CN110808599B - 一种孤岛直流微电网并联多储能荷电状态均衡控制方法 - Google Patents

一种孤岛直流微电网并联多储能荷电状态均衡控制方法 Download PDF

Info

Publication number
CN110808599B
CN110808599B CN201911052683.4A CN201911052683A CN110808599B CN 110808599 B CN110808599 B CN 110808599B CN 201911052683 A CN201911052683 A CN 201911052683A CN 110808599 B CN110808599 B CN 110808599B
Authority
CN
China
Prior art keywords
energy storage
storage unit
state
control method
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911052683.4A
Other languages
English (en)
Other versions
CN110808599A (zh
Inventor
韩云昊
喻思
米阳
常俊飞
伦雪莹
徐怡雯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Electric Power University
Original Assignee
Shanghai Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Electric Power University filed Critical Shanghai Electric Power University
Priority to CN201911052683.4A priority Critical patent/CN110808599B/zh
Publication of CN110808599A publication Critical patent/CN110808599A/zh
Application granted granted Critical
Publication of CN110808599B publication Critical patent/CN110808599B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明涉及一种孤岛直流微电网并联多储能荷电状态均衡控制方法,在传统下垂控制方法的基础上,通过引入采样保持器,改进下垂控制方法,当***内存在功率分配误差及荷电状态没有达到均衡状态时,在每个采样周期不断自适应地修改下垂系数,减少荷电状态偏差,最终实现储能单元间的荷电状态均衡。与现有技术相比,本发明具有避免过度放电、充分发挥使用效率、提高使用寿命等优点。

Description

一种孤岛直流微电网并联多储能荷电状态均衡控制方法
技术领域
本发明涉及一种直流微电网控制方法,尤其是涉及一种孤岛直流微电网并联多储能荷电状态均衡控制方法。
背景技术
为了应对全球能源危机及环境污染问题,实现人类社会的可持续发展,近些年来,以可再生能源RES为基础的分布式发电DGs技术得到了广泛的关注及发展。微电网作为整合各种分布式电源、储能、负荷、变流器、监控和保护装置的有效解决方法之一开始被广泛研究。相比于传统交流微电网,直流微电网由于能量变换过程少、效率高、损耗低,无需考虑电压相位及频率问题,逐渐成为当前的研究热点;直流微电网孤岛运行时,由于光伏、风机等可再生能源发电功率受自然因素影响呈现出随机性、间歇性的特点,因此微电网内通常需要配置相应的储能***ESS来维持微电网的功率平衡及稳定运行。
当多个储能单元并联运行时,由于线路阻抗及储能单元自身特性的差异,分布式储能单元DESU间将会出现荷电状态SoC不均衡的情况,严重情况下将导致部分储能单元过度充电或过度放电,缩短了储能***的使用寿命。为了避免这种现象,最大发挥储能***的效率,储能***的SoC均衡控制方法研究非常必要。
下垂控制作为直流微电网内最常用的负荷自主分配控制方法,能够使得各储能单元按照其下垂系数成比例地分配负荷功率,但是,在实际微电网中,当考虑线路阻抗及不同储能单元自身特性差异时,传统的下垂控制无法达到理想的SoC均衡效果,使得储能单元在克服线路阻抗对负荷功率分配精度影响的同时,具备高初始SoC值的储能单元在放电时承担较多的负荷功率,而在充电时承担较少的负荷功率。因此,为了实现储能***SoC均衡控制,国内外许多学者进行了相关的研究。有研究提出了一种自适应分级协调控制方法,通过功率分配级和功率平衡级的协调控制实现了并联多储能单元间的SoC均衡,但该控制方法并没有考虑不匹配线路阻抗因素的影响;或者通过动态改变下垂系数补偿不匹配线路阻抗的影响,但是较大的下垂系数势必造成直流母线电压的大幅度跌落,导致微电网无法稳定运行;通过加入线路阻抗测量装置,可以便于对各储能单元下垂系数进行修正,但该控制方法需要额外的硬件装置,增加了***的成本且控制较复杂,降低了微电网的经济性,且并不适用于实际工程。
发明内容
本发明的目的就是为了克服上述现有技术存在的线路不匹配、稳定性差、控制***复杂的缺陷而提供一种孤岛直流微电网并联多储能荷电状态均衡控制方法。
本发明的目的可以通过以下技术方案来实现:
一种孤岛直流微电网并联多储能荷电状态均衡控制方法,在传统下垂控制方法的基础上,通过引入采样保持器,改进下垂控制方法,当***内存在功率分配误差及荷电状态没有达到均衡状态时,在每个采样周期不断自适应地修改下垂系数,减少荷电状态偏差,最终实现储能单元间的荷电状态均衡。
所述传统下垂控制方法的下垂控制表达式为:
ui=uref-miPi
其中,ui、Pi为第i个储能单元的输出电压和输出功率;uref为参考电压;mi为第i个储能单元的下垂系数。
所述改进后的下垂控制方法具体为:
ui(n+1)=uref-[m0+mp(Pi(n)-Pave(n))+ms(SoCi(n)-SoCave(n))]Pi(n)
Mi(n)=m0+mp(Pi(n)-Pave(n))+ms(SoCi(n)-SoCave(n))
其中,ui(n+1)表示第i个储能单元在第n+1次采样周期的输出电压,m0为初始下垂系数,mp为功率调节系数,ms为荷电状态调节系数,Mi(n)表示第i个储能单元在第n次采样周期的改进下垂系数,Pi(n)和Pave(n)分别表示第i个储能单元在第n次采样周期的输出功率和平均输出功率,SoCi(n)和SoCave(n)分别表示第i个储能单元在第n次采样周期的荷电状态和平均荷电状态。
第一个采样周期后下垂控制表达式为:
ui(1)=uref-[m0+mp(Pi(0)-Pave(0))]Pi(0)
其中,ui(1)为第i个储能单元在第一个采样周期的输出电压。
所述荷电状态偏差具体表示为:
Figure BDA0002255701840000031
其中,ΔSoCi-j(n+1)为第i个储能单元与第j个储能单元在第n+1次采样周期的荷电状态偏差,SoCi-j(n)为第i个储能单元与第j个储能单元在第n次采样周期的荷电状态偏差,Tsample为采样保持器的采样周期;uin代表蓄电池的输出电压;Ce为储能单元的容量。
所述孤岛直流微电网的直流母线电压表示为:
Figure BDA0002255701840000032
其中,upcc为公共直流母线处的电压,Rlinei为第i个储能单元所在分路的电阻。
所述传统下垂控制方法下负荷功率分配关系为:
Figure BDA0002255701840000033
其中,uj为第j个储能单元的输出电压和输出功率,mj为第j个储能单元的下垂系数,Rlinej为第j个储能单元所在分路的电阻。
所述荷电状态的计算表达式为:
Figure BDA0002255701840000034
其中,SoCi(t)、SoCi(0)分别代表第i个储能单元的当前荷电状态和初始荷电状态;Pi代表第i个储能单元的输出功率。
与现有技术相比,本发明具有以下有益效果:
1.本发明通过引入采样保持器,实现储能单元间荷电状态均衡,避免部分储能单元过度充放电,充分发挥储能***的使用效率。
2.本发明消除了直流微电网孤岛运行时,不匹配线路阻抗及不同储能单元自身特性参数差异对分布式储能单元荷电状态均衡控制的影响,进一步提高储能***的使用寿命。
3.本发明提出的改进下垂控制方法,提高了不匹配线路阻抗对储能单元负荷功率进行分配时的分配精度。
附图说明
图1为本发明典型微电网的结构示意图;
图2为本发明两组分布式储能单元并联运行的等效电路图;
图3为本发明改进下垂控制方法的总体控制框图;
图4为本发明第一次采样周期后储能放电时的功率分配图;
图5为本发明第一次采样周期后储能充电时的功率分配图;
图6(a)为本发明实施例一储能***稳定放电时荷电状态的变化示意图;
图6(b)为本发明实施例一储能***稳定放电时输出功率的变化示意图;
图6(c)为本发明实施例一储能***稳定放电时直流母线电压的变化示意图;
图7(a)为本发明实施例一储能***稳定充电时荷电状态的变化示意图;
图7(b)为本发明实施例一储能***稳定充电时输出功率的变化示意图;
图7(c)为本发明实施例一储能***稳定充电时直流母线电压的变化示意图;
图8(a)为本发明实施例二光伏功率波动时荷电状态的变化示意图;
图8(b)为本发明实施例二光伏功率波动时输出功率的变化示意图;
图8(c)为本发明实施例二光伏功率波动时直流母线电压的变化示意图;
图9(a)为本发明实施例三负荷波动时荷电状态的变化示意图;
图9(b)为本发明实施例三负荷波动时输出功率的变化示意图;
图9(c)为本发明实施例三负荷波动时直流母线电压的变化示意图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
如图3所示,一种孤岛直流微电网并联多储能荷电状态均衡控制方法,在传统下垂控制方法的基础上,通过引入采样保持器,改进下垂控制方法,当***内存在功率分配误差及荷电状态没有达到均衡状态时,在每个采样周期不断自适应地修改下垂系数,减少荷电状态偏差,最终实现储能单元间的荷电状态均衡。
典型微电网结构如图1所示,当并网逆变器断开时,直流微电网处于孤岛运行模式,这种情况下,微电网通常采用下垂控制方法实现负荷功率的自主分配,传统“电压-功率”下垂控制表达式为:
ui=uref-miPi
其中,ui、Pi为第i个储能单元的输出电压和输出功率;uref为参考电压;mi为第i个储能单元的下垂系数。
含两组并联储能单元的等效电路模型如图2所示,当直流微电网***稳定工作时,若不考虑不匹配线路阻抗的影响,孤岛直流微电网的直流母线电压表示为:
Figure BDA0002255701840000051
其中,upcc为公共直流母线处的电压,Rlinei为第i个储能单元所在分路的电阻。
传统下垂控制方法下负荷功率分配关系为:
Figure BDA0002255701840000052
其中,uj为第j个储能单元的输出电压和输出功率,mj为第j个储能单元的下垂系数,Rlinej为第j个储能单元所在分路的电阻。根据上式可以看出,传统下垂控制方法下,负荷功率能够严格按照各自的下垂系数成反比分配,但在实际微电网中,线路阻抗无法忽略时,要实现负荷功率严格按照各自的下垂系数成反比分配,其相应的输出电压必须满足上式所示关系,而输电线路往往无法保证各储能单元线路阻抗参数完全相同,进而导致储能单元间负荷功率分配存在偏差。
储能单元的荷电状态主要表征储能单元的当前可用容量,具体计算表达式为:
Figure BDA0002255701840000053
其中,SoCi(t)、SoCi(0)分别代表第i个储能单元的当前荷电状态和初始荷电状态;Pi代表第i个储能单元的输出功率;uin代表蓄电池的输出电压;Ce为储能单元的容量。
储能单元间的荷电状态达到均衡的条件是,必须同时满足第i个储能单元的荷电状态和第j个储能单元的荷电状态相同及对应的输出功率相等,在传统下垂控制方法下,储能单元间的荷电状态无法实现均衡控制效果。
改进后的下垂控制方法具体为:
ui(n+1)=uref-[m0+mp(Pi(n)-Pave(n))+ms(SoCi(n)-SoCave(n))]Pi(n)
Mi(n)=m0+mp(Pi(n)-Pave(n))+ms(SoCi(n)-SoCave(n))
其中,ui(n+1)表示第i个储能单元在第n+1次采样周期的输出电压,m0为初始下垂系数,mp为功率调节系数,ms为荷电状态调节系数,Mi(n)表示第i个储能单元在第n次采样周期的改进下垂系数,Pi(n)和Pave(n)分别表示第i个储能单元在第n次采样周期的输出功率和平均输出功率,SoCi(n)和SoCave(n)分别表示第i个储能单元在第n次采样周期的荷电状态和平均荷电状态。
如图3所示,上述改进下垂控制方法具体工作过程为:当中央控制器检测到微电网内存在负荷功率分配偏差且荷电状态没有实现均衡控制时,各储能单元的本地控制器根据上述改进下垂控制方法,在每个采样周期,不断自适应地修改其下垂系数,直至负荷功率分配偏差完全消除同时实现储能单元间的荷电状态均衡控制效果。
对于两组并联储能单元的孤岛光储直流微电网,采用改进后的下垂控制方法的第一个采样周期,改进下垂控制表达为:
ui(1)=uref-[m0+mp(Pi(0)-Pave(0))]Pi(0)
其中,ui(1)为第i个储能单元在第一个采样周期的输出电压。
两组储能单元间的荷电状态偏差具体表示为:
Figure BDA0002255701840000061
其中,ΔSoCi-j(n+1)为第i个储能单元与第j个储能单元在第n+1次采样周期的荷电状态偏差,SoCi-j(n)为第i个储能单元与第j个储能单元在第n次采样周期的荷电状态偏差,Tsample为采样保持器的采样周期。
若直流微电网内光伏发电功率无法满足负荷功率需求,此时为保持微电网内功率平衡,储能***处于稳定放电状态,假设Rlinei>Rlinej,进行第一次采样后,储能单元输出功率满足0<Pi(0)<Pj(0),根据荷电状态计算表达式得,SoCi(1)>SoCj(1),所以mp(Pi(0)-Pave(0))<0<mp(Pj(0)-Pave(0)),且ms(SoCi(0)-SoCave(0))<0<ms(SoCj(0)-SoCave(0)),根据改进后的下垂控制表达式,第一次采样周期后,Mi(0)<m0<Mj(0),表明第i个储能单元将减小其下垂系数以增大相应输出功率,而第j个储能单元将增大其下垂系数以减小相应输出功率。第一次采样周期后储能单元间输出功率分配情况如图4所示,Pi(0)<Pi(1),Pj(1)<Pj(0),即储能单元间负荷功率分配误差在第一次采样周期后减小,随着采样周期不断地进行,储能单元间负荷功率分配误差逐渐减小为0。
若直流微电网内光伏发电功率在满足负荷功率需求后仍有剩余,此时为保持微电网内功率平衡,储能***将处于稳定充电状态吸收微电网内多余功率,储能单元输出功率满足Pj(0)<Pj(1)<Pi(1)<Pi(0)<0,且SoCi(1)<SoCj(1),由此可得mp(Pi(0)-Pave(0))<0<mp(Pj(0)-Pave(0))且ms(SoCi(1)-SoCave(1))<0<ms(SoCj(1)-SoCave(1)),根据改进后的下垂控制表达式,第一次采样周期后储能单元间输出功率分配情况如图5所示,Mi(0)<m0<Mj(0),表明第i个储能单元将减小其下垂系数以增大相应输出功率,而第j个储能单元将增大其下垂系数以减小相应输出功率,最终消除负荷功率分配偏差且实现荷电状态均衡。
实施例一
基于RTDS平台搭建含三组并联分布式储能单元的孤岛直流微电网***,包括第一储能单元、第二储能单元和第三储能单元,储能单元容量设置为12Ah,***其他具体控制参数如表1所示:
表1基于RTDS平台的***实验参数
Figure BDA0002255701840000071
设置各储能单元初始荷电状态均为80%。当光伏***发出功率无法满足负荷需求功率时,为保持微电网内实时功率平衡,此时储能***处于稳定放电状态,其实验波形如图6(a)所示;0到4s时,各储能单元均运行于传统下垂控制方法,如图6(b)所示,由于不匹配线路阻抗的影响,储能单元间负荷功率没有按照其容量比例精确分配,存在负荷功率分配偏差,进而导致图6(a)中的荷电状态出现不均衡现象,且荷电状态偏差在不断地增大,4s时,储能单元切换至本发明所提的改进下垂控制方法,如图6(a)和图6(b)所示,储能单元间的输出功率与荷电状态在不断的收敛,直至最后实现荷电状态均衡。
若光伏***发出功率在满足负荷功率需求后还有剩余,储能***处于稳定充电状态,设置各储能单元初始荷电状态均为50%。其实验波形如图7(a)所示;0到4s时,各储能单元均运行于传统下垂控制方法,如图7(b)所示,由于不匹配线路阻抗的影响,储能单元间负荷功率没有按照其容量比例精确分配,存在负荷功率分配偏差,进而导致图7(a)中荷电状态出现不均衡现象,且荷电状态偏差在不断地增大,4s时,储能单元切换至本发明所提改进下垂控制方法,如图7(a)和图7(b)所示,储能单元间的输出功率与荷电状态在不断的收敛直至最后实现荷电状态均衡。
如图6(c)和图7(c)所示,在本发明所提出改进下垂控制方法下,直流母线电压维持在允许的正常波动范围内,进一步说明了本发明所提控制方法的有效性,保证了微电网良好的供电电压质量。
实施例二
储能单元组的配置同实施例一,如图8(a)所示,0到8s时,储能***均处于稳定充电状态,4s前运行于传统下垂控制方法,4s时储能单元切换至本发明所提改进下垂控制方法,其相应荷电状态开始收敛,8s时光伏***受到外界因素影响导致发出功率减少,光伏发电功率无法满足负荷功率需求,如图8(b)所示,在光伏功率发生波动时,储能***由充电状态迅速切换至放电状态,从图8(a)可以明显观察到,在本发明所提改进下垂控制方法下,即使光伏功率发生波动,荷电状态仍然处于逐渐均衡状态,最终达到荷电状态平衡。如图8(c)所示,在本发明所提出改进下垂控制方法下,光伏功率发生波动时直流母线电压仍然维持在允许的正常波动范围内。
实施例三
储能单元组的配置同实施例一,如图9(a)所示,0到8s时,储能***均处于稳定放电状态,4s前运行于传统下垂控制方法,4s时储能单元切换至本发明所提改进下垂控制方法,其相应荷电状态开始收敛,8s时负荷功率需求突然减小,此时光伏发电功率在满足负荷功率需求后仍有剩余,如图9(b)所示,储能***由放电状态迅速切换至充电状态,如图9(a)所示,在本发明所提改进下垂控制方法下,负荷功率波动不会影响储能单元间的荷电状态均衡控制效果。如图9(c)所示,在本发明所提出改进下垂控制方法下,负荷功率波动也不会影响到公共直流母线电压稳定性,验证了本发明所提控制方法的有效性。

Claims (6)

1.一种孤岛直流微电网并联多储能荷电状态均衡控制方法,其特征在于,在传统下垂控制方法的基础上,通过引入采样保持器,改进下垂控制方法,当***内存在功率分配误差及荷电状态没有达到均衡状态时,在每个采样周期不断自适应地修改下垂系数,减少荷电状态偏差,最终实现储能单元间的荷电状态均衡;
所述传统下垂控制方法的下垂控制表达式为:
ui=uref-miPi
其中,ui、Pi为第i个储能单元的输出电压和输出功率;uref为参考电压;mi为第i个储能单元的下垂系数;
所述改进后的下垂控制方法具体为:
ui(n+1)=uref-[m0+mp(Pi(n)-Pave(n))+ms(SoCi(n)-SoCave(n))]Pi(n)
Mi(n)=m0+mp(Pi(n)-Pave(n))+ms(SoCi(n)-SoCave(n))
其中,ui(n+1)表示第i个储能单元在第n+1次采样周期的输出电压,m0为初始下垂系数,mp为功率调节系数,ms为荷电状态调节系数,Mi(n)表示第i个储能单元在第n次采样周期的改进下垂系数,Pi(n)和Pave(n)分别表示第i个储能单元在第n次采样周期的输出功率和平均输出功率,SoCi(n)和SoCave(n)分别表示第i个储能单元在第n次采样周期的荷电状态和平均荷电状态。
2.根据权利要求1所述的一种孤岛直流微电网并联多储能荷电状态均衡控制方法,其特征在于,第一个采样周期后下垂控制表达式为:
ui(1)=uref-[m0+mp(Pi(0)-Pave(0))]Pi(0)
其中,ui(1)为第i个储能单元在第一个采样周期的输出电压。
3.根据权利要求1所述的一种孤岛直流微电网并联多储能荷电状态均衡控制方法,其特征在于,所述荷电状态偏差具体表示为:
Figure FDA0002939709040000011
其中,ΔSoCi-j(n+1)为第i个储能单元与第j个储能单元在第n+1次采样周期的荷电状态偏差,SoCi-j(n)为第i个储能单元与第j个储能单元在第n次采样周期的荷电状态偏差,Tsample为采样保持器的采样周期;uin代表蓄电池的输出电压;Ce为储能单元的容量。
4.根据权利要求1所述的一种孤岛直流微电网并联多储能荷电状态均衡控制方法,其特征在于,所述孤岛直流微电网的直流母线电压表示为:
Figure FDA0002939709040000021
其中,upcc为公共直流母线处的电压,Rlinei为第i个储能单元所在分路的电阻。
5.根据权利要求1所述的一种孤岛直流微电网并联多储能荷电状态均衡控制方法,其特征在于,所述传统下垂控制方法下负荷功率分配关系为:
Figure FDA0002939709040000022
其中,uj为第j个储能单元的输出电压,mj为第j个储能单元的下垂系数,Rlinej为第j个储能单元所在分路的电阻。
6.根据权利要求3所述的一种孤岛直流微电网并联多储能荷电状态均衡控制方法,其特征在于,所述荷电状态的计算表达式为:
Figure FDA0002939709040000023
其中,SoCi(t)、SoCi(0)分别代表第i个储能单元的当前荷电状态和初始荷电状态;Pi代表第i个储能单元的输出功率。
CN201911052683.4A 2019-10-31 2019-10-31 一种孤岛直流微电网并联多储能荷电状态均衡控制方法 Active CN110808599B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911052683.4A CN110808599B (zh) 2019-10-31 2019-10-31 一种孤岛直流微电网并联多储能荷电状态均衡控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911052683.4A CN110808599B (zh) 2019-10-31 2019-10-31 一种孤岛直流微电网并联多储能荷电状态均衡控制方法

Publications (2)

Publication Number Publication Date
CN110808599A CN110808599A (zh) 2020-02-18
CN110808599B true CN110808599B (zh) 2021-05-04

Family

ID=69489800

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911052683.4A Active CN110808599B (zh) 2019-10-31 2019-10-31 一种孤岛直流微电网并联多储能荷电状态均衡控制方法

Country Status (1)

Country Link
CN (1) CN110808599B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112310990B (zh) * 2020-10-14 2023-08-04 国网天津市电力公司营销服务中心 一种基于荷电状态的直流微电网多储能***均衡控制方法
CN112350357B (zh) * 2020-10-29 2022-07-26 南京工程学院 一种针对分布式并网电动汽车的SoC平衡控制方法
CN113346591B (zh) * 2021-06-16 2023-06-13 沈阳工程学院 一种基于自适应均衡技术的储能单体充放电运行模型
CN113507151B (zh) * 2021-07-07 2024-02-09 常州瑞华电力电子器件有限公司 一种应用于多储能单元的SoC协同控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104734549B (zh) * 2015-04-14 2017-03-08 国家电网公司 一种孤岛微电网多逆变器并联功率均分控制方法
US10511178B2 (en) * 2015-12-03 2019-12-17 Enphase Energy, Inc. Autonomous charge balancing of distributed AC coupled batteries with droop offset
CN105576663A (zh) * 2016-01-13 2016-05-11 燕山大学 一种孤岛微电网自适应功率均分和电压恢复控制方法
CN108092306B (zh) * 2017-12-15 2021-10-08 上海电力学院 一种考虑不匹配线阻的低压微电网储能***下垂控制方法
CN108599213B (zh) * 2018-05-04 2020-05-08 上海电力学院 考虑不匹配线阻的多储能独立直流微电网的改进控制方法
CN110224388B (zh) * 2019-06-27 2020-12-22 上海电力学院 高通滤波下垂控制的孤岛直流微电网功率分配方法及装置

Also Published As

Publication number Publication date
CN110808599A (zh) 2020-02-18

Similar Documents

Publication Publication Date Title
CN110808599B (zh) 一种孤岛直流微电网并联多储能荷电状态均衡控制方法
Zhang et al. Energy management strategy of islanded microgrid based on power flow control
CN111987713B (zh) 一种基于荷电状态均衡的直流微网改进下垂控制方法
CN110137992B (zh) 一种孤岛直流微电网协调稳定运行控制方法
CN111244931B (zh) 一种多储能模块并联运行的soc自均衡控制方法
Bao et al. Battery charge and discharge control for energy management in EV and utility integration
US10998723B1 (en) Large-scale photovoltaic DC series boost grid-connected system with power balancer
CN107565586B (zh) 一种双级式储能变流器有功功率控制方法
CN109193613A (zh) 一种直流微电网***及其控制方法
CN112310990B (zh) 一种基于荷电状态的直流微电网多储能***均衡控制方法
CN107482659B (zh) 交流微电网离网状态下混合储能***协调控制方法
CN105591383A (zh) 一种直流微网变功率控制装置及控制方法
CN109217379A (zh) 一种具有自均衡能力的级联型储能***黑启动方法及应用
CN111446725A (zh) 一种用于微电网的混合储能调频控制方法
CN110112723B (zh) 一种直流微电网离网状态下的下垂控制方法
Zheng et al. SOC balancing control strategy based on piecewise adaptive droop coefficient algorithm for multi-energy storage units in dc microgrid
CN115000996A (zh) 一种基于下垂控制的电池储能***soc均衡控制方法
CN114285054A (zh) 一种基于虚拟阻抗自调节的分布式储能荷电状态均衡策略
Feng et al. Coordinated control of DC voltage in the DC microgrid based on energy router
Yunhao et al. Hierarchical control strategy for distributed energy storage units in isolated DC microgrid
Wu et al. A state-of-charge balance method for distributed energy storage units in microgrid
CN110492614A (zh) 一种电池储能***串并联结构的分散控制方法
Zhao et al. Multi-energy storage control based on soc for dc-microgrid
CN217522595U (zh) 一种光储充微电网结构和光储微网拓扑结构
CN116995713B (zh) 一种电动汽车退役电池剩余电量利用方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant