CN110824728A - 被覆热敏材料的双实芯光纤光热相位调制器 - Google Patents

被覆热敏材料的双实芯光纤光热相位调制器 Download PDF

Info

Publication number
CN110824728A
CN110824728A CN201911171338.2A CN201911171338A CN110824728A CN 110824728 A CN110824728 A CN 110824728A CN 201911171338 A CN201911171338 A CN 201911171338A CN 110824728 A CN110824728 A CN 110824728A
Authority
CN
China
Prior art keywords
optical fiber
fiber
core
double solid
phase modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911171338.2A
Other languages
English (en)
Inventor
关春颖
薄宇韬
初让
刘静
金缘
史金辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201911171338.2A priority Critical patent/CN110824728A/zh
Publication of CN110824728A publication Critical patent/CN110824728A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • G02F1/2252Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure in optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/215Michelson type

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了被覆热敏材料的双实芯光纤光热相位调制器,属于光纤相位调制技术领域。由信号光源、泵浦光源、3dB耦合器、环形器、单模光纤、一段双实芯光纤、探测器依次相连而成。单模光纤和双实芯光纤直接对准焊接,焊点处利用熔融拉锥技术使单模光纤中的光耦合到双实芯光纤的两个纤芯内,利用纤芯端面反射形成迈克尔逊干涉仪。利用轮式侧面抛磨技术将双实芯光纤一个纤芯附近的包层抛去,使纤芯裸露在空气中。为了增加相位调制器的调制度,在侧面抛磨后的纤芯上涂覆热敏性材料。该相位调制器制作简单,易于与单模光纤互联,因两个纤芯在一个波导中,器件集成度高,响应近似为线性。该器件在相位调制方面将有广泛的应用。

Description

被覆热敏材料的双实芯光纤光热相位调制器
技术领域
本发明属于光纤相位调制技术领域,具体涉及被覆热敏材料的双实芯光纤光热相位调制器。
背景技术
对输出光信号的相位、频率、强度等状态进行调制的装置称为光调制器,其在光学信息处理***、光互联和光通信网络发挥着重要的作用。但传统的光调制器由于体积大、***复杂、成本昂贵等因素限制了其应用,因而以光纤为基础的纤维集成光调制结构被提出。光纤调制器结构紧凑、重量轻、尺寸小、灵敏度高、抗电磁干扰能力强、高温性能好,用一根光纤可以测量结构上空间多点或者无限多自由度的参数,非常适于作为分布式传感元件埋入材料和结构内部或贴装在其表面实现多点监测。特别是全光纤结构的干涉型光纤调制器,全光控制有缘光器件是光学工程的一个长期目标。已有研究表明,光纤中光的控制是通过受激布里渊散射、受激拉曼散射、自相位调制和交叉相位调制等非线性机制实现的。而构成光纤的主要成分二氧化硅具有相对较弱的非线性特性,要实现非常大的非线性响应,将功耗降低到毫瓦级仍是一个挑战。一个可行的方案是将光纤与具有高非线性的材料相结合,例如石墨烯。石墨烯虽然只有一层原子厚度,但具有环境稳定性强、机械形变大、高的非线性和光学响应特性,使其为全光器件提供了一种新的结构选择。
而双实芯光纤作为特种多芯光纤的一种,结构简单、鲁棒性强、易于在光纤上进行各种物理抛磨、化学腐蚀和激光微加工等工艺。此外,双实芯光纤集成度高,构成材料一致,热膨胀系数相同,对温度表现出来的响应是一样的,因而可以避免温度与其他物理量的交叉敏感问题。
本发明是用一种双实芯光纤基于迈克尔逊干涉机理实现对光纤干涉谱的光热相位调制。利用熔融拉锥技术首先将双实芯光纤和单模光纤包层对准直接进行焊接,然后在焊点处拉锥,使得单模光纤的光耦合到双实芯的两个纤芯内并利用双实芯光纤出射端的端面反射,当光再次耦合到单模纤中发生相应的模式干涉。然后在双实芯光纤上利用轮式侧抛技术除掉部分包层,裸露出来的纤芯具有更强的倏逝场。再在纤芯上铺上热敏材料,由于材料的光热效应,泵浦光引起材料温度变化,使得被覆热敏材料的纤芯的有效折射率随之发生相应的改变,两个纤芯中的光程差发生变化,干涉谱发生相应的漂移,从而实现光热的相位调制。
发明内容
本发明的目的在于提供克服了多分路的难题的被覆热敏材料的双实芯光纤光热相位调制器。
本发明的目的通过以下技术方案来实现:
被覆热敏材料的双实芯光纤光热相位调制器,由信号光源、泵浦光源、3dB耦合器、环形器、单模光纤3、一段双实芯光纤1、探测器依次相连而成。双实芯光纤1的包层对称分布着两个纤芯2,纤芯2的直径为8-9微米,芯间距为30-70微米。双实芯光纤1左端与单模光纤3利用熔融拉锥,使得单模光纤中的光通过拉锥区域4耦合到双实芯光纤的两个纤芯内,在双实芯光纤的端面反射下,形成迈克尔逊干涉仪。一个纤芯被侧面抛磨后部分纤芯裸露于空气中,形成侧抛区域5,侧抛区域5被覆热敏材料6。
通过调节泵浦光源能量大小,利用热敏材料的光热效应,使两个纤芯内相干模式之间的光程差发生变化,干涉谱发生漂移,实现相位调制。所述的拉锥区域4是先将单模光纤3和双实芯光纤1进行焊接,然后在焊点处进行拉锥处理,利用光束分析仪对双实芯光纤输出端的两根纤芯能量进行实时监测,直到两芯能量按1:1分配后停止拉锥。所述的一个纤芯被侧面抛磨,是将双实芯光纤两个纤芯所在的平面调成竖直状态,然后利用轮式侧面抛磨技术除去部分包层,将纤芯抛磨掉2-5微米,使上方的纤芯部分暴露在空气中。所述的纤芯被覆热敏材料,与纤芯直接作用。热敏材料为石墨烯等二维材料,也可以为氟钕钠等稀土氟化物。
被覆热敏材料的双实芯光纤光热相位调制器,其工作原理是信号光源和泵浦光源通过3dB耦合器同时耦合到单模光纤,然后接入3端口环形器,环形器的第一个输出单模尾纤3与双芯光纤1互联,通过锥区4进入双实芯光纤1的两个纤芯内,利用双实芯光纤1的端面反射形成迈克尔逊干涉仪结构。干涉光谱信号由环形器第二个输出单模纤输入到探测器。由于抛磨区域5的深度到达纤芯以下,裸露的纤芯具有很强的倏逝场。被覆的热敏材料具有很强的光热效应,通过改变泵浦光能量,热敏材料温度随之变化,抛磨纤芯有效折射率也会发生改变,而未被覆热敏材料的纤芯有效折射率几乎不变。因此两个纤芯内信号光之间的光程差发生变化,使干涉峰发生漂移,从而达到高调制度的光热相位调制的目的。
本发明的有益效果在于:
双实芯光纤纤芯相互独立,两个纤芯分别充当参考臂和传感臂,发生干涉的信号光在两个独立的纤芯内传导,调制度近似为线性。
热敏材料的引入,其具有高的热光系数、饱和吸收特性等,相位调制器的调制度被大大提高。
利用双实芯光纤制作相位调制器,由于双实芯光纤的两根纤芯同在一个波导里,极大地改善了器件的集成度,与传统的基于光纤的相位调制器相比,本发明克服了多分路的难题,实现了在一根光纤内进行集成干涉,能够更加方便的集成在光路中。
附图说明
图1为双实芯光纤结构图;
图2为利用轮式侧面抛磨后的光纤横截面图;
图3为利用熔融拉锥技术实现单模光纤和多芯光纤互联示意图;
图4为侧面抛磨后的双实芯光纤干涉仪示意图;
图5为双实芯光纤光热相位调制器示意图;
图6为热敏材料是氟钕钠时的调制结果。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步说明:
实施例一:
结合图1、图2、图3、图4、图5和图6,一种双实芯光纤干涉型光热相位调制器是由信号光源、泵浦光源、3dB耦合器、环形器、单模光纤3、一段双实芯光纤1、探测器依次相连而成。双实芯光纤1包层内有两个纤芯2对称分布,两个纤芯的直径为9微米,芯间距为64微米。信号光源和泵浦光源通过3dB耦合器同时耦合到单模光纤,然后接入3端口环形器,环形器的第一个输出单模尾纤3与双芯光纤1互联。双实芯光纤1与单模光纤3包层对准后利用光纤焊接机直接焊接,然后手动同时拉动两端光纤,利用焊接机频繁放电,在单模光纤与双实芯光纤焊点处进行拉锥处理,形成锥区4。这样,单模光纤中的信号光和泵浦光通过锥区4会同时耦合到双实芯光纤的两个纤芯内,利用双实芯光纤出射端的端面反射产生迈克逊干涉仪。通过光束分析仪进行监测,直到两个纤芯内的能量按1:1分布,此时停止拉锥,得到的干涉峰消光比最大。干涉光谱信号由环形器第二个输出单模纤输入到探测器。利用轮式侧面抛磨技术除掉双实芯光纤一个纤芯外的部分包层,将纤芯抛磨掉4.5微米,使得纤芯裸露出来,构成抛磨区5。将热敏材料6直接覆盖到抛磨区域5,热敏材料为单层石墨烯或氟钕钠。泵浦光从单模光纤耦合到双实芯光纤后,热敏材料6的快速响应时间以及极好的光热效应会使其受泵浦光调制,材料温度发生改变,被覆热敏材料的纤芯有效折射率发生变化,两个纤芯内的光程差随之变化,干涉峰发生漂移,从而实现光热相位调制。图6为热敏材料是氟钕钠时的调制结果。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.被覆热敏材料的双实芯光纤光热相位调制器,其特征在于:相位调制器是由信号光源、泵浦光源、3dB耦合器、环形器、单模光纤、一段双实芯光纤、探测器依次相连而成;双实芯光纤的两个纤芯在包层内对称分布,双实芯光纤与单模光纤的焊接处进行熔融拉锥,一个纤芯被侧面抛磨后部分纤芯裸露于空气中,侧抛后的纤芯被覆热敏材料。
2.根据权利要求1所述的被覆热敏材料的双实芯光纤光热相位调制器,其特征在于:所述的双实芯光纤包层直径125微米,两个纤芯是同质单模纤芯,直径为8-9微米,芯间距为30-70微米。
3.根据权利要求1所述的被覆热敏材料的双实芯光纤光热相位调制器,其特征在于:所述双实芯光纤与单模光纤的焊接处被进行熔融拉锥,先将单模光纤与双芯光纤直接包层对准焊接,然后在焊点位置进行拉锥,使单模光纤中的光按1:1均匀地耦合到双实芯光纤的两个纤芯内。
4.根据权利要求1所述的被覆热敏材料的双实芯光纤光热相位调制器,其特征在于:所述的一个纤芯被侧面抛磨,是将双实芯光纤两个纤芯所在的平面调成竖直状态,然后利用轮式侧面抛磨技术除去部分包层,将纤芯抛磨掉2-5微米,使上方的纤芯部分暴露在空气中。
5.根据权利要求1所述的被覆热敏材料的双实芯光纤光热相位调制器,其特征在于:所述的热敏材料薄膜覆盖在侧抛后的纤芯表面,与纤芯直接作用。
6.根据权利要求1所述的被覆热敏材料的双实芯光纤光热相位调制器,其特征在于:所述的热敏材料为二维材料或者稀土氟化物。
CN201911171338.2A 2019-11-26 2019-11-26 被覆热敏材料的双实芯光纤光热相位调制器 Pending CN110824728A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911171338.2A CN110824728A (zh) 2019-11-26 2019-11-26 被覆热敏材料的双实芯光纤光热相位调制器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911171338.2A CN110824728A (zh) 2019-11-26 2019-11-26 被覆热敏材料的双实芯光纤光热相位调制器

Publications (1)

Publication Number Publication Date
CN110824728A true CN110824728A (zh) 2020-02-21

Family

ID=69559787

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911171338.2A Pending CN110824728A (zh) 2019-11-26 2019-11-26 被覆热敏材料的双实芯光纤光热相位调制器

Country Status (1)

Country Link
CN (1) CN110824728A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112426128A (zh) * 2020-11-13 2021-03-02 佛山科学技术学院 一种光纤探针及基于扩束长度可调的可变焦光纤oct装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1908577A (zh) * 2006-08-22 2007-02-07 哈尔滨工程大学 集成为单根光纤的迈克尔逊干涉仪
CN101105555A (zh) * 2007-08-08 2008-01-16 哈尔滨工程大学 纤维集成式马赫曾德干涉仪及其制造方法
CN101369084A (zh) * 2008-10-07 2009-02-18 哈尔滨工程大学 一种干涉型集成式光信号调制器及其制作方法
CN101957477A (zh) * 2010-05-31 2011-01-26 哈尔滨工程大学 保偏式纤维集成Michelson干涉仪
CN103364370A (zh) * 2013-07-03 2013-10-23 哈尔滨工程大学 基于环形腔衰落的环形芯光纤传感器
CN105954235A (zh) * 2016-04-26 2016-09-21 哈尔滨工程大学 一种孔助双芯光纤干涉型折射率传感器
CN110132328A (zh) * 2019-04-08 2019-08-16 东莞理工学院 基于热耦合增强效应的光纤传感器及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1908577A (zh) * 2006-08-22 2007-02-07 哈尔滨工程大学 集成为单根光纤的迈克尔逊干涉仪
CN101105555A (zh) * 2007-08-08 2008-01-16 哈尔滨工程大学 纤维集成式马赫曾德干涉仪及其制造方法
CN101369084A (zh) * 2008-10-07 2009-02-18 哈尔滨工程大学 一种干涉型集成式光信号调制器及其制作方法
CN101957477A (zh) * 2010-05-31 2011-01-26 哈尔滨工程大学 保偏式纤维集成Michelson干涉仪
CN103364370A (zh) * 2013-07-03 2013-10-23 哈尔滨工程大学 基于环形腔衰落的环形芯光纤传感器
CN105954235A (zh) * 2016-04-26 2016-09-21 哈尔滨工程大学 一种孔助双芯光纤干涉型折射率传感器
CN110132328A (zh) * 2019-04-08 2019-08-16 东莞理工学院 基于热耦合增强效应的光纤传感器及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112426128A (zh) * 2020-11-13 2021-03-02 佛山科学技术学院 一种光纤探针及基于扩束长度可调的可变焦光纤oct装置

Similar Documents

Publication Publication Date Title
Mumtaz et al. Inter-cross de-modulated refractive index and temperature sensor by an etched multi-core fiber of a MZI structure
CN106124029B (zh) 基于微纳光纤全光相位调制器的光纤水听器***
CN101261117A (zh) 基于多孔微结构光纤的应变传感器
CN110987230B (zh) 一种双参量光纤传感模块及***
CN206573235U (zh) 一种基于光纤环形激光器的萨格纳克干涉仪温度传感器
CN112596174B (zh) 一种微纳光纤耦合器复合制造方法
CN111045228A (zh) 基于石墨烯d型双芯光纤m-z调制器及其制备方法
Shao et al. Humidity sensor based on hybrid fiber Bragg grating/abrupt fiber taper
Kong et al. Thin-core fiber taper-based multi-mode interferometer for refractive index sensing
CN103852191A (zh) 一种折射率不敏感的光纤温度传感器
Zhang et al. Temperature and refractive index measurement using an optical fiber sensor featuring PCF-FP and FBG inscribed by femtosecond laser
Park et al. Ultracompact intrinsic micro air-cavity fiber Mach–Zehnder interferometer
CN110514233B (zh) 一种空腔悬浮通道型光纤线上马赫-曾德干涉仪
CN110824728A (zh) 被覆热敏材料的双实芯光纤光热相位调制器
CN201181206Y (zh) 基于多孔微结构光纤的应变传感器
Zhao et al. Application of MZI symmetrical structure with fiber balls and seven-core fiber in microdisplacement measurement
CN202837591U (zh) 一种膜片式光纤激光耦合器
Mohammed Photonic crystal fiber Mach-Zehnder interferometer pH sensing
Yang et al. All-pass and add-drop microsphere resonator in a suspended dual-core hollow fiber
CN103115570B (zh) 基于望远镜式熔锥结构的马赫曾德干涉高灵敏微位移传感器
Lin et al. In-Fiber Mach–Zehnder Interferometer Based on Er Doped Up-Taper and Peanut-Shaped Fiber Structure in Fiber Ring Laser
Zhang et al. Research on Michelson interference refractive index sensing technique based on double-core microfiber
Zhu et al. Highly sensitive balloon-like temperature fiber sensor based on a seven-core fiber
CN115307567A (zh) 一种基于多芯光纤拉锥的曲率传感器及其制备方法
Cao et al. Magnetic field sensor based on peanut-shape structure and multimode fiber

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200221

RJ01 Rejection of invention patent application after publication