CN110797453A - 一种压电纳米复合材料及其制备方法 - Google Patents

一种压电纳米复合材料及其制备方法 Download PDF

Info

Publication number
CN110797453A
CN110797453A CN201911112522.XA CN201911112522A CN110797453A CN 110797453 A CN110797453 A CN 110797453A CN 201911112522 A CN201911112522 A CN 201911112522A CN 110797453 A CN110797453 A CN 110797453A
Authority
CN
China
Prior art keywords
barium titanate
bto
plga
composite material
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911112522.XA
Other languages
English (en)
Other versions
CN110797453B (zh
Inventor
章培标
王鹏
郭敏
王宗良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Applied Chemistry of CAS
Original Assignee
Changchun Institute of Applied Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Applied Chemistry of CAS filed Critical Changchun Institute of Applied Chemistry of CAS
Priority to CN201911112522.XA priority Critical patent/CN110797453B/zh
Publication of CN110797453A publication Critical patent/CN110797453A/zh
Application granted granted Critical
Publication of CN110797453B publication Critical patent/CN110797453B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/852Composite materials, e.g. having 1-3 or 2-2 type connectivity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/04Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
    • H10N30/045Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning by polarising
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/092Forming composite materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8536Alkaline earth metal based oxides, e.g. barium titanates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明提供了一种压电纳米复合材料及其制备方法。本发明提供的压电纳米复合材料包括Gd掺杂的钛酸钡纳米粒子和PLGA基材,其中,Gd掺杂的钛酸钡纳米粒子均匀分散在PLGA基材中。所述Gd掺杂的钛酸钡纳米粒子中,Gd离子通过离子掺杂方式进入钛酸钡,其取代BTO中阳离子的位置而进入BTO的四方相结构中,对钛酸钡的四方相结构造成一定影响,从而提升复合材料的压电性能,且还能提升压电材料的表面电荷。同时,Gd离子的掺杂,使纳米粒子的磁性由抗磁性向顺磁性转变,并且提高了纳米粒子密度,赋予材料显影示踪功能,达到MRI和X‑Ray双显影的效果。

Description

一种压电纳米复合材料及其制备方法
技术领域
本发明涉及生物材料领域,特别涉及一种压电纳米复合材料及其制备方 法。
背景技术
自从1880年法国物理学家P.居里和J.居里兄弟在石英晶体中发现压电效 应,人们开始对压电材料进行了大量的研究。压电材料是一类能够将机械能 和电能相互转化的特殊材料,具体来说,其是一类受到压力作用时会在材料 两端面出现电压的材料,被广泛地应用到我们的生产生活当中,如压电声呐, 超声换能器,医疗诊断传感器,超声波马达和薄膜电容器等。与我们关系最 为密切的压电材料就是骨。骨应力或损伤后的吸收和重建与其压电性密切相 关。
1957年,Yasuda首次发现骨具有力电性质,并将其规定为压电性质。随 后相关研究也证实了骨骼在受到应力刺激时会有电信号生成,并且这些电信 号在骨骼的生长和重塑过程中起着非常重要的作用,符合wolff定律。另外, 已有研究发现生物电信号,内源性电场和外部电刺激在调节细胞行为和促进 骨骼再生方面发挥着重要的作用。因此,模拟骨的力电性质制备具有压电性 的仿生骨植入材料在骨修复当中具有重要意义。
传统压电材料可分为无机材料和有机材料,典型代表有钛酸钡陶瓷 (BaTiO3,BTO)和聚偏氟乙烯(PVDF),而单独使无机材料或有机材料作 为压电材料,存在明显弊端。例如钛酸钡陶瓷作为压电材料时,压电和介电 常数较高,但其加工性及力学性能较差,不利于临床应用。聚偏氟乙烯作为 压电材料,压电常数相比钛酸钡压电常数较低,但可加工性和力学性能良好。 为弥补两种材料的不足,可将钛酸钡与聚偏氟乙烯结合,形成BTO-PVDF复 合材料。
然而,上述复合材料虽结合了两种材料的优势,但其仍具有一定缺陷: 不降解,在移入体内后还需对患者进行二次手术,增加了患者的创伤和痛苦; 不具有显影示踪功能,不利于术后对损伤部位的观察。
发明内容
有鉴于此,本发明的目的在于提供一种压电纳米复合材料及其制备方法。 本发明制备的压电纳米复合材料能够有效提高材料的压电性能,同时还具有 良好的降解性,以及能够达到MRI和X-Ray双显影示踪效果。
本发明提供了一种压电纳米复合材料,包括:Gd掺杂的钛酸钡纳米粒子 和PLGA基材。
优选的,所述Gd掺杂的钛酸钡纳米粒子中,Gd与Ba的摩尔比为 (0.01~0.1)∶1。
优选的,所述Gd掺杂的钛酸钡纳米粒子与PLGA基材的质量比为 (0.05~0.7):1。
优选的,所述Gd掺杂的钛酸钡纳米粒子的平均粒径为60~150nm。
本发明还提供了一种上述技术方案中所述的压电纳米复合材料的制备方 法,包括以下步骤:
a)将钛源化合物、钆源化合物和钡源化合物进行水热反应,得到Gd掺 杂的钛酸钡纳米粒子;
b)将所述Gd掺杂的钛酸钡纳米粒子与PLGA在溶剂中混匀、干燥,得 到Gd-BTO/PLGA复合材料;
c)将所述Gd-BTO/PLGA复合材料在直流电场下进行极化处理,得到压 电纳米复合材料。
优选的,所述步骤a)中,所述钛源化合物为Ti(OC4H9)4
所述钆源化合物为Gd(NO3)3·6H2O;
所述钡源化合物为Ba(OH)2·8H2O。
优选的,所述步骤a)包括:
a1)将Ti(OC4H9)4溶液与氨水、水混合,进行水解反应,形成溶胶;
a2)将所述溶胶与Gd(NO3)3·6H2O溶液、Ba(OH)2·8H2O溶液混合,反 应,形成Gd掺杂的钛酸钡纳米粒子。
优选的,所述步骤a1)中:
混料方式为:将Ti(OC4H9)4溶液逐滴加入氨水与水的混合液中;
所述氨水与水的体积比为1∶(1~7);
所述步骤a2)中:
所述混合的温度为20~90℃;
所述反应的温度为100~200℃,反应的时间为24~240h。
优选的,所述步骤c)中,所述极化处理的电压为5~30kv/mm,温度为 20~70℃,时间为10~180min。
优选的,所述步骤a)中,在所述水热反应后,还包括:中和、洗涤和干 燥;
所述步骤b)具体包括:
将Gd掺杂的钛酸钡纳米粒子分散于溶剂中后,加入PLGA溶解均匀,干燥, 得到压电纳米复合材料。
本发明提供的压电纳米复合材料包括Gd掺杂的钛酸钡纳米粒子(记为 Gd-BTO)和PLGA(即聚乳酸-羟基乙酸共聚物)基材,其中,Gd掺杂的钛酸 钡纳米粒子均匀分散在PLGA基材中。所述Gd掺杂的钛酸钡纳米粒子中,Gd 离子通过离子掺杂方式进入钛酸钡(即BTO),其取代BTO中阳离子的位置 而进入BTO的四方相结构中,对钛酸钡的四方相结构造成一定影响,从而提 升复合材料的压电性能,提升压电材料的表面电荷。同时,相比于其它稀土元素,Gd3+的自旋弛豫时间能在适合的磁场下与质子的拉莫尔频率相匹配,能 够达到良好的示踪显影效果。Gd-BTO纳米粒子随着钆掺杂量增加,纳米粒子 的磁性由抗磁性向顺磁性转变,纳米复合材料MRI显影示踪功能增强,达到 MRI和X-Ray双显影的效果。
试验结果表明,本发明提供的压电纳米复合材料明显提升了材料的压电 性能,促进细胞增殖和分化;同时,其还具有良好的MRI和X-Ray双显影效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面 描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不 付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为Gd掺杂的钛酸钡的晶相结构示意图;
图2为本发明实施例1中纳米粒子的XRD谱图;
图3为本发明实施例1中纳米粒子的Raman谱图;
图4为实施例1中纳米粒子的形貌-粒度测试图;其中,图4A为样品的粒度 分布图,图4B为样品的形貌图;
图5为实施例1中纳米粒子的磁性测试图;
图6为实施例1中示踪显影测试图;
图7为实施例1中细胞增殖测试图;
图8为实施例1中钙矿化定量测试图。
具体实施方式
本发明提供了一种压电纳米复合材料,包括:Gd掺杂的钛酸钡纳米粒子 和PLGA基材。
本发明提供的压电纳米复合材料包括Gd掺杂的钛酸钡纳米粒子(记为 Gd-BTO)和PLGA(即聚乳酸-羟基乙酸共聚物)基材,其中,Gd掺杂的钛酸 钡纳米粒子均匀分散在PLGA基材中。所述Gd掺杂的钛酸钡纳米粒子中,Gd 离子通过离子掺杂方式进入钛酸钡(即BTO),其取代BTO中阳离子的位置 而进入BTO的四方相结构中,对钛酸钡的四方相结构造成一定影响,从而提 升复合材料的压电性能,且还能提升压电材料的表面电荷,可以更有效的促进细胞增殖和分化。同时,相比于其它稀土元素,Gd3+的自旋弛豫时间能在适 合的磁场下与质子的拉莫尔频率相匹配,能够达到良好的示踪显影效果。 Gd-BTO纳米粒子随着钆掺杂量增加,纳米粒子的磁性由抗磁性向顺磁性转 变,纳米复合材料MRI显影示踪功能增强,达到MRI和X-Ray双显影的效果。 参见图1,图1为Gd掺杂的钛酸钡的晶相结构示意图。
本发明中,所述Gd掺杂的钛酸钡纳米粒子中,Gd与Ba的摩尔比为 (0.01~0.1)∶1,更优选为(0.01~0.05)∶1;在上述掺杂量下能够使整体复 合材料达到较好的压电效果和示踪效果,Gd掺杂量过高反而会降低复合材料 的压电性能。在本发明的一些实施例中,所述摩尔比为0.025∶1。
本发明中,所述Gd掺杂的钛酸钡纳米粒子的平均粒径优选为60~150nm。
本发明中,所述PLGA基材即聚乳酸-羟基乙酸共聚物基材,本发明对所 述PLGA基材的来源没有特殊限制,为一般市售品或按照本领域技术人员熟知 的制备方法制得即可。本发明中,所述PLGA的数均分子量优选为5万~15万。 本发明中,所述PLGA中,乳酸的质量占比优选为50%~90%。采用PLGA作为 基材,能够与Gd-BTO更好的匹配结合,不影响Gd-BTO压电性的发挥,且还 具有良好的降解性,避免进行二次手术取出,减少了患者创伤和痛苦。
本发明中,所述Gd掺杂的钛酸钡纳米粒子与PLGA基材的质量比优选为 (0.05~0.7):1,更优选为(0.1~0.5):1;在上述范围内既能保证复合材料 的压电性能,又能保证良好的力学性能和加工性能,若纳米粒子的占比过低, 则影响复合材料的压电性能,若纳米粒子的占比过高,则材料的力学性能和 加工性能变差。本发明中,所述复合材料中,Gd的含量优选为0.01%~1%。
本发明还提供了一种上述技术方案中所述的压电纳米复合材料的制备方 法,包括以下步骤:
a)将钛源化合物、钆源化合物和钡源化合物进行水热反应,得到Gd掺 杂的钛酸钡纳米粒子;
b)将所述Gd掺杂的钛酸钡纳米粒子与PLGA在溶剂中混匀、干燥,得 到Gd-BTO/PLGA复合材料;
c)将所述Gd-BTO/PLGA复合材料在直流电场下进行极化处理,得到压 电纳米复合材料。
按照本发明,先将钛源化合物、钆源化合物和钡源化合物进行水热反应, 得到Gd掺杂的钛酸钡纳米粒子。
本发明中,所述钛源化合物优选为Ti(OC4H9)4。所述钆源化合物优选为 Gd(NO3)3·6H2O。所述钡源化合物优选为Ba(OH)2·8H2O。本发明对上述化 合物原料的来源没有特殊限制,为一般市售品即可。
本发明中,上述步骤具体包括:
a1)将Ti(OC4H9)4溶液与氨水、水混合,进行水解反应,形成溶胶;
a2)将所述溶胶与Gd(NO3)3·6H2O溶液、Ba(OH)2·8H2O溶液混合,反 应,形成Gd掺杂的钛酸钡纳米粒子。
本发明中,所述步骤a1)中,所述Ti(OC4H9)4化合物本身外观为透明液 体,是一种液体产品;所述Ti(OC4H9)4溶液是指Ti(OC4H9)4液体产品与溶剂 混合得到的溶液。具体的,所述Ti(OC4H9)4溶液可通过以下方式获得:将Ti(OC4H9)4液体产品与有机溶剂混合,通过搅拌器充分混匀,得到Ti(OC4H9)4溶液。本发明中,所述Ti(OC4H9)4溶液中,Ti(OC4H9)4的体积分数优选为 30%~70%。
本发明中,所述步骤a1)中,混料方式优选如下:将Ti(OC4H9)4溶液逐滴 加入氨水-水混合液(即氨水与水的混合液)中,即采用滴加的方式引入 Ti(OC4H9)4溶液,且以氨水-水混合液为分散体系。其中,所述氨水与水的体 积比优选为1∶(1~7);具体可为1∶1、1∶3、1∶5或1∶7。本发明中,所 述水优选为去离子水。本发明中,所述Ti(OC4H9)4溶液与氨水-水混合液的体 积比优选为(0.2~1.6)∶1。
本发明中,在所述滴加过程中,优选伴随搅拌。本发明中,上述混料的 温度没有特殊限制,常温下即可。在上述混料过程中,Ti(OC4H9)4发生水解, 生成白色溶胶。
本发明中,所述步骤a2)中,所述Gd(NO3)3·6H2O溶液优选为 Gd(NO3)3·6H2O的水溶液。所述Gd(NO3)3·6H2O溶液的质量分数优选为 1%~10%。所述Ba(OH)2·8H2O溶液优选为Ba(OH)2·8H2O的水溶液。所述 Ba(OH)2·8H2O溶液的质量分数优选为40%~60%。
本发明中,所述步骤a2)中,溶胶与Gd(NO3)3·6H2O溶液、Ba(OH)2·8H2O 溶液混合的方式优选如下:将Gd(NO3)3·6H2O溶液、Ba(OH)2·8H2O溶液依 次缓慢加入溶胶体系中。其中,Ba(OH)2·8H2O溶液的添加量根据目标产物 BaTiO3按照化学计量比量取即可;同时,可通过调控Gd(NO3)3·6H2O溶液的 添加比例来调控Gd-BTO产物中Gd离子的掺杂量;其掺杂量与上述技术方案中 所述一致,在此不再赘述。
本发明中,所述步骤a2)中,所述混合的温度优选为20~90℃;在一些 实施例中,混合温度为90℃。将Gd(NO3)3·6H2O溶液、Ba(OH)2·8H2O溶 液加入溶胶体系中后,优选通过搅拌使物料充分混匀。所述混合过程在常压 下进行即可。
本发明中,将上述物料混匀后,进行反应。所述反应的温度优选为 100~200℃,更优选为140~180℃。所述反应的时间优选为24~240h,更优选 为120~240h。本发明中,所述反应可在高压反应釜中进行,即以水溶液为反 应介质,通过加热反应器创造一个高温高压的反应环境。上述混合后的物料 在高压釜中的填充度优选为40%~80%(体积比v/v)。经反应后,生成Gd掺 杂的钛酸钡。
本发明中,在上述水热反应后,优选还包括:中和、洗涤和干燥。其中, 所述中和具体为采用酸中和至中性;本发明对采用的酸的种类没有特殊限制, 为常规酸液即可。在所述洗涤后优选还进行离心分离,之后再进行干燥。本 发明中,所述干燥的温度优选为50~100℃。本发明中,在所述干燥后,优选 还进行研磨,经研磨后,得到Gd-BTO白色粉末。
按照本发明,在得到Gd-BTO纳米粒子后,将所述Gd-BTO纳米粒子与 PLGA在溶剂中混匀、干燥,得到Gd-BTO/PLGA复合材料。
本发明中,优选的,先将Gd-BTO纳米粒子分散于溶剂中。其中,所述 溶剂优选为氯仿、N-甲基吡咯烷酮、六氟异丙醇,二氯甲烷,***,乙酸乙 酯和二氧六环中的一种或几种。本发明对所述分散的方式没有特殊限制,能 够将Gd-BTO纳米粒子均匀分散于溶剂中即可,如可进行超声搅拌使物料混 匀。其中,所述Gd-BTO纳米粒子的质量与溶剂的体积比优选为(5~10)g∶ (40~60)mL。
本发明中,在上述混料后,加入PLGA溶解均匀。本发明中,可通过搅 拌使PLGA充分分散于体系中、溶解均匀。在上述溶解后,将溶解所得溶解 液干燥。本发明中,在溶解前,可先将溶解液倒入器皿铺膜,再通过干燥使 溶剂挥发,进而得到Gd-BTO/PLGA复合材料薄膜。本发明中,所述干燥的 温度优选为20~50℃。
按照本发明,在得到Gd-BTO/PLGA复合材料后,将所述Gd-BTO/PLGA 复合材料在直流电场下进行极化处理,得到压电纳米复合材料。
本发明通过对Gd-BTO/PLGA复合材料在直流电场下进行极化,对材料进 行单畴化处理,使材料具有压电性能。本发明中,所述极化处理的条件优选 如下:极化的电压为5~30kv/mm,温度为20~70℃,极化时间为10~180min。 在本发明的一些实施例中,极化电压为20kv/mm,温度为50℃,极化时间为 60min。经上述极化处理后,得到压电纳米复合材料。
本发明提供的压电复合材料及其制备方法具有以下有益效果:
1、本发明采用Gd掺杂的钛酸钡纳米粒子,Gd离子通过离子掺杂方式进 入钛酸钡(即BTO),其取代BTO中阳离子的位置而进入BTO的四方相结构 中,对钛酸钡的四方相结构造成一定影响,从而提升复合材料的压电性能和 表面电荷。同时,Gd离子的掺杂,使纳米粒子的磁性由抗磁性向顺磁性转变, 赋予材料MRI和X-ray双显影的效果;其中,X-ray显影效果增强的机理与MRI 不同,其主要是由于Gd元素CT值(1178±256HU)大于Ba元素(592±186HU),钆取代Ba之后使纳米粒子密度有一定提升从而改善了复合材料X-Ray 显影效果。
2、本发明中,通过控制Gd掺杂的钛酸钡纳米粒子中Gd的掺杂量,提升 整体材料的压电性能,具体的,控制Gd与Ba的摩尔比为(0.01~0.1)∶1。若 Gd离子掺杂量过高,反而会降低复合材料的压电性能。
3、本发明采用PLGA作为基材与Gd-BTO纳米粒子结合,不会影响Gd-BTO 压电性的发挥,且还具有良好的降解性。
4、本发明利用水热法合成Gd掺杂的钛酸钡纳米粒子,得到的粉体产物晶 粒发育好、产物纯度高、颗粒尺寸以及形貌可以有效控制,所得粉体不需要 再次进行热处理可直接用于加工成型,完全避免了其它方法(如固相合成法 等)在反应过程中产生晶粒间团聚、分布不均匀、尺寸过大等问题,可以更 好的发挥压电性、显影示踪功能。
5、本发明利用水热法合成Gd掺杂的钛酸钡纳米粒子时,通过反应时间的 优化,控制在120~240h,得到四方相含量高、粒径均一的纳米粒子,能够进 一步提升整体材料的压电性能和示踪效果。
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描 述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不 是对本发明权利要求的限制。以下实施例中,所用物料均为市售,其中,PLGA 的数均分子量为10万,乳酸占比为80%。
实施例1
1.1样品的制备
(一)压电复合材料的制备
S1、称取Ti(OC4H9)4置于烧杯中,加入无水乙醇,在磁力搅拌器上充分混 合,得到Ti(OC4H9)4溶液(其中,Ti(OC4H9)4的体积分数为50%);然后逐滴 加入氨水-去离子水混合液(氨水:去离子水的体积比=1∶5),边搅拌边滴加, Ti(OC4H9)4溶液与氨水-水混合液的体积比为1∶1,Ti(OC4H9)4发生水解生成白 色溶胶。
S2、将步骤S1得到的溶胶置于恒温加热磁力搅拌器上,设置温度为90℃, 向体系中依次缓慢加入Gd(NO3)3·6H2O溶液(质量分数为5%)和Ba(OH)2·8H2O 溶液(质量分数为50%),常压下充分搅拌混合均匀,得到混合液。
其中,Ba(OH)2·8H2O按照化学计量比投入;Gd(NO3)3·6H2O可通过不 同的添加比例来获得不同掺杂量的产物,本实施例中具体得到0.025Gd-BTO (即Gd:Ba的摩尔比为0.025)。
S3、将步骤S2得到的混合液置于高压反应釜中,填充度为60%,反应温 度为150℃,反应时间为120h。反应完成后,开釜用酸中和至中性,用去离子 水洗涤后再进行乙醇洗涤,之后,离心分离,于80℃下干燥,研磨后得到 Gd-BTO白色粉末(即0.025Gd-BTO),其晶相结构如图1所示。
S4、将Gd-BTO纳米粒子加入氯仿中,超声搅拌均匀;加入PLGA,搅拌 过夜至PLGA溶解均匀;将所得混合液倒入超平培养皿中铺膜,待溶剂挥发完 全后,得到Gd-BTO/PLGA复合材料薄膜。
其中,Gd-BTO纳米粒子与氯仿的用量比为8g∶50mL,Gd-BTO纳米粒子 与PLGA的质量比为0.2∶1。
S5、将Gd-BTO/PLGA复合材料薄膜在高压直流电场下极化,对材料进行 单畴化处理,得到压电纳米复合材料。
其中,极化条件如下:极化电压为20kv/mm,温度为50℃,时间为60min。
(二)对照品-BTO和对照品-BTO/PLGA的制备
按照上述方法(一)中步骤S1~S3制备纳米粒子的过程进行,不同的是, 不加入Gd(NO3)3·6H2O溶液,从而得到未掺杂的BTO纳米粒子。
按照上述方法(一)中步骤S1~S5的过程进行,不同的是,不加入 Gd(NO3)3·6H2O溶液,从而得到BTO/PLGA复合材料薄膜。
1.2样品的表征和测试
(1)XRD表征
对得到的Gd-BTO纳米粒子(即0.025Gd-BTO)和BTO纳米粒子进行X射 线衍射测试,结果如图2所示,其中,图2为本发明实施例1中纳米粒子的XRD 谱图。由图2可以看出,Gd3+掺入的Gd-BTO中并没有明显的杂相生成,但(200) 处的衍射峰呈向小角度偏移的趋势,证明Gd3+的掺入使BaTiO3的晶胞增大。
(2)Raman测试
对得到的Gd-BTO纳米粒子(即0.025Gd-BTO)和BTO纳米粒子进行拉曼 测试,结果如图3所示,图3为本发明实施例1中纳米粒子的Raman谱图。其中, 307cm-1和715cm-1是四方相BaTiO3的特征峰,Gd3+的掺入使307cm-1和715cm-1 特征峰的强度有所升高,结合上述XRD谱图,证明Gd3+的加入对纳米粒子的 结构造成了一定影响。
(3)形貌和粒度测试
对得到的Gd-BTO纳米粒子(即0.025Gd-BTO)和BTO纳米粒子进行扫描 电镜测试和粒度测试,结果参见图4,图4为实施例1中纳米粒子的形貌-粒度测 试图;其中,图4A为样品的粒度分布图,图4B为样品的形貌图。可以看出, 所得样品均为球形纳米颗粒,颗粒间分散性较好,且所得颗粒的粒度分布集 中,颗粒均匀。
(4)压电性测试
分别对PLGA、BTO/PLGA、Gd-BTO/PLGA(即0.025Gd-BTO)进行压电 性能测试(测试温度为25℃)和ZETA电位测试,结果参见表1。
表1压电性能和ZETA电位的测试结果
PLGA BTO/PLGA 0.025Gd-BTO/PLGA
压电常数D33,pC·N<sup>-1</sup> 0 0.76 0.91
Zeta potential,mv -32 -54 -58
由表1测试结果可以看出,Gd3+的掺入提升了复合材料的压电性能,并且 压电常数较高的Gd-BTO/PLGA组表面Zeta电位的绝对值最大,有利于促进细 胞的增殖和分化。
(5)磁性测试
对得到的Gd-BTO纳米粒子(即0.025Gd-BTO)和BTO纳米粒子进行磁性 测试,结果如图5所示,图5为实施例1中纳米粒子的磁性测试图。可以看出, Gd3+的加入,使纳米粒子的磁性由抗磁性向顺磁性转变。
(6)示踪显影测试
分别对PLGA、BTO/PLGA、Gd-BTO/PLGA(Gd-BTO即为0.025Gd-BTO) 进行Micro-CT显影测试和T1加权显影(核磁显影)测试,结果如图6所示,图6为实施例1中示踪显影测试图。可以看出,Gd3+的加入,能够明显提升复合材 料的MRI显影和X-Ray显影效果。
(7)细胞增殖测试
(1)分别采用极化前、后的BTO/PLGA、Gd-BTO/PLGA(Gd-BTO即为 0.025Gd-BTO,对应图中实例一)进行细胞培养:
MC3T3-E1细胞以2×104个/孔种于含有复合材料的24孔板中,培养1,4,7 天。到每个时间点后,弃掉旧培养液,加入含10%CCK-8的培养液,孵育2h, 用多功能酶标仪检测其在450nm的吸光度。
分别检测培养1,4,7天后对细胞的增殖情况,结果如图7所示,图7为实施 例1中细胞增殖测试图。可以看出,Gd3+的掺入更有利于细胞的增殖,且在无 外加设备的条件下,利用其固有压电性能对损伤部位施加电学刺激,便可促 进细胞增殖和分化。同时,培养4天后发现材料极化后更有利于细胞的增殖。
(2)分别对极化前、后的BTO/PLGA、Gd-BTO/PLGA(Gd-BTO即为 0.025Gd-BTO,对应图中实例一)进行钙矿化定量测试,结果如图8所示,图8 为实施例1中钙矿化定量测试图。可以看出,极化后的压电材料由于表面电势 的影响更有助于促进细胞的成骨分化。
实施例2
按照实施例1中压电复合材料的制备过程进行,不同的是,改变 Gd(NO3)3·6H2O的添加比例,获得产物0.8Gd-BTO/PLGA。
按照实施例1中测试方法测试所得产物的压电性能,并与实施例1中产物 的压电性能对比,结果参见表2。
表2压电性能的测试结果
PLGA BTO/PLGA 0.025Gd-BTO/PLGA 0.8Gd-BTO/PLGA
压电常数D33,pC·N<sup>-1</sup> 0 0.76 0.91 0.63
由表2测试结果可以看出,Gd3+的掺杂量较高时,反而会降低材料的压电 性能。
实施例3
按照实施例1的制备过程制备Gd-BTO纳米粒子,不同的是,步骤S3中, 反应时间为72h。
对所得纳米粒子进行晶胞参数测试和计算并与实施例1的纳米粒子进行 对比,结果参见表3。
表3晶胞参数的计算结果
Time(h) a/nm c/nm c/a △2θ(o)
实施例3 72 4.0126 4.0217 1.0023 0.173
实施例1 120 4.0056 4.0232 1.0044 0.287
由表3计算结果可以看出,随着反应时间的延长,c/a值以及△2θ值都有所 增加,证明,产物中四方相含量随着反应时间的延长而增加。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。对这 些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中 所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施 例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符 合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

1.一种压电纳米复合材料,其特征在于,包括:Gd掺杂的钛酸钡纳米粒子和PLGA基材。
2.根据权利要求1所述的复合材料,其特征在于,所述Gd掺杂的钛酸钡纳米粒子中,Gd与Ba的摩尔比为(0.01~0.1)∶1。
3.根据权利要求1或2所述的复合材料,其特征在于,所述Gd掺杂的钛酸钡纳米粒子与PLGA基材的质量比为(0.05~0.7):1。
4.根据权利要求1或2所述的复合材料,其特征在于,所述Gd掺杂的钛酸钡纳米粒子的平均粒径为60~150nm。
5.一种权利要求1~4中任一项所述的压电纳米复合材料的制备方法,其特征在于,包括以下步骤:
a)将钛源化合物、钆源化合物和钡源化合物进行水热反应,得到Gd掺杂的钛酸钡纳米粒子;
b)将所述Gd掺杂的钛酸钡纳米粒子与PLGA在溶剂中混匀、干燥,得到Gd-BTO/PLGA复合材料;
c)将所述Gd-BTO/PLGA复合材料在直流电场下进行极化处理,得到压电纳米复合材料。
6.根据权利要求5所述的制备方法,其特征在于,所述步骤a)中,所述钛源化合物为Ti(OC4H9)4
所述钆源化合物为Gd(NO3)3·6H2O;
所述钡源化合物为Ba(OH)2·8H2O。
7.根据权利要求5或6所述的制备方法,其特征在于,所述步骤a)包括:
a1)将Ti(OC4H9)4溶液与氨水、水混合,进行水解反应,形成溶胶;
a2)将所述溶胶与Gd(NO3)3·6H2O溶液、Ba(OH)2·8H2O溶液混合,反应,形成Gd掺杂的钛酸钡纳米粒子。
8.根据权利要求7所述的制备方法,其特征在于,所述步骤a1)中:
混料方式为:将Ti(OC4H9)4溶液逐滴加入氨水与水的混合液中;
所述氨水与水的体积比为1∶(1~7);
所述步骤a2)中:
所述混合的温度为20~90℃;
所述反应的温度为100~200℃,反应的时间为24~240h。
9.根据权利要求5所述的制备方法,其特征在于,所述步骤c)中,所述极化处理的电压为5~30kv/mm,温度为20~70℃,时间为10~180min。
10.根据权利要求5所述的制备方法,其特征在于,所述步骤a)中,在所述水热反应后,还包括:中和、洗涤和干燥;
所述步骤b)具体包括:
将Gd掺杂的钛酸钡纳米粒子分散于溶剂中后,加入PLGA溶解均匀,干燥,得到压电纳米复合材料。
CN201911112522.XA 2019-11-14 2019-11-14 一种压电纳米复合材料及其制备方法 Active CN110797453B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911112522.XA CN110797453B (zh) 2019-11-14 2019-11-14 一种压电纳米复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911112522.XA CN110797453B (zh) 2019-11-14 2019-11-14 一种压电纳米复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110797453A true CN110797453A (zh) 2020-02-14
CN110797453B CN110797453B (zh) 2021-09-21

Family

ID=69444731

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911112522.XA Active CN110797453B (zh) 2019-11-14 2019-11-14 一种压电纳米复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110797453B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115025284A (zh) * 2022-05-11 2022-09-09 江西理工大学 一种氧化石墨烯改善钛酸钡/聚(乳酸-乙醇酸)生物支架及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140065308A1 (en) * 2011-09-08 2014-03-06 Samsung Electro-Mechanics Co., Ltd. Dielectric composition, method of fabricating the same, and multilayer ceramic electronic component using the same
CN103721297A (zh) * 2014-01-07 2014-04-16 东南大学 能促进骨组织生长的可吸收骨科器械材料及其制备方法
EP2808036A1 (en) * 2012-01-27 2014-12-03 Soluciones Nanotecnológicas S.L. Superparamagnetic nanoparticles as a contrast agent for magnetic resonance imaging (mri) of magnetic susceptibility (t2*)
CN104208753A (zh) * 2014-09-30 2014-12-17 中国科学院长春应用化学研究所 GdPO4·H2O纳米束复合材料及其制备方法
CN104208754A (zh) * 2014-09-19 2014-12-17 北京大学口腔医院 一种压电活性骨修复复合材料及其制备方法
JP2015175030A (ja) * 2014-03-14 2015-10-05 国立大学法人東京工業大学 ペロブスカイト型酸化物層の形成方法、ペロブスカイト型酸化物層及びそれを用いた用途
CN110002894A (zh) * 2019-03-26 2019-07-12 西安理工大学 一种生物压电多孔陶瓷支架的制备方法
CN110882420A (zh) * 2019-08-23 2020-03-17 上海交通大学 一种可自发电刺激的压电支架组合物及其制备方法与应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140065308A1 (en) * 2011-09-08 2014-03-06 Samsung Electro-Mechanics Co., Ltd. Dielectric composition, method of fabricating the same, and multilayer ceramic electronic component using the same
EP2808036A1 (en) * 2012-01-27 2014-12-03 Soluciones Nanotecnológicas S.L. Superparamagnetic nanoparticles as a contrast agent for magnetic resonance imaging (mri) of magnetic susceptibility (t2*)
CN103721297A (zh) * 2014-01-07 2014-04-16 东南大学 能促进骨组织生长的可吸收骨科器械材料及其制备方法
JP2015175030A (ja) * 2014-03-14 2015-10-05 国立大学法人東京工業大学 ペロブスカイト型酸化物層の形成方法、ペロブスカイト型酸化物層及びそれを用いた用途
CN104208754A (zh) * 2014-09-19 2014-12-17 北京大学口腔医院 一种压电活性骨修复复合材料及其制备方法
CN104208753A (zh) * 2014-09-30 2014-12-17 中国科学院长春应用化学研究所 GdPO4·H2O纳米束复合材料及其制备方法
CN110002894A (zh) * 2019-03-26 2019-07-12 西安理工大学 一种生物压电多孔陶瓷支架的制备方法
CN110882420A (zh) * 2019-08-23 2020-03-17 上海交通大学 一种可自发电刺激的压电支架组合物及其制备方法与应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BORAH, M, MOHANTA, ET AL: "Effect of Gd3+ doping on structural, optical and frequency-dependent dielectric response properties of pseudo-cubic BaTiO3 nanostructures", 《APPLIED PHYSICS A MATERIALS SCIENCE & PROCESSING》 *
CIOFANI G , RICOTTI L , MATTOLI V: "Preparation, characterization and in vitro testing of poly(lactic-co-glycolic) acid/barium titanate nanoparticle composites for enhanced cellular proliferation", 《BIOMEDICAL MICRODEVICES》 *
IASI R S D , GRILLO, MARIA LÚCIA NETTO: "Electron Magnetic Resonance of Diluted Solid Solutions of Gd3+ in BaTiO3", 《MATERIALS RESEARCH》 *
TEH Y C , SAIF, ALA’EDDIN A, JAMAL Z A Z , ET AL.: "Microstructure Study on Gd-Doped BaTiO3 Sol-Gel Multilayer Thin Films Using AFM for Optoelectronic Applications", 《ADVANCED MATERIALS RESEARCH》 *
田 言,刘延坤,冯玉杰,武晓威,韩霞光,任南琪: "稀土钆掺杂钛酸钡材料的结构与性能", 《硅酸盐学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115025284A (zh) * 2022-05-11 2022-09-09 江西理工大学 一种氧化石墨烯改善钛酸钡/聚(乳酸-乙醇酸)生物支架及其制备方法
CN115025284B (zh) * 2022-05-11 2023-08-29 江西理工大学 一种氧化石墨烯改善钛酸钡/聚(乳酸-乙醇酸)生物支架及其制备方法

Also Published As

Publication number Publication date
CN110797453B (zh) 2021-09-21

Similar Documents

Publication Publication Date Title
Zhang et al. Magnetoelectric nanoparticles incorporated biomimetic matrix for wireless electrical stimulation and nerve regeneration
Panda et al. Biocompatible CaTiO3-PVDF composite-based piezoelectric nanogenerator for exercise evaluation and energy harvesting
US11141506B2 (en) Electrified composite membrane with extracellular matrix electrical topology characteristics, and preparation method thereof
Li et al. Strain-based scanning probe microscopies for functional materials, biological structures, and electrochemical systems
Qi et al. Magnetic-driven wireless electrical stimulation in a scaffold
Wang et al. Gadolinium-doped BTO-functionalized nanocomposites with enhanced MRI and X-ray dual imaging to simulate the electrical properties of bone
Vouilloz et al. Reactivity of BaTiO3-Ca10 (PO4) 6 (OH) 2 phases in composite materials for biomedical applications
CN110797453B (zh) 一种压电纳米复合材料及其制备方法
Gavinho et al. Structural, thermal, morphological and dielectric investigations on 45S5 glass and glass-ceramics
CN114904054A (zh) 一种高成骨活性的带电复合膜材料及其制备方法和用途
Fadeeva et al. Influence of synthesis conditions on gadolinium-substituted tricalcium phosphate ceramics and its physicochemical, biological, and antibacterial properties
CN110876818B (zh) 一种促进骨修复材料plga降解的方法
Riou et al. Hydrothermal synthesis, structure determination, and solid-state NMR study of the first organically templated scandium phosphate
Rosso et al. Lead-free NaNbO3-based ferroelectric perovskites and their polar polymer-ceramic composites: Fundamentals and potentials for electronic and biomedical applications
CN114425100B (zh) 一种压电纳米复合材料及其制备方法、具有压电性和体内示踪能力的3d打印骨修复支架
Vukomanović et al. Filler‐Enhanced Piezoelectricity of Poly‐L‐Lactide and Its Use as a Functional Ultrasound‐Activated Biomaterial
Shan et al. A Biodegradable Piezoelectric Sensor for Real‐Time Evaluation of the Motor Function Recovery After Nerve Injury
Malherbi et al. Electrically stimulated bioactivity in hydroxyapatite/β-tricalcium phosphate/polyvinylidene fluoride biocomposites
Das et al. Sustainable Piezoelectric Energy Harvesting Using 3D Printing with Chicken Bone Extract
CN110510592B (zh) 调控制备具有优异细胞相容性的羟基磷灰石的方法
Liu et al. Piezoelectric properties of 3-1 type porous PMN-PZT ceramics doped with strodium
Wu et al. Erbium‐doped barium titanate/hydroxyapatite composites with enhanced piezoelectric and biological properties
CN115282345A (zh) 兼备透气性和带电活性的组织修复膜及其制备方法和用途
CN108794003A (zh) 一种掺杂铌酸钾钠的生物玻璃陶瓷及其制备方法
Afifi et al. Structural investigation of annealed vanadate into hydroxyapatite crystals for biomedical applications; ultrasonic mechanical properties

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant