CN110787790B - 海胆状金属氧化物多孔光催化材料及其制备方法和应用 - Google Patents

海胆状金属氧化物多孔光催化材料及其制备方法和应用 Download PDF

Info

Publication number
CN110787790B
CN110787790B CN201911105529.9A CN201911105529A CN110787790B CN 110787790 B CN110787790 B CN 110787790B CN 201911105529 A CN201911105529 A CN 201911105529A CN 110787790 B CN110787790 B CN 110787790B
Authority
CN
China
Prior art keywords
sea urchin
metal oxide
shaped
shaped metal
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911105529.9A
Other languages
English (en)
Other versions
CN110787790A (zh
Inventor
王栋
刘轲
刘迎
万雨彩
程盼
郭启浩
程芹
李沐芳
刘琼珍
鲁振坦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Textile University
Original Assignee
Wuhan Textile University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Textile University filed Critical Wuhan Textile University
Priority to CN201911105529.9A priority Critical patent/CN110787790B/zh
Publication of CN110787790A publication Critical patent/CN110787790A/zh
Application granted granted Critical
Publication of CN110787790B publication Critical patent/CN110787790B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J20/205Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种海胆状金属氧化物多孔光催化材料及其制备方法和应用。所述制备方法包括:将双金属盐溶液与有机配体溶液混合反应得纳米短棒状金属有机骨架,然后在有机溶剂中自组装成海胆状金属有机骨架微刺球结构,最后经高温煅烧得海胆状金属氧化物多孔光催化材料。本发明制备的海胆状金属氧化物多孔光催化材料具有多级扑拓碳结构,对有机污染物具有很强的捕获和吸附作用,能够快速将有机污染物捕获在光催化剂表面,从而显著提高光催化效率。此外,在双金属的协同作用下,显著提高光催化效率,克服多孔光催化材料制备方法繁杂、光催化效率低的缺点,也可应用于污染物的吸附、传感等方面。

Description

海胆状金属氧化物多孔光催化材料及其制备方法和应用
技术领域
本发明属于功能多孔材料技术领域,尤其涉及一种海胆状金属氧化物多孔光催化材料及其制备方法和应用。
背景技术
光催化材料可在光的作用下催化发生光化学反应,具有无毒无害、无腐蚀性能、可反复使用的优点。将光催化材料应用于污染物的处理,可将有机污染物降解成可生化降解的形式或完全矿化成无机离子;在去除重金属污染物方面,光催化材料能有效地将Cr(Ⅵ)还原为Cr(Ⅲ),从而降低铬元素的生物毒性。现阶段,光催化技术上传统的光催化材料多为TiO2、ZnO、Fe2O3等金属氧化物,由于较宽的带宽导致光利用率低,严重影响了光催化性能。同时光催化氧化物或复合贵金属的光催化剂因其光量子效率低难以处理高浓度的污染物,而且此类光催化剂普遍为颗粒粉末,难以回收利用。因此研究具有高效光催化效能的新型光催化剂,对提高污染物处理效率具有重要意义。
目前,将具有光催化作用的金属离子制备成多孔材料,成为一种提高光催化效能的有效途径,如金属有机骨架材料(MOFs)或多孔金属氧化物材料。其中,MOFs作为吸附剂在去除水中有机污染物和重金属污染物方面表现出良好的性能。MOFs是一种金属有机配合物,通过调控合成条件和金属离子或有机配体种类,可以形成不同尺寸的孔隙结构。将具有光催化性能的材料与有机配体结合制得多孔MOFs材料,可以提高光催化材料的吸附性能、化学稳定性和耐腐蚀性能,但还存在孔隙率不够高的缺点,光催化效率有待进一步提高。多孔金属氧化物材料具有孔隙率高、晶型结构完整和孔径有序可调的优越特性,在光解水、分离及光催化等领域展现出良好的应用价值。通常采用软模板或硬模板法制备,但软模板法制备的多孔金属氧化物材料热稳定性差;硬模板法对金属原料耐酸碱性要求高,制备过程繁琐。
基于此,本发明将海胆状双金属有机骨架材料作为前驱体,通过高温煅烧处理制备得到海胆状金属氧化物多孔光催化材料。
发明内容
针对上述现有技术存在的缺陷,本发明的目的在于提供一种海胆状金属氧化物多孔光催化材料的制备方法,通过将双金属盐溶液与有机配体配合成纳米短棒状金属有机骨架,然后在有机溶剂中自组装成海胆状金属有机骨架微刺球结构,最后经高温煅烧制得海胆状金属氧化物多孔光催化材料,通过多级拓扑结构及双金属的协同作用,显著提高光催化效率,克服多孔光催化材料制备方法繁杂、催化效率低的缺点。
本发明的另一目的在于提供一种海胆状金属氧化物多孔光催化材料及其应用,将其应用于污染物的吸附、传感、催化等方面,克服传统的光催化剂量子效率低导致的光催化效率低的问题,提高光催化材料对污染物的处理效率。
为实现上述目的,本发明采用以下技术方案实现:
一种海胆状金属氧化物多孔光催化材料,包括海胆状多孔碳骨架以及负载于所述海胆状多孔碳骨架上的金属氧化物微粒,所述海胆状多孔碳骨架由若干个纳米短棒状多孔碳骨架组成,所述纳米短棒状多孔碳骨架的宽度为100~500nm,长度为1~10μm,所述海胆状多孔碳骨架的直径为5~50μm。
进一步的,所述纳米短棒状多孔碳骨架是将双金属盐溶液和有机配体溶液混合反应制得纳米短棒状金属有机骨架,然后高温煅烧形成。
进一步的,所述双金属盐溶液由稀土金属盐溶液和过渡金属盐溶液组成,所述有机配体溶液为多元含苯羧酸类配体溶液。
进一步的,所述稀土金属盐溶液和过渡金属盐溶液分别为稀土金属元素和过渡金属元素的硫酸盐、硝酸盐、醋酸盐、碳酸盐、氯化盐、溴化盐中的任一种;所述稀土金属元素为Eu、Gd、Tb、Sm、Yb中的任一种,所述过渡金属元素为Zn、Ni、Fe、Cu中的任一种。
一种以上所述的海胆状金属氧化物多孔光催化材料的制备方法,包括以下步骤:
S1.将双金属盐溶液和有机配体溶液按预设摩尔比加入到反应釜中,常温搅拌得均相溶液;
S2.将步骤S1中所述均相溶液按预设升温速率升温至30~80℃,恒温反应12~24h,然后按预设降温速率降至室温得到反应产物;或者
将步骤S1中所述均相溶液在室温下反应24~72h得到反应产物;然后将反应产物进行离心、洗涤和干燥处理,得到纳米短棒状金属有机骨架;
S3.将步骤S2中所述纳米短棒状金属有机骨架加入有机溶剂中,在室温下进行自组装反应,然后冷冻干燥,得到海胆状金属有机骨架微刺球结构;
S4.将步骤S3中所述海胆状金属有机骨架微刺球结构进行高温煅烧,得到海胆状金属氧化物多孔光催化材料。
进一步的,在步骤S1中,所述双金属盐溶液的浓度为0.1~0.5mol/L,所述有机配体溶液的浓度为0.1~0.5mol/L;所述双金属盐溶液中稀土金属离子与过渡金属离子摩尔比为1:(0.5~2);所述均相溶液中金属离子与有机配体的摩尔比为(1~2.5):1。
进一步的,在步骤S1中,所述双金属盐溶液和所述有机配体溶液的溶剂均为醇水混合溶剂,其中,所述醇和水的体积比为(1~10):1,所述醇为甲醇、乙醇,异丙醇、叔丁醇中的任一种或多种。
进一步的,在步骤S2中,所述预设升温速率为2~8℃/min,所述预设降温速率为2~6℃/min;所述干燥处理的干燥温度为60~80℃,干燥时间为2~6h。
进一步的,在步骤S3中,所述有机溶剂为甲醇、乙醇、异丙醇、叔丁醇中的任一种或多种,且所述有机溶剂体积与步骤S1中所述双金属盐溶液的体积相同,所述冷冻干燥的温度为-35~-20℃,冷冻干燥时间为12~34h。
进一步的,在步骤S4中,所述高温煅烧在管式炉中进行,所述高温煅烧的升温速率为1~5℃/min,终止温度为300~600℃,煅烧时间为1~3h。
以上所述的海胆状金属氧化物多孔光催化材料,或根据以上所述的方法制备的海胆状金属氧化物多孔光催化材料在污染物的吸附、传感、催化方面的应用。
有益效果
与现有技术相比,本发明提供的海胆状金属氧化物多孔光催化材料及其制备方法和应用具有如下有益效果:
(1)本发明首先将双金属盐溶液与有机配体进行配合,得到纳米短棒状金属有机骨架;然后将纳米短棒状金属有机骨架在有机溶剂中进行自组装,制得海胆状金属有机骨架微刺球结构;最后经高温煅烧制得海胆状金属氧化物多孔光催化材料。制得的海胆状金属氧化物多孔光催化材料由若干个纳米短棒状多孔碳骨架和金属氧化物微粒组成,具有多级扑拓碳结构,对有机污染物具有很强的捕获和吸附作用,能够快速将有机污染物捕获在光催化剂表面,提高光催化效率。
(2)本发明通过高温煅烧得到的海胆状金属氧化物多孔光催化材料能够将光生电子导出从而还原污染物,提高了光催化效率。而且以锌、铜、铁等金属离子为金属节点的金属有机骨架高温煅烧形成的光催化氧化物半导体材料能够被碳结构骨架保护和分散,进而提高了光催化剂的反应活性和扩大了光催化材料的反应活性位点,增大了光利用效率。
(3)本发明具有制备方法简单、孔隙率高的优点,克服了传统多孔光催化材料制备方法繁杂、光催化效率低的缺点。
(4)将本发明制备的海胆状金属氧化物多孔光催化材料应用于有机或重金属污染物处理,可显著提高污染物处理效率。
附图说明
图1为本发明的实施例1中步骤S3制得的海胆状金属有机骨架微刺球结构的扫描电镜图(图1中(a)和(b)的标尺均为10μm);
图2中(a)和(b)为本发明的实施例1中步骤S4制得的海胆状金属氧化物多孔光催化材料的扫描电镜图,(c)为透射电子显微镜图(图2中(a)的标尺为50μm,图2中(b)的标尺为10μm,图2中(c)的标尺为50nm);
图3中(a)为实施例1制备的海胆状金属氧化物多孔光催化材料对MB光催化降解随时间的变化曲线,(b)为实施例1制备的海胆状金属氧化物多孔光催化材料对PNP光催化降解随时间的变化曲线。
具体实施方式
以下将结合附图对本发明各实施例的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例;基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施例,都属于本发明所保护的范围。
本发明提供的海胆状金属氧化物多孔光催化材料制备方法包括:将双金属盐溶液和有机配体通过恒温反应和冷冻干燥制得成纳米短棒状金属有机骨架材料,然后在有机溶剂中自组装成海胆状金属有机骨架微刺球结构,最后经高温煅烧得海胆状金属氧化物多孔光催化材料。所述海胆状金属氧化物多孔光催化材料包括多孔碳骨架和碳骨架中的金属氧化物微粒,以锌、铜、铁等金属离子为金属节点的金属有机骨架高温煅烧形成的光催化金属氧化物半导体材料能够被碳结构骨架保护和分散,进而提高了光催化剂的反应活性和扩大了光催化材料的反应活性位点,增大了光利用效率。将其作为吸附剂和光催化剂,在去除水中有机污染物或重金属污染物等方面表现出优异的性能。采用双金属协同催化,不仅能在紫外线、可见光或紫外线/可见光照射下分解水制氢/制氧、光催化还原二氧化碳、有效对有机污染物进行光催化降解,还能高效光催化还原水中Cr(VI)。
实施例1
一种海胆状金属氧化物多孔光催化材料,其制备方法包括以下步骤
S1.配制硝酸铕浓度为0.1mol/L、氯化锌浓度为0.2mol/L的双金属盐溶液,并超声处理30min,其中溶剂为体积比为2:1的乙醇和蒸馏水组成的混合溶剂;配制浓度为0.3mol/L的均苯三甲酸配体溶液,其中溶剂为体积比为4:1的乙醇和蒸馏水组成的混合溶剂;将配制好的双金属盐溶液和均苯三甲酸配体溶液按金属离子与均苯三甲酸摩尔比为2.5:1,加入到反应釜中,常温搅拌成均相溶液;
S2.将均相溶液以5℃/min的升温速率升温至37℃,恒温反应18h,然后以3℃/min的降温速率降至室温得到纳米短棒状双金属有机骨架溶液,将溶液进行离心,采用醇类溶剂和去离子水依次洗涤至中性,然后在60~80℃下干燥2~6h得到纳米短棒状金属有机骨架;
S3.将金属有机骨架加入到与步骤S1中所述双金属盐溶液等体积的乙醇中,在室温下进行12h的自组装反应,然后在-30℃下冷冻干燥24h,得到海胆状金属有机骨架微刺球结构的材料;
S4.将海胆状金属有机骨架微刺球在管式炉中,以3℃/min升温速率升温至400℃,高温煅烧2h,得到海胆状金属氧化物多孔光催化材料。
分别对步骤S3得到的海胆状金属有机骨架微刺球结构的材料和步骤S4高温煅烧后得到的海胆状金属氧化物多孔光催化材料进行扫描电镜测试,测试结果如图1和图2所示。从图1可以看出,纳米短棒状金属有机骨架在有机溶剂中自组装形成了海胆状微刺球结构,所述海胆状微刺球结构直径在25~35μm,所述纳米短棒状金属有机骨架微观上呈长片状,宽度在300~400nm,长度在3~5μm。从图2可以看出,所述海胆状金属有机骨架微刺球结构的材料高温煅烧后,仍保留原有的海胆状微刺球结构的碳骨架,且是由宽度为100~500nm,长度为1~10μm的纳米短棒状多孔碳骨架组成(图2(c)),金属氧化物呈微粒状弥散在碳骨架中,从而被碳骨架保护和分散,提高光催化剂的反应活性和扩大光催化材料的反应活性位点,增大了光利用效率。
实施例2~10
实施例2~10与实施例1相比,不同之处在于,在步骤S1中,所述双金属盐和有机配体的种类及混合溶剂种类如表1所示,其他操作与实施例1基本相同,在此不再赘述。
表1实施例2~10的制备条件
Figure BDA0002271170950000081
实施例11~16
实施例11~16与实施例1相比,不同之处在于,在步骤S1中,所述金属盐溶液浓度、有机配体溶液浓度、混合溶剂配比以及金属离子与有机配体摩尔比如表2所示,其他操作与实施例1基本相同,在此不再赘述。
表2实施例11~16的制备条件
Figure BDA0002271170950000091
实施例17~21
实施例17~21与实施例1相比,不同之处在于,在步骤S2中,所述制备条件如表3所示,其他与实施例1基本相同,在此不再赘述。
表3实施例17~21的制备条件
实施例 升温速率(℃/min) 恒温温度(℃) 反应时间(h) 降温速率(℃/min)
17 2 45 24 2
18 4 50 20 3
19 6 60 18 4
20 8 70 15 5
21 5 80 12 6
实施例22~28
实施例22~28与实施例1相比不同之处在于,步骤S3和步骤S4制备条件如表4所示,其他与实施例1基本相同,在此不再赘述。
表4实施例22~28的制备条件
Figure BDA0002271170950000092
Figure BDA0002271170950000101
实施例29~32
实施例29~32提供的海胆状金属氧化物多孔光催化材料,均采用以下方法制备,不同之处在于,步骤S2中反应时间分别为24h、40h、58h和72h:
S1.配制硝酸铕浓度为0.1mol/L、氯化锌浓度为0.2mol/L的双金属盐溶液,并超声处理30min,其中溶剂为体积比为2:1的乙醇和蒸馏水组成的混合溶剂;配制浓度为0.3mol/L的均苯三甲酸配体溶液,其中溶剂为体积比为4:1的乙醇和蒸馏水组成的混合溶剂;将配制好的双金属盐溶液和均苯三甲酸配体溶液按金属离子与均苯三甲酸摩尔比为2.5:1,加入到反应釜中,常温搅拌成均相溶液;
S2.将均相溶液在室温下反应一定时间,得到双金属有机骨架溶液,将溶液进行离心,采用醇类溶剂和去离子水依次洗涤至中性,然后在60~80℃,干燥时间为2~6h得到纳米短棒状金属有机骨架;
S3.将金属有机骨架加入到与步骤S1中所述双金属盐溶液等体积的乙醇中,在室温下进行12h自组装反应,然后在-30℃下冷冻干燥24h,得到海胆状金属有机骨架微刺球结构的材料;
S4.将海胆状金属有机骨架微刺球在管式炉中,以3℃/min升温速率升温至400℃,高温煅烧2h,得到海胆状金属氧化物多孔光催化材料。
实施例33
本发明制备的海胆状金属氧化物多孔光催化材料的应用,将其应用于水体重金属和有机污染物的吸附和光催化还原反应,具体如下:
(1)吸附铅离子
称取海胆状金属氧化物多孔光催化材料,加入到装有一定浓度的铅离子溶液中。混合溶液在恒温震荡器中震荡,按照设定的时间进行抽取样品,然后用过滤膜过滤,最后用原子吸收分光光度法测定抽取样品中铅元素的含量。
(2)光催化还原水中Cr(VI)
使用海胆状金属氧化物多孔光催化材料光催化剂还原一定浓度的K2Cr2O7溶液(以Cr计),用硫酸溶液和氢氧化钠溶液调节pH值。黑暗条件下吸附一定时间达到吸附平衡,然后打开光源按照设定的时间间隔取样,离心分离后采用二苯碳酰二肼风光光度法测定Cr(VI)含量。
(3)吸附及光催化降解水中4-硝基苯酚(PNP)
将海胆状金属氧化物多孔光催化材料放入PNP溶液中,在搅拌条件下进行吸附或者光催化实验,间隔取样,采用原子吸收分光光度法测定吸光度的变化。
(4)吸附和光催化去除水中亚甲基蓝(MB)
将海胆状金属氧化物多孔光催化材料加入到MB溶液中。暗处搅拌以达到吸附/脱附平衡。使用对样品进行照射,一定时间间隔取出溶液。离心后取上层清液,经分光光度计测量664nm下的吸光度,从而计算出相应的MB的浓度。
需要说明的是,本发明的海胆状金属氧化物多孔光催化材料还可应用于传感等方面。
对比例1
对比例1与实施例1相比,不同之处在于,去除步骤S3,即直接将步骤S2制备得到的纳米短棒状金属有机骨架进行步骤S4所述的高温煅烧处理,得到海胆状金属氧化物多孔光催化材料。
对比例2
对比例2为采用实施例1中步骤S1~S3制备的海胆状金属有机骨架纳米材料。
测试结果
表5实施例1-31及对比例1-2制备的海胆状金属氧化物多孔光催化材料的性能测试结果
Figure BDA0002271170950000121
Figure BDA0002271170950000131
从表5可以看出,本发明制备的海胆状光催化金属氧化物多孔纳米材料,具有较高的比表面积和总孔容,且对MB的光催化降解效率均高于92%。而对比例1去除步骤S3后,比表面积和总孔容均显著降低,且光催化降解效率仅为87%,说明将金属有机骨架在有机溶剂中进行自组装,然后冷冻干燥,有助于形成海胆状微刺球结构,最终形成具有多级拓扑碳结构的海胆状光催化金属氧化物多孔纳米材料,对有机污染物具有很强的捕获和吸附作用,从而显著提高光催化降解效率。对比例2中,直接将海胆状金属有机骨架微刺球用于光催化,其光催化效率也有所降低,说明高温煅烧处理,有助于形成多孔结构,提高光催化降解效率。结合图3可以看出,随着光催化降解时间的延长,溶液中的光吸收强度峰值逐渐减弱,说明MB或PNP被光催化降解,浓度逐渐降低,进一步证明了本发明制备的胆状金属有机骨架纳米材料对MB或PNP具有光催化降解能力。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (9)

1.一种海胆状金属氧化物多孔光催化材料,其特征在于,包括海胆状多孔碳骨架以及负载于所述海胆状多孔碳骨架上的金属氧化物微粒,所述海胆状多孔碳骨架由若干个纳米短棒状多孔碳骨架组成,所述纳米短棒状多孔碳骨架的宽度为100~500nm,长度为1~10μm,所述海胆状多孔碳骨架的直径为5~50μm;
所述海胆状多孔碳骨架是将双金属盐溶液和有机配体溶液混合反应制得纳米短棒状金属有机骨架,然后将纳米短棒状金属有机骨架加入有机溶剂中,在室温下进行自组装反应,然后冷冻干燥,得到海胆状金属有机骨架微刺球结构,最后高温煅烧形成;
所述双金属盐溶液由稀土金属盐溶液和过渡金属盐溶液组成,所述有机配体溶液为多元含苯羧酸类配体溶液;所述稀土金属盐溶液的稀土金属元素为Eu、Gd、Tb、Sm、Yb中的任一种,所述过渡金属盐溶液的过渡金属元素为Zn、Ni、Fe、Cu中的任一种。
2.根据权利要求1所述的海胆状金属氧化物多孔光催化材料,其特征在于,所述稀土金属盐溶液和过渡金属盐溶液分别为稀土金属元素和过渡金属元素的硫酸盐、硝酸盐、醋酸盐、碳酸盐、氯化盐、溴化盐中的任一种。
3.一种权利要求1至2中任一项权利要求所述的海胆状金属氧化物多孔光催化材料的制备方法,其特征在于,包括以下步骤:
S1.将双金属盐溶液和有机配体溶液按预设摩尔比加入到反应釜中,常温搅拌得均相溶液;
S2.将步骤S1中所述均相溶液按预设升温速率升温至30~80℃,恒温反应12~24h,然后按预设降温速率降至室温得到反应产物;或者
将步骤S1中所述均相溶液在室温下反应24~72h得到反应产物;
然后将反应产物进行离心、洗涤和干燥处理,得到纳米短棒状金属有机骨架;
S3.将步骤S2中所述纳米短棒状金属有机骨架加入有机溶剂中,在室温下进行自组装反应,然后冷冻干燥,得到海胆状金属有机骨架微刺球结构;
S4.将步骤S3中所述海胆状金属有机骨架微刺球结构进行高温煅烧,得到海胆状金属氧化物多孔光催化材料。
4.根据权利要求3所述的海胆状金属氧化物多孔光催化材料的制备方法,其特征在于,在步骤S1中,所述双金属盐溶液的浓度为0.1~0.5mol/L,所述有机配体溶液的浓度为0.1~0.5mol/L;所述双金属盐溶液中稀土金属离子与过渡金属离子摩尔比为1:(0.5~2);所述均相溶液中金属离子与有机配体的摩尔比为(1~2.5):1。
5.根据权利要求3所述的海胆状金属氧化物多孔光催化材料的制备方法,其特征在于,在步骤S1中,所述双金属盐溶液和所述有机配体溶液的溶剂均为醇水混合溶剂,其中,所述醇和水的体积比为(1~10):1,所述醇为甲醇、乙醇,异丙醇、叔丁醇中的任一种或多种。
6.根据权利要求3所述的海胆状金属氧化物多孔光催化材料的制备方法,其特征在于,在步骤S2中,所述预设升温速率为2~8℃/min,所述预设降温速率为2~6℃/min;所述干燥处理的干燥温度为60~80℃,干燥时间为2~6h。
7.根据权利要求3所述的海胆状金属氧化物多孔光催化材料的制备方法,其特征在于,在步骤S3中,所述有机溶剂为甲醇、乙醇、异丙醇、叔丁醇中的任一种或多种,且所述有机溶剂体积与步骤S1中所述双金属盐溶液的体积相同,所述冷冻干燥的温度为-35~-20℃,冷冻干燥时间为12~34h。
8.根据权利要求3所述的海胆状金属氧化物多孔光催化材料的制备方法,其特征在于,在步骤S4中,所述高温煅烧在管式炉中进行,所述高温煅烧的升温速率为1~5℃/min,煅烧温度为300~600℃,煅烧时间为1~3h。
9.根据权利要求1至2中任一项权利要求所述的海胆状金属氧化物多孔光催化材料,或根据权利要求3至8中任一项权利要求所述的方法制备的海胆状金属氧化物多孔光催化材料在污染物的吸附、传感、催化方面的应用。
CN201911105529.9A 2019-11-13 2019-11-13 海胆状金属氧化物多孔光催化材料及其制备方法和应用 Active CN110787790B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911105529.9A CN110787790B (zh) 2019-11-13 2019-11-13 海胆状金属氧化物多孔光催化材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911105529.9A CN110787790B (zh) 2019-11-13 2019-11-13 海胆状金属氧化物多孔光催化材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110787790A CN110787790A (zh) 2020-02-14
CN110787790B true CN110787790B (zh) 2022-04-29

Family

ID=69444398

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911105529.9A Active CN110787790B (zh) 2019-11-13 2019-11-13 海胆状金属氧化物多孔光催化材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110787790B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111302393B (zh) * 2020-02-27 2024-05-14 复旦大学 双壳层非对称半导体材料及其超组装方法
CN111871461A (zh) * 2020-04-30 2020-11-03 杭州师范大学 一种海胆状钴基光催化剂及其制备方法
CN112744896B (zh) * 2020-12-15 2021-12-28 西南石油大学 一种光催化性油水分离材料及制备方法
CN113117418A (zh) * 2021-05-19 2021-07-16 武汉纺织大学 具有光催化解毒功能的纳米纤维过滤防护材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104710303A (zh) * 2013-12-12 2015-06-17 中国科学院大连化学物理研究所 一种球形配位聚合物材料及其制备方法
CN104707543A (zh) * 2013-12-13 2015-06-17 中国科学院大连化学物理研究所 一种核壳型金属氧化物及其制备方法
CN106057490A (zh) * 2016-07-21 2016-10-26 中国石油大学(华东) 一种基于金属‑有机框架物的纳米氧化物及其制备方法
CN106829918A (zh) * 2015-12-04 2017-06-13 中国科学院大连化学物理研究所 一种尺寸可控的微孔碳纳米棒的制备方法
CN106946688A (zh) * 2017-03-16 2017-07-14 扬州大学 海胆状Ni‑Zn金属有机骨架空心球纳米材料的制备方法及其应用
CN107658527A (zh) * 2016-07-25 2018-02-02 中国科学院上海硅酸盐研究所 一种高性能过渡金属氧化物空心球空气电极及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104710303A (zh) * 2013-12-12 2015-06-17 中国科学院大连化学物理研究所 一种球形配位聚合物材料及其制备方法
CN104707543A (zh) * 2013-12-13 2015-06-17 中国科学院大连化学物理研究所 一种核壳型金属氧化物及其制备方法
CN106829918A (zh) * 2015-12-04 2017-06-13 中国科学院大连化学物理研究所 一种尺寸可控的微孔碳纳米棒的制备方法
CN106057490A (zh) * 2016-07-21 2016-10-26 中国石油大学(华东) 一种基于金属‑有机框架物的纳米氧化物及其制备方法
CN107658527A (zh) * 2016-07-25 2018-02-02 中国科学院上海硅酸盐研究所 一种高性能过渡金属氧化物空心球空气电极及其制备方法
CN106946688A (zh) * 2017-03-16 2017-07-14 扬州大学 海胆状Ni‑Zn金属有机骨架空心球纳米材料的制备方法及其应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Sea Urchin-Like MOF-Derived Formation of Porous Cu3P@C as an Efficient and Stable Electrocatalyst for Oxygen Evolution and Hydrogen Evolution Reactions";Rong, J et al.,;《ADVANCED MATERIALS INTERFACES》;20190527;第06卷(第04期);文献号:1900502 *
"基于金属-有机骨架前驱体的先进功能材料";张慧等;《化学进展》;20150305(第Z1期);第174-191页 *
"海胆状Eu2O3/Ag3VO4复合材料的水热合成及其光致发光性能";李英杰等;《人工晶体学报》;20171015(第10期);第2020-2024页 *
以MOFs为前驱体的多孔金属氧化物催化剂研究进展;王丽苹等;《化学通报》;20170718(第07期);第611-620页 *
金属有机框架化合物制备多孔碳负载TiO_2光催化剂;苏帅等;《宁波大学学报(理工版)》;20180910(第05期);第102-108页 *

Also Published As

Publication number Publication date
CN110787790A (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
CN110787790B (zh) 海胆状金属氧化物多孔光催化材料及其制备方法和应用
Yang et al. In situ electrochemical synthesis of MOF-5 and its application in improving photocatalytic activity of BiOBr
CN108786812B (zh) 一种兼具吸附和催化作用的多孔碳/纳米双金属氧化物复合光催化材料及其制备方法
CN107617447B (zh) 一种Ag@MOFs/TiO2光催化剂的制备方法与应用
CN112138702B (zh) 三维/二维Ni-Co双金属氧化物/g-C3N4纳米复合材料及其制备方法与应用
CN106238065B (zh) 一种催化甲醛分解的复合催化剂及其制备方法
CN110813326B (zh) 一种C掺杂BiOBr微球光催化剂的制备方法
CN111468147A (zh) 一种多孔碳复合二氧化钛-卤氧化物光催化剂及其制备方法
CN110951088A (zh) 锆基金属有机骨架材料、制备及作为除铬剂的用途
CN108620113B (zh) 一种氮掺杂的碳-铈复合纳米片的制备方法
CN109482213B (zh) 一种Bi/(BiO)2CO3纳米花球状光催化剂的制备方法
CN111992255B (zh) 用于去除水中双酚A的片状g-C3N4/ZIF-8/AgBr复合材料及其制备方法
CN112604690A (zh) 利用农林废弃物制备稀土钙钛矿/生物炭复合材料的方法及其应用
CN105148972A (zh) 可见光条件下还原水中硝态氮的新型催化剂的制备方法及其应用
Wei et al. A stable and efficient La-doped MIL-53 (Al)/ZnO photocatalyst for sulfamethazine degradation
CN104511280B (zh) 一种可见光催化剂及其制备方法
Chang et al. Jointly augmented photocatalytic NO removal by S-scheme Bi12SiO20/Ag2MoO4 heterojunctions with surface oxygen vacancies
Yang et al. Highly efficient flower-like Dy3+-doped Bi2MoO6 photocatalyst under simulated sunlight: design, fabrication and characterization
Li et al. Synergetic effect of photocatalysis and peroxymonosulfate activation by MIL-53Fe@ TiO 2 on efficient degradation of tetracycline hydrochloride under visible light irradiation
Cui et al. Synthesis of a Z-scheme ternary photocatalyst (Ta3N5/Ag3PO4/AgBr) for the enhanced photocatalytic degradation of tetracycline under visible light
Hua et al. Synthesis of type II heterojunction 2D/3D Bi2S3/MIL-88 (A) with enhanced photocatalytic activity under visible-light irradiation
CN113828310A (zh) FeOOH/Cu2O复合微球光催化剂及其制备方法
CN112642456A (zh) 一种复合光催化剂的制备方法
CN112142048A (zh) 一种氧化镍/金属镍复合竹活性炭材料的制备方法及应用
CN109482171B (zh) 一种Bi/β-Bi2O3纳米花球状光催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant