CN110829479A - 一种海上风电场高频不控整流直流输电*** - Google Patents

一种海上风电场高频不控整流直流输电*** Download PDF

Info

Publication number
CN110829479A
CN110829479A CN201911045255.9A CN201911045255A CN110829479A CN 110829479 A CN110829479 A CN 110829479A CN 201911045255 A CN201911045255 A CN 201911045255A CN 110829479 A CN110829479 A CN 110829479A
Authority
CN
China
Prior art keywords
converter
offshore
direct current
alternating current
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911045255.9A
Other languages
English (en)
Inventor
徐政
张哲任
李晓栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201911045255.9A priority Critical patent/CN110829479A/zh
Publication of CN110829479A publication Critical patent/CN110829479A/zh
Priority to PCT/CN2020/107725 priority patent/WO2021082601A1/zh
Priority to EP20882667.7A priority patent/EP3886288A4/en
Priority to US17/298,341 priority patent/US11791632B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

本发明公开了一种海上风电场高频不控整流直流输电***,包括直流***和海上交流***,其中:海上交流***主要包括基于永磁同步电机的全功率型风电机组、交流海缆和海上升压站;直流***包括海上站和陆上站,海上站和陆上站通过直流海缆相连;海上站的换流器采用三相6脉动不控整流桥,陆上站的换流器采用MMC;海上交流***和海上站的额定频率远大于50Hz,通常可以选择100Hz~400Hz附近。相比起常规的柔直送出方案,本发明结构简单,并且通过提高海上站和海上交流***的额定频率,可以降低海上平台变压器、无功补偿装置和交流滤波器的体积和重量,能够大大降低工程造价,在实际工程中有巨大的应用价值。

Description

一种海上风电场高频不控整流直流输电***
技术领域
本发明属于电力***输配电技术领域,具体涉及一种海上风电场高频不控整流直流输电***。
背景技术
近年来,我国以风电为代表的可再生能源产业在不断释放的政策红利下迎来了发展黄金期,目前风力发电在我国电力总装机中的比重已超过7%,成为仅次于火电、水电的第三大电力来源。相比起陆上风电,海上风电存在诸多优势: (1)海上风力普遍较大;(2)海上风电的发单时间长,设备利用率高;(3)海上风电具有一定规律性,有利于峰谷调配;因此,海上风电有望成为我国风电产业发展的新动力。
2018年,我国海上风电发展提速,新增装机436台,新增装机容量达到165.5 万千瓦,同比增长42.7%;累计装机达到444.5万千瓦,主要分布在江苏、浙江、福建、河北、上海、辽宁和广东七省市。我国已成为全球海上风电装机增长最快的国家,总装机容量仅次于英国和德国,达到世界第三的水平。目前,建成的海上风电场绝大多数为近海风电场;未来,远海成为海上风电的发展方向。一方面,近海风电更易受到日益严苛的环保生态等制约,发展空间受到挤压;另一方面,深远海范围更广,风能资源更丰富,风速更稳定。在深水远海发展风电,既可以充分利用更为丰富的风能资源,也可以不占据岸线和航道资源,减少或避免对沿海工业生产和居民生活的不利影响。
目前已投运的近海风电场绝大多数通过交流***送出,通常认为长距离、大容量风电采用交流***送出存在以下问题:(1)相比直流***送出,交流线路的造价和功率损耗较大;(2)海底电缆线路存在明显的电容效应,较长距离的交流传输实际上并不现实;(3)交流电网的故障将直接影响风电场的运行,对交流电网以及风电场的可靠性不利。根据已有研究成果,在离岸距离超过90km且风电场容量大于100MW的场景下,风电场采用高压直流并网是较为合适的方案。
到目前为止,已投产的远海风电几乎全部采用柔性直流***送出;为了进一步降低远海风电送出***的成本,近年来低成本换流器的研究越来越受到学术界和工业界的关注。远海风电直流送出***可以是附加无功补偿装置的传统直流输电***,可以是混合直流输电***,也可以采用二极管整流桥等方案。目前低成本换流器存在的主要问题如下:(1)海上交流***的额定频率为50Hz 左右,无论是海上升压平台的升压变压器还是海上换流站的换流变压器都存在体积较大的问题;(2)低成本换流器需要安装附加的无功补偿装置和交流滤波器,也增加了海上换流站的体积和重量。因此对于是否存在可以完全替代柔性直流***的低成本换流器方案,目前学术界和工业界并没有定论。
到目前为止,已公开的绝大多数文献基本只研究各种远海风电直流送出***的控制策略,为了进一步发挥远海风电直流送出***的技术优势,很有必要从对基于低成本换流器的远海风电直流送出***进行研究。
发明内容
鉴于上述,本发明提供了一种海上风电场高频不控整流直流输电***,该方案通过将海上交流***的额定频率提升至远高于50Hz的水平,可以降低海上平台变压器、无功补偿装置和交流滤波器的体积和重量,能够大大降低工程造价,在实际工程中有巨大的应用价值。
一种海上风电场高频不控整流直流输电***,包括直流***和海上交流***;所述直流***包括海上换流站和陆上换流站,所述海上交流***包括风电机组、交流海缆和海上升压站,其中风电机组通过交流海缆与海上升压站的低压侧连接,海上升压站的高压侧通过交流海缆与海上换流站的交流母线连接,海上换流站和陆上换流站的直流侧通过直流海缆相连;海上交流***和海上换流站的额定频率选为100~400Hz,即海上升压站中的升压变压器以及海上换流站中的换流变压器也与之频率适配。
进一步地,所述直流***采用伪双极结构,即直流***不装设额外的直流接地极,只在陆上换流站的换流变压器阀侧装设接地装置。
进一步地,所述风电机组采用基于永磁同步电机的全功率换流器型风电机组。
进一步地,所述海上换流站包括交流母线、换流变压器、换流器、交流滤波器和平波电抗器,其中:交流母线通过换流变压器与换流器的交流侧相连,换流器包含正负极两组,正极换流器的直流侧高压端通过平波电抗器与正极直流海缆相连,正极换流器的直流侧低压端与负极换流器的直流侧高压端相连,负极换流器的直流侧低压端通过平波电抗器与负极直流海缆相连。
进一步地,所述交流滤波器挂接在交流母线上,其采用单调谐、双调谐、三调谐或纯电容形式,额定基波电压下所有交流滤波器的无功功率之和约为海上换流站额定直流功率的10%。
进一步地,所述换流器为三相六脉动不控整流桥,每个桥臂均由若干个二极管串并联组成;为了减小谐波,换流变压器的交流母线侧绕组采用相同接线方式,换流器侧绕组采用不同接线方式且相位差(2k+1)*30°,k=0,1,2,…,5。
进一步地,所述陆上换流站包括交流母线、换流变压器、换流器和平波电抗器,其中:交流母线通过换流变压器与换流器的交流端相连,换流器的直流侧高压端通过平波电抗与正极直流海缆相连,换流器的直流侧低压端通过平波电抗与负极直流海缆相连,换流器采用模块化多电平换流器(Modular multilevel converter,MMC),换流变压器的交流母线侧绕组采用Y0接线方式,阀侧绕组采用△接线方式外加星型电抗器或采用Y接线方式并在中性点处通过大电阻(或者大电感)接地。
进一步地,所述风电机组的网侧换流器采用定功率控制,控制***包括功率控制器、外环控制器、内环控制器和触发环节四部分,四部分均包含d轴和q 轴两个控制维度,功率控制器d轴分量的输入为风电机组有功功率参考值Pref和有功功率实测值P,两者相减之后经过PI控制输出ΔUdref与d轴电压额定值 Udref0相加得到d轴电压参考值Udref,功率控制器q轴分量的输入为风电机组无功功率参考值Qref和无功功率实测值Q,两者相减之后经过比例控制输出q轴电压参考值Uqref;外环控制器的输入为网侧换流器交流出口电压d轴分量Ud和q 轴分量Uq以及Udref和Uqref,Udref和Uqref分别与Ud和Uq相减之后经过PI控制输出d轴电流参考值idref和q轴电流参考值iqref;内环控制器的输入为网侧换流器交流出口电流d轴分量id和q轴分量iq、idref和iqref以及Ud和Uq,idref和iqref分别与id和iq相减之后经过PI控制的输出结果分别与Ud-iq*X以及Uq+id*X相加,得到d轴电压调制波Uvdref和q轴电压调制波Uvqref,X为网侧换流器的连接电抗;触发环节的输入为Uvdref和Uvqref且经过dq/abc变换和PWM调制,输出网侧换流器中各个开关器件的触发信号。
基于上述技术方案,本发明具有以下有益技术效果:
(1)对于远海风电直流送出场合,本发明提出了一种海上风电场高频不控整流直流送出方案,相比起常规的柔直送出方案,该方案结构简单,可以为未来工程的设计起到一定的指导作用。
(2)本发明与目前的常规方案不同,通过提高海上站和海上交流***的额定频率,可以降低海上平台变压器、无功补偿装置和交流滤波器的体积和重量,能够大大降低工程造价,在实际工程中有巨大的应用价值。
附图说明
图1为本发明海上风电场高频不控整流直流输电***的结构示意图。
图2为本发明海上站交流滤波器的拓扑结构示意图。
图3为本发明海上站不控整流桥的拓扑结构示意图。
图4为本发明陆上站MMC的拓扑结构示意图。
图5为本发明风电机组的拓扑结构示意图。
图6为本发明风电机组网侧换流器的控制结构示意图。
图7(a)为本发明海上站交流电压的仿真波形示意图。
图7(b)为本发明海上站交流电流的仿真波形示意图。
图7(c)为本发明海上站有功功率和无功功率的仿真波形示意图。
图8(a)为本发明***直流电压的仿真波形示意图。
图8(b)为本发明***直流电流的仿真波形示意图。
图9(a)为本发明陆上站交流电压的仿真波形示意图。
图9(b)为本发明陆上站交流电流的仿真波形示意图。
图9(c)为本发明陆上站有功功率和无功功率的仿真波形示意图。
具体实施方式
为了更为具体地描述本发明,下面结合附图及具体实施方式对本发明的技术方案进行详细说明。
如图1所示,本发明海上风电场高频不控整流直流输电***,包括直流***和海上交流***,其中:
直流***包括海上站和陆上站,海上站和陆上站通过直流海缆相连。直流***采用伪双极结构,即直流***不装设额外的直流接地极,只在陆上站的换流变压器阀侧装设接地装置。
海上站由换流站交流母线、换流变压器、换流器、交流滤波器和平波电抗器构成。换流站交流母线通过换流变压器与换流器交流端相连。通常情况下海上站需要安装2个换流器,其中第一换流器的直流侧高压端通过平波电抗器与正极直流海缆相连,第一换流器直流侧低压端与第二换流器的直流侧高压端相连,第二换流器的直流侧高压端通过平波电抗器与负极直流海缆相连。海上站的额定频率选择为150Hz。
海上站交流滤波器直接安装在换流站交流母线上,可以采用单调谐、双调谐、三调谐或纯电容形式,如图2所示。本实施方案中采用双调谐形式,并且设定额定基波电压下交流滤波器的无功功率为换流站额定直流功率的10%。
海上站的换流器为三相6脉动不控整流桥,换流器的每个桥臂均由若干个二极管级联组成,如图3所示。两台换流变压器分别采用Y0/△接线方式和Y0/Y 接线方式,换流器侧相差相位为30°。
陆上站由换流站交流母线、换流变压器、换流器和平波电抗器构成。换流站交流母线通过换流变压器与换流器交流端相连。换流器直流侧高压端通过平波电抗与正极直流海缆相连,换流器直流侧低压端通过平波电抗与负极直流海缆相连。换流器采用MMC,其拓扑结构如图4所示。换流变压器的采用Y0/△接线方式,并且在换流变压器阀侧采用星型电抗器接地。
海上交流***主要包括风电机组、交流海缆和海上升压站。分别利用3台风电机组来等效与海上升压站的低压侧连接的风电场;海上升压站的高压侧通过交流海缆与海上换流站交流母线连接。海上交流***的额定频率选择为 150Hz。风电机组为基于永磁步电机的全功率换流器型风电机组,如图5所示。
风电机组采用定功率控制,控制器结构框图如图6所示,包括功率控制器、外环控制器和内环控制器和触发环节构成四部分,控制器均包含d轴和q轴两个控制维度,控制器的输入输出均为标幺值。
本实施方式中***参数如表1所示:
表1
Figure RE-GDA0002326461970000061
Figure RE-GDA0002326461970000071
在电磁暂态仿真软件PSCAD/EMTDC中搭建相应的仿真平台,对海上站交流母线的三相金属性短路故障进行仿真。仿真中假设5s发生故障,图7(a)~图7(c)给出了海上站关键电气量的仿真结果,图8(a)~图8(b)给出了直流电压和直流电流的仿真结果,图9(a)~图9(c)给出了陆上站关键电气量的仿真结果,仿真结果证明了本发明的有效性。
上述对实施例的描述是为便于本技术领域的普通技术人员能理解和应用本发明。熟悉本领域技术的人员显然可以容易地对上述实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,对于本发明做出的改进和修改都应该在本发明的保护范围之内。

Claims (8)

1.一种海上风电场高频不控整流直流输电***,包括直流***和海上交流***,其特征在于:所述直流***包括海上换流站和陆上换流站,所述海上交流***包括风电机组、交流海缆和海上升压站,其中风电机组通过交流海缆与海上升压站的低压侧连接,海上升压站的高压侧通过交流海缆与海上换流站的交流母线连接,海上换流站和陆上换流站的直流侧通过直流海缆相连;海上交流***和海上换流站的额定频率选为100~400Hz,即海上升压站中的升压变压器以及海上换流站中的换流变压器也与之频率适配。
2.根据权利要求1所述的海上风电场高频不控整流直流输电***,其特征在于:所述直流***采用伪双极结构,即直流***不装设额外的直流接地极,只在陆上换流站的换流变压器阀侧装设接地装置。
3.根据权利要求1所述的海上风电场高频不控整流直流输电***,其特征在于:所述风电机组采用基于永磁同步电机的全功率换流器型风电机组。
4.根据权利要求1所述的海上风电场高频不控整流直流输电***,其特征在于:所述海上换流站包括交流母线、换流变压器、换流器、交流滤波器和平波电抗器,其中:交流母线通过换流变压器与换流器的交流侧相连,换流器包含正负极两组,正极换流器的直流侧高压端通过平波电抗器与正极直流海缆相连,正极换流器的直流侧低压端与负极换流器的直流侧高压端相连,负极换流器的直流侧低压端通过平波电抗器与负极直流海缆相连。
5.根据权利要求4所述的海上风电场高频不控整流直流输电***,其特征在于:所述交流滤波器挂接在交流母线上,其采用单调谐、双调谐、三调谐或纯电容形式,额定基波电压下所有交流滤波器的无功功率之和约为海上换流站额定直流功率的10%。
6.根据权利要求4所述的海上风电场高频不控整流直流输电***,其特征在于:所述换流器为三相六脉动不控整流桥,每个桥臂均由若干个二极管串并联组成;为了减小谐波,换流变压器的交流母线侧绕组采用相同接线方式,换流器侧绕组采用不同接线方式且相位差(2k+1)*30°,k=0,1,2,…,5。
7.根据权利要求1所述的海上风电场高频不控整流直流输电***,其特征在于:所述陆上换流站包括交流母线、换流变压器、换流器和平波电抗器,其中:交流母线通过换流变压器与换流器的交流端相连,换流器的直流侧高压端通过平波电抗与正极直流海缆相连,换流器的直流侧低压端通过平波电抗与负极直流海缆相连,换流器采用模块化多电平换流器,换流变压器的交流母线侧绕组采用Y0接线方式,阀侧绕组采用△接线方式外加星型电抗器或采用Y接线方式并在中性点处通过大电阻接地。
8.根据权利要求1所述的海上风电场高频不控整流直流输电***,其特征在于:所述风电机组的网侧换流器采用定功率控制,控制***包括功率控制器、外环控制器、内环控制器和触发环节四部分,四部分均包含d轴和q轴两个控制维度,功率控制器d轴分量的输入为风电机组有功功率参考值Pref和有功功率实测值P,两者相减之后经过PI控制输出ΔUdref与d轴电压额定值Udref0相加得到d轴电压参考值Udref,功率控制器q轴分量的输入为风电机组无功功率参考值Qref和无功功率实测值Q,两者相减之后经过比例控制输出q轴电压参考值Uqref;外环控制器的输入为网侧换流器交流出口电压d轴分量Ud和q轴分量Uq以及Udref和Uqref,Udref和Uqref分别与Ud和Uq相减之后经过PI控制输出d轴电流参考值idref和q轴电流参考值iqref;内环控制器的输入为网侧换流器交流出口电流d轴分量id和q轴分量iq、idref和iqref以及Ud和Uq,idref和iqref分别与id和iq相减之后经过PI控制的输出结果分别与Ud-iq*X以及Uq+id*X相加,得到d轴电压调制波Uvdref和q轴电压调制波Uvqref,X为网侧换流器的连接电抗;触发环节的输入为Uvdref和Uvqref且经过dq/abc变换和PWM调制,输出网侧换流器中各个开关器件的触发信号。
CN201911045255.9A 2019-10-30 2019-10-30 一种海上风电场高频不控整流直流输电*** Pending CN110829479A (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201911045255.9A CN110829479A (zh) 2019-10-30 2019-10-30 一种海上风电场高频不控整流直流输电***
PCT/CN2020/107725 WO2021082601A1 (zh) 2019-10-30 2020-08-07 一种海上风电场高频不控整流直流输电***
EP20882667.7A EP3886288A4 (en) 2019-10-30 2020-08-07 HIGH FREQUENCY DIRECT CURRENT TRANSMISSION SYSTEM WITH UNCONTROLLED RECTIFICATION FOR OFFSHORE WIND FARM
US17/298,341 US11791632B2 (en) 2019-10-30 2020-08-07 High-frequency uncontrolled rectifier-based DC transmission system for offshore wind farm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911045255.9A CN110829479A (zh) 2019-10-30 2019-10-30 一种海上风电场高频不控整流直流输电***

Publications (1)

Publication Number Publication Date
CN110829479A true CN110829479A (zh) 2020-02-21

Family

ID=69551452

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911045255.9A Pending CN110829479A (zh) 2019-10-30 2019-10-30 一种海上风电场高频不控整流直流输电***

Country Status (4)

Country Link
US (1) US11791632B2 (zh)
EP (1) EP3886288A4 (zh)
CN (1) CN110829479A (zh)
WO (1) WO2021082601A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021082601A1 (zh) * 2019-10-30 2021-05-06 浙江大学 一种海上风电场高频不控整流直流输电***
TWI732482B (zh) * 2020-03-09 2021-07-01 台達電子企業管理(上海)有限公司 高壓直流變電裝置、電力系統及電力系統之控制方法
CN113472001A (zh) * 2021-08-16 2021-10-01 南方电网科学研究院有限责任公司 海上风电送端混合双极的直流输电***及控制方法、设备
WO2021196406A1 (zh) * 2020-04-01 2021-10-07 广东安朴电力技术有限公司 一种输电***及其供电装置
US11239663B2 (en) 2020-03-09 2022-02-01 Delta Electronics (Shanghai) Co., Ltd. Energy storage device and power system and control method thereof
CN114447974A (zh) * 2022-03-23 2022-05-06 国网经济技术研究院有限公司 一种海上风电不控整流直流输电***
CN114640141A (zh) * 2022-05-17 2022-06-17 浙江大学 海上风电二极管整流单元送出***的构网型风机控制方法
CN114825431A (zh) * 2022-04-18 2022-07-29 上海交通大学 风电场经二极管整流送出并网***以及控制与保护***
US11641109B2 (en) 2022-05-17 2023-05-02 Zhejiang University Grid-forming wind turbine control method for diode rectifier unit-based offshore wind power transmission system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113394865B (zh) * 2021-08-05 2022-04-12 集美大学 深远海船舶氢储直流电力推进***的自适应惯量匹配方法
CN113612247B (zh) * 2021-08-12 2024-02-13 南方电网科学研究院有限责任公司 一种柔性直流换流器定交流侧电压控制***及方法
CN113809777B (zh) * 2021-10-27 2024-02-13 南方电网科学研究院有限责任公司 一种全功率风电变流器的网侧控制方法和***
CN114336716B (zh) * 2021-11-22 2023-05-26 中国三峡建工(集团)有限公司 一种经柔性直流并网的海上风电***能量耗散方法
CN114188965B (zh) * 2021-11-24 2024-01-09 南方电网科学研究院有限责任公司 基于电压补偿的海上风电柔直送出***控制电路及方法
CN115528703A (zh) * 2022-11-25 2022-12-27 清华大学 海上风电柔性直流送出电压穿透控制方法、装置和***
CN116667421B (zh) * 2023-07-28 2023-10-20 中国华能集团清洁能源技术研究院有限公司 海上风电控制***、方法及电子设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1776988A (zh) * 2005-11-28 2006-05-24 中国南方电网有限责任公司超高压输电公司 低损耗的多调谐无源电力滤波器
US20100156189A1 (en) * 2008-12-24 2010-06-24 Fishman Oleg S Collection of electric power from renewable energy sources via high voltage, direct current systems with conversion and supply to an alternating current transmission network

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9300132B2 (en) * 2012-02-02 2016-03-29 Abb Research Ltd Medium voltage DC collection system
EP2713468B1 (en) * 2012-09-28 2019-08-07 GE Energy Power Conversion Technology Ltd Power transmission systems
EP2941823B1 (de) * 2013-02-28 2020-10-21 Siemens Aktiengesellschaft Umrichterstation mit diodengleichrichter
WO2015024583A1 (de) * 2013-08-19 2015-02-26 Siemens Aktiengesellschaft Regelverfahren für selbstgeführten stromrichter zur reglung des leistungsaustauschs
KR20150130154A (ko) * 2014-05-13 2015-11-23 엘에스산전 주식회사 고전압 직류 송전 시스템 제어 장치
JP6772118B2 (ja) * 2017-08-24 2020-10-21 三菱重工業株式会社 分散電源システムの制御装置、分散電源システム、分散電源システムの制御方法、及び分散電源システムの制御プログラム
CN110556864A (zh) * 2019-09-09 2019-12-10 广东安朴电力技术有限公司 一种远程输电变流站及输电***
CN110829479A (zh) * 2019-10-30 2020-02-21 浙江大学 一种海上风电场高频不控整流直流输电***

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1776988A (zh) * 2005-11-28 2006-05-24 中国南方电网有限责任公司超高压输电公司 低损耗的多调谐无源电力滤波器
US20100156189A1 (en) * 2008-12-24 2010-06-24 Fishman Oleg S Collection of electric power from renewable energy sources via high voltage, direct current systems with conversion and supply to an alternating current transmission network

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ABRAHAMSSON,L.: "HVDC Feeder Solution for Electric Railways", 《HTTP://WWW.DOC88.COM/P-3117608126609.HTML》 *
CUI,SHENGHUI 等: "Onshore AC Grid Low Voltage Ride-Through (LVRT) of Diode-Rectifier Units based HVDC Transmission Systems for Offshore Wind Farms", 《2019 IEEE 10TH INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS FOR DISTRIBUTED GENERATION SYSTEMS (PEDG)》 *
SOLEDAD,BERNAL PEREZ 等: "Efficiency and Fault Ride-Through Performance of a Diode-Rectifier- and VSC-Inverter-Based HVDC Link for Offshore Wind Farms", 《IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS》 *
厦登文等: "《海洋能开发利用词典》", 30 June 2014 *
吴竞昌等: "《电力***谐波》", 30 November 1988 *
徐政等: "《柔性直流输电***》", 31 January 2013 *
邵先锋等: "《超(特)高压工程电气专业知识应用》", 31 December 2018 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021082601A1 (zh) * 2019-10-30 2021-05-06 浙江大学 一种海上风电场高频不控整流直流输电***
US11791632B2 (en) 2019-10-30 2023-10-17 Zhejiang University High-frequency uncontrolled rectifier-based DC transmission system for offshore wind farm
TWI732482B (zh) * 2020-03-09 2021-07-01 台達電子企業管理(上海)有限公司 高壓直流變電裝置、電力系統及電力系統之控制方法
US11239663B2 (en) 2020-03-09 2022-02-01 Delta Electronics (Shanghai) Co., Ltd. Energy storage device and power system and control method thereof
US11799293B2 (en) 2020-03-09 2023-10-24 Delta Electronics (Shanghai) Co., Ltd. High-voltage DC transformation apparatus and power system and control method thereof
WO2021196406A1 (zh) * 2020-04-01 2021-10-07 广东安朴电力技术有限公司 一种输电***及其供电装置
CN113472001A (zh) * 2021-08-16 2021-10-01 南方电网科学研究院有限责任公司 海上风电送端混合双极的直流输电***及控制方法、设备
CN114447974B (zh) * 2022-03-23 2023-01-20 国网经济技术研究院有限公司 一种海上风电不控整流直流输电***
CN114447974A (zh) * 2022-03-23 2022-05-06 国网经济技术研究院有限公司 一种海上风电不控整流直流输电***
CN114825431A (zh) * 2022-04-18 2022-07-29 上海交通大学 风电场经二极管整流送出并网***以及控制与保护***
CN114825431B (zh) * 2022-04-18 2023-03-21 上海交通大学 风电场经二极管整流送出并网***以及控制与保护***
CN114640141B (zh) * 2022-05-17 2022-08-05 浙江大学 海上风电二极管整流单元送出***的构网型风机控制方法
US11641109B2 (en) 2022-05-17 2023-05-02 Zhejiang University Grid-forming wind turbine control method for diode rectifier unit-based offshore wind power transmission system
CN114640141A (zh) * 2022-05-17 2022-06-17 浙江大学 海上风电二极管整流单元送出***的构网型风机控制方法
WO2023221287A1 (zh) * 2022-05-17 2023-11-23 浙江大学 海上风电二极管整流单元送出***的构网型风机控制方法

Also Published As

Publication number Publication date
WO2021082601A1 (zh) 2021-05-06
EP3886288A1 (en) 2021-09-29
US20220252046A1 (en) 2022-08-11
EP3886288A4 (en) 2022-08-24
US11791632B2 (en) 2023-10-17

Similar Documents

Publication Publication Date Title
CN110829478B (zh) 一种海上风电场低频交流不控整流输电***
WO2021082601A1 (zh) 一种海上风电场高频不控整流直流输电***
CN112421670B (zh) 一种适用于远海风电送出的中频柔性直流输电***及其控制方法
Deng et al. Operation and control of a DC-grid offshore wind farm under DC transmission system faults
Chen et al. Low-frequency AC transmission for offshore wind power
WO2022142812A1 (zh) 多端海上风电柔性直流与储能协同并网***及其控制方法
CN103107551B (zh) 一种用于海上风力发电电能送出的拓扑电路
Byeon et al. A research on the characteristics of fault current of DC distribution system and AC distribution system
CN111600334B (zh) 一种四端风电直流电网的交流故障诊断与穿越控制方法
CN108092257A (zh) 一种18相风力发电机直流并网结构及其控制方法
Shi et al. Decoupling control of series-connected DC wind turbines with energy storage system for offshore DC wind farm
WO2023134225A1 (zh) 一种低频输电***及其控制方式
CN103078329B (zh) 海上风电场长距离220kV海缆送出无功补偿分析方法
CN108923450B (zh) 电流源型高压直流输电***的控制及运行方法
CN113098295A (zh) 一种交交变换器
CN102780231A (zh) 一种基于直流电流源回路的风电场汇流与并网方法
CN103501010B (zh) 一种双滞环控制的风电场无功支撑方法
Jin et al. Optimization of wind farm collection line structure under symmetrical grid fault
CN104362643B (zh) 风电场无功补偿配置容量计算方法
Ge et al. A novel topology for HVDC link connecting to offshore wind farms
CN113595067A (zh) 基于中-低-工频汇集的新型深远海风电输电***
CN210693470U (zh) 一种变流站及输电***
Lao et al. Power electronic converters for low-frequency HVac transmission: functions and challenges
Ge et al. Research on low-frequency offshore wind power transmission and frequency conversion technology
CN112467777A (zh) 一种利用模块化组合式直流变压器控制不对称直流电流的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200221