的深度Zc
S103.对于任一关键巡检点,推导相机坐标系下巡检点的归一化坐标Pc,并计算出关键巡检点的理论三维坐标Pw(Xw,Yw,Zw):
Pc=K-1ZcPuv
Figure BDA0002306160580000041
进一步地,所述步骤S102中,获取关键巡检点在图像中的像素点坐标包括如下两种方式:
方式一、在拍摄完图像之后,从存储卡中导出图像进行标注获取像素坐标;
方式二、在实时回传的视频图像上进行标注获取像素坐标。
在本申请的实施例中,所述步骤S2包括:
预先设置轮毂中心与每个叶尖点之间线段的分段段数,获取风机关键巡检点坐标后,再利用叶尖点与轮毂中心之间的线段等分分割获取巡检点坐标;具体实施的时候可以根据场景调整两张照片的重合度,调整相应的飞行距离。
进一步地,所述步骤S3包括:
根据巡检需求,预设巡检点与巡航点之间的约束条件,所述约束条件包括巡航点与巡检点之间的距离以及巡航点相对于巡检点的方向;其中巡检点指的是电力杆塔上需要巡检的目标点,巡航点是无人机拍照时的位置;
根据巡检点和约束条件,计算出所需的巡航点坐标信息,并生成航迹。
在本申请的实施例中,所述步骤S4包括:
控制无人机飞到巡检点附近,根据此时无人机的姿态和位置,调节姿态到无人机正对巡检点的方向,利用空间中无人机所在的位置与巡检点的坐标信息获取空间中一个方向向量,其中,调节姿态时需要调节相应的偏航以及俯仰角度;如图2所示,该实施例中,
Figure BDA0002306160580000051
是无人机此时的方向向量,
Figure BDA0002306160580000052
是无人机所在点与巡检点连线的方向向量。
所述步骤S5包括以下子步骤:
S501.在所在巡航点进行拍照的之前对巡检点进行一次目标识别;因为第一次使用一张照片包括了所有巡检点,会有相应的误差,并且因为是利用点进行操作,可能导致最后拍照的照片上没有完全包括需要拍的物体,因为叶片比较宽,也比较长,所以加一个类似目标识别的操作是可行的;
S502.将在巡航点拍照所得的照片进行在线图像处理,识别需要巡检的叶片部分,再调节相机云台的姿态使之处于照片的中心部位;这样无论对于后期的巡检照片处理还是巡检的稳定性都是有益的;
S503.如图3所示,设Pw是实际目标点地理坐标位置,O是光心,Po是光心沿相机坐标系Z轴到Pw所在平面的垂足,P是Pw与Po沿相机坐标系的u轴与v轴相交点;Zc是Pw所在平面到光心的垂直距离,u`是Pw与Po在相机坐标系下沿u轴方向的实际地理距离,v`是Pw与Po在相机坐标系下沿v轴方向的实际地理距离;D是Pw与O之间的距离;d是P与O之间的距离;
在前面计算出来Pw之后,光心O的地理坐标t和Rcw已知,则:
D=|t-Pw|,
Figure BDA0002306160580000061
Pc=Rcw(Pw-t)
计算得Zc,其中fx是由αf合并、fy是由βf合并,f为相机焦距,α,β是像素坐标在u、v坐标轴上缩放倍数,[cx,cy]T是原点的平移量;
再根据:
Figure BDA0002306160580000062
Figure BDA0002306160580000063
得u`实际相机坐标系下的横向长度与v`实际相机坐标系下的长纵向度;
由Zc与u`进行勾股定理得
Figure BDA0002306160580000064
得所需的偏航角度
Figure BDA0002306160580000065
由d、v`、D得所需的俯仰角度
Figure BDA0002306160580000066
按照计算得到的偏航以及俯仰角度对航迹中巡航点的姿态信息进行调整即可。
本发明能够在未知风机结构的条件下,调整无人机位姿使其正对目标点;在所在巡航点进行拍照的之前对巡检点进行一次目标识别,再次调整云台姿态,将巡检点尽量靠近照片中心,在提升效率的同时,使得无人机自主巡检的可靠性更强。
以上所述是本发明的优选实施方式,应当理解本发明并非局限于本文所披露的形式,不应该看作是对其他实施例的排除,而可用于其他组合、修改和环境,并能够在本文所述构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。

Claims (6)

1.一种对于未知风机结构的无人机巡检方法,其特征在于:包括以下步骤:
S1.远距离对风机整体进行多角度拍照,风机要全部包含在照片中且靠近照片中心部位,对照片进行处理获取关键巡检点坐标信息;
所述步骤S1包括以下子步骤:
S101.远距离对风机整体进行多角度拍照得到多张照片,每张照片中风机要全部包含在照片中且靠近照片中心部位;
S102.对于拍摄的每一张照片图像,获取关键巡检点在图像中的像素点坐标Puv(u,v)、相机的内参矩阵K;记录拍照时飞机的经纬度信息、相机的姿态角信息,确定相机坐标系到大地坐标系的旋转矩阵Rcw;设置一个北东地坐标系参考原点,并计算出拍照点在坐标系中的坐标t(X0,Y0,Z0),记录相机坐标系下拍摄点距离巡检点之间的深度Zc
S103.对于任一关键巡检点,推导相机坐标系下巡检点的归一化坐标Pc,并计算出关键巡检点的理论三维坐标Pw(Xw,Yw,Zw):
Pc=K-1ZcPuv
Figure FDA0002934543690000011
S2.利用已获取的关键巡检点坐标信息计算出将叶片等分的巡检点坐标信息;
S3.利用巡检点坐标信息计算出所需的巡航点坐标信息,生成航迹;
S4.无人机起飞并到巡航点,利用巡检点坐标信息调整无人机位姿使其正对目标点;
S5.在所在巡航点进行拍照的之前对巡检点进行一次目标识别,再次调整云台姿态,将巡检点尽量靠近照片中心;
所述步骤S5包括以下子步骤:
S501.在所在巡航点进行拍照的之前对巡检点进行一次目标识别;
S502.将在巡航点拍照所得的照片进行在线图像处理,识别需要巡检的叶片部分,再调节相机云台的姿态使之处于照片的中心部位;
S503.设Pw是实际目标点地理坐标位置,O是光心,Po是光心沿相机坐标系Z轴到Pw所在平面的垂足,P是Pw与Po沿相机坐标系的u轴与v轴相交点;Zc是Pw所在平面到光心的垂直距离,u`是Pw与Po在相机坐标系下沿u轴方向的实际地理距离,v`是Pw与Po在相机坐标系下沿v轴方向的实际地理距离;D是Pw与O之间的距离;d是P与O之间的距离;
在前面计算出来Pw之后,光心O的地理坐标t和Rcw已知,则:
D=|t-Pw|,
Figure FDA0002934543690000021
Pc=Rcw(Pw-t)
计算得Zc,其中fx是由αf合并、fy是由βf合并,f为相机焦距,α,β是像素坐标在u、v坐标轴上缩放倍数,[cx,cy]T是原点的平移量;
再根据:
Figure FDA0002934543690000022
Figure FDA0002934543690000023
得u`实际相机坐标系下的横向长度与v`实际相机坐标系下的长纵向度;
由Zc与u`进行勾股定理得
Figure FDA0002934543690000024
得所需的偏航角度
Figure FDA0002934543690000025
由d、v`、D得所需的俯仰角度
Figure FDA0002934543690000026
2.根据权利要求1所述的一种对于未知风机结构的无人机巡检方法,其特征在于:所述关键巡检点包括风机的三个叶尖和一个轮毂中心。
3.根据权利要求1所述的一种对于未知风机结构的无人机巡检方法,其特征在于:所述步骤S102中,获取关键巡检点在图像中的像素点坐标包括如下两种方式:
方式一、在拍摄完图像之后,从存储卡中导出图像进行标注获取像素坐标;
方式二、在实时回传的视频图像上进行标注获取像素坐标。
4.根据权利要求1所述的一种对于未知风机结构的无人机巡检方法,其特征在于:所述步骤S2包括:
预先设置轮毂中心与每个叶尖点之间线段的分段段数,获取风机关键巡检点坐标后,再利用叶尖点与轮毂中心之间的线段等分分割获取巡检点坐标。
5.根据权利要求1所述的一种对于未知风机结构的无人机巡检方法,其特征在于:所述步骤S3包括:
根据巡检需求,预设巡检点与巡航点之间的约束条件,所述约束条件包括巡航点与巡检点之间的距离以及巡航点相对于巡检点的方向;其中巡检点指的是电力杆塔上需要巡检的目标点,巡航点是无人机拍照时的位置;
根据巡检点和约束条件,计算出所需的巡航点坐标信息,并生成航迹。
6.根据权利要求1所述的一种对于未知风机结构的无人机巡检方法,其特征在于:所述步骤S4包括:
控制无人机飞到巡检点附近,根据此时无人机的姿态和位置,调节姿态到无人机正对巡检点的方向,利用空间中无人机所在的位置与巡检点的坐标信息获取空间中一个方向向量,其中,调节姿态时需要调节相应的偏航以及俯仰角度。
CN201911240805.2A 2019-12-06 2019-12-06 一种对于未知风机结构的无人机巡检方法 Active CN110879601B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911240805.2A CN110879601B (zh) 2019-12-06 2019-12-06 一种对于未知风机结构的无人机巡检方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911240805.2A CN110879601B (zh) 2019-12-06 2019-12-06 一种对于未知风机结构的无人机巡检方法

Publications (2)

Publication Number Publication Date
CN110879601A CN110879601A (zh) 2020-03-13
CN110879601B true CN110879601B (zh) 2021-05-18

Family

ID=69730450

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911240805.2A Active CN110879601B (zh) 2019-12-06 2019-12-06 一种对于未知风机结构的无人机巡检方法

Country Status (1)

Country Link
CN (1) CN110879601B (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112711267B (zh) * 2020-04-24 2021-09-28 江苏方天电力技术有限公司 基于rtk高精度定位与机器视觉融合的无人机自主巡检方法
CN112230235B (zh) * 2020-09-24 2021-12-10 北京京能能源技术研究有限责任公司 风机叶片定位方法、***、计算机设备及可读存储介质
CN112102395B (zh) * 2020-11-09 2022-05-20 广东科凯达智能机器人有限公司 一种基于机器视觉的自主巡检的方法
CN112164015B (zh) * 2020-11-30 2021-04-23 中国电力科学研究院有限公司 单目视觉自主巡检图像采集方法、装置及电力巡检无人机
CN112947511A (zh) * 2021-01-25 2021-06-11 北京京能能源技术研究有限责任公司 一种无人机巡检风机叶片的方法
CN112905955B (zh) * 2021-01-27 2022-08-02 天津航天中为数据***科技有限公司 一种风机正反面自主巡检规划方法
CN113050693B (zh) * 2021-03-26 2022-04-19 厦门理工学院 一种用于风电叶片检测的无人机巡检方法和装置以及设备
CN113177918B (zh) * 2021-04-28 2022-04-19 上海大学 一种无人机对电力杆塔的智能精准巡检方法及***
CN114217641B (zh) * 2021-10-29 2024-05-07 国网河南省电力公司中牟县供电公司 一种非结构环境下无人机送变电设备巡检方法及***
CN113885580A (zh) * 2021-11-17 2022-01-04 国能定边新能源有限公司 基于无人机实现自动化巡检风机的路径规划方法及***
CN114661062B (zh) * 2022-02-22 2023-11-28 广州中科云图智能科技有限公司 基于无人机的输电线路的巡检方法、装置、以及设备
CN115097867B (zh) * 2022-08-23 2022-11-15 无锡海纳智能科技有限公司 一种风机巡检航线下无人机拍摄姿态的确定方法
CN115480589B (zh) * 2022-09-06 2023-07-25 中科云尚(南京)智能技术有限公司 基于无人机的风机巡检航线生成方法及***
CN115951718B (zh) * 2023-03-14 2023-05-09 风脉能源(武汉)股份有限公司 基于无人机的风机叶片巡检局部动态路径规划方法及***
CN116206094B (zh) * 2023-04-28 2023-07-21 尚特杰电力科技有限公司 风机扇叶角度测量方法、装置、***及电子设备
CN116839595B (zh) * 2023-09-01 2023-11-28 北京宝隆泓瑞科技有限公司 一种创建无人机航线的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104406762A (zh) * 2014-11-28 2015-03-11 国家电网公司 一种架空输电线路无人直升机巡检***抗风能力检测方法
CN206035727U (zh) * 2016-07-18 2017-03-22 中能电力科技开发有限公司 风机叶片无人机智能巡检***
CN109213197A (zh) * 2018-09-11 2019-01-15 成都优艾维智能科技有限责任公司 一种针对直流单回直线塔的无人机自主巡检方法
CN109466785A (zh) * 2018-09-11 2019-03-15 成都优艾维智能科技有限责任公司 一种针对交流双回直线塔的无人机自主巡检方法
CN110007690A (zh) * 2019-05-08 2019-07-12 北京天龙智控科技有限公司 一种无人机巡检***及方法
CN110134143A (zh) * 2019-05-30 2019-08-16 广东电网有限责任公司 一种电力巡检方法、***及电子设备和存储介质
KR20190108832A (ko) * 2018-03-15 2019-09-25 (주)니어스랩 풍력 발전기 블레이드 결함 인식/분석 장치 및 방법
CN110282143A (zh) * 2019-06-14 2019-09-27 中国能源建设集团广东省电力设计研究院有限公司 一种海上风电场无人机巡检方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10329017B2 (en) * 2017-03-13 2019-06-25 General Electric Company System and method for integrating flight path and site operating data
US10317905B2 (en) * 2017-08-10 2019-06-11 RavenOPS, Inc. Autonomous robotic technologies for industrial inspection

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104406762A (zh) * 2014-11-28 2015-03-11 国家电网公司 一种架空输电线路无人直升机巡检***抗风能力检测方法
CN206035727U (zh) * 2016-07-18 2017-03-22 中能电力科技开发有限公司 风机叶片无人机智能巡检***
KR20190108832A (ko) * 2018-03-15 2019-09-25 (주)니어스랩 풍력 발전기 블레이드 결함 인식/분석 장치 및 방법
CN109213197A (zh) * 2018-09-11 2019-01-15 成都优艾维智能科技有限责任公司 一种针对直流单回直线塔的无人机自主巡检方法
CN109466785A (zh) * 2018-09-11 2019-03-15 成都优艾维智能科技有限责任公司 一种针对交流双回直线塔的无人机自主巡检方法
CN110007690A (zh) * 2019-05-08 2019-07-12 北京天龙智控科技有限公司 一种无人机巡检***及方法
CN110134143A (zh) * 2019-05-30 2019-08-16 广东电网有限责任公司 一种电力巡检方法、***及电子设备和存储介质
CN110282143A (zh) * 2019-06-14 2019-09-27 中国能源建设集团广东省电力设计研究院有限公司 一种海上风电场无人机巡检方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Automatic Detection of Wind Turbine Blade Surface Cracks Based on UAV-Taken Images;Long Wang;《 IEEE Transactions on Industrial Electronics》;20170930;第7293-7303页 *

Also Published As

Publication number Publication date
CN110879601A (zh) 2020-03-13

Similar Documents

Publication Publication Date Title
CN110879601B (zh) 一种对于未知风机结构的无人机巡检方法
CN110908401B (zh) 一种针对未知杆塔结构的无人机自主巡检方法
CN112904877A (zh) 一种基于无人机的风机叶片自动巡检***及方法
CN109238240B (zh) 一种顾及地形的无人机倾斜摄影方法及其摄影***
CN110580717B (zh) 一种针对电力杆塔的无人机自主巡检航线生成方法
CN109911231B (zh) 基于gps和图像识别混合导航的无人机自主着舰方法与***
CN110554704A (zh) 一种基于无人机的风机叶片自主巡检方法
CN108894933B (zh) 通过无人机对风机叶尖跟踪检测时跟丢再捕捉方法及***
CN107729808B (zh) 一种用于输电线路无人机巡检的图像智能采集***及方法
US9346544B2 (en) Unmanned aerial vehicle and methods for controlling same
CN111038721B (zh) 一种基于图像识别的风力机叶片巡检无人机和巡检方法
CN106762451A (zh) 基于无人机的风机叶片损伤检测方法、装置及***
CN112068539A (zh) 一种风电机组叶片无人机自动驾驶巡检方法
CN108869196B (zh) 通过无人机对风机后侧叶根区域检测方法及***
CN115145314B (zh) 基于无人机的风机叶片巡检路径规划方法
CN110825110A (zh) 一种电力线路可见光点云解算照片的采集飞行方法
CN110001945A (zh) 一种倒崖立面精细倾斜航摄装置与摄影方法
CN109660721B (zh) 无人机飞行拍摄质量优化方法、***、设备及存储介质
CN114326771A (zh) 一种基于图像识别的无人机拍摄航线生成方法及***
EP4097354A1 (en) Method of imaging a wind turbine rotor blade
CN111142548A (zh) 一种测绘无人机以及基于无人机的测绘方法
CN113359815A (zh) 基于rtk定位的风机叶片无人机自主避障巡检方法及***
CN110825098B (zh) 一种无人机配电网智能巡检***
CN109764864B (zh) 一种基于颜色识别的室内无人机位姿获取方法及***
CN109466785A (zh) 一种针对交流双回直线塔的无人机自主巡检方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant