CN110784140A - 一种五相异步电机按定子磁场定向的控制策略 - Google Patents

一种五相异步电机按定子磁场定向的控制策略 Download PDF

Info

Publication number
CN110784140A
CN110784140A CN201910846877.5A CN201910846877A CN110784140A CN 110784140 A CN110784140 A CN 110784140A CN 201910846877 A CN201910846877 A CN 201910846877A CN 110784140 A CN110784140 A CN 110784140A
Authority
CN
China
Prior art keywords
stator
torque
flux linkage
control
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910846877.5A
Other languages
English (en)
Inventor
孟大伟
徐艺玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN201910846877.5A priority Critical patent/CN110784140A/zh
Publication of CN110784140A publication Critical patent/CN110784140A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本发明涉及一种五相异步电机按定子磁场定向的控制策略。考虑五相异步电机的特点,该控制策略综合了矢量控制和直接转矩控制的优点。从转矩控制效果出发,在定子电阻压降补偿的基础上,通过定子直轴电势控制定子磁链,并通过控制电流转矩分量来达到控制转矩的目的,既实现了定子磁链和转矩的连续控制,又避开了***控制器对转子参数的依赖性。采用了连续的控制方法克服了滞环控制带来的转矩脉动。本发明适用于电力电子与电力传动领域。

Description

一种五相异步电机按定子磁场定向的控制策略
技术领域
本发明涉及电力电子与电力拖动领域,特别是涉及一种多相异步电机的变频调速控制***领域。
背景技术
对于异步电机变频调速***,控制了电机的转矩特性,也就控制了电机的转速。因此,交流调速***的根本问题是转矩控制。
交流电机的转矩一般和定、转子的旋转磁场及其夹角有关,因此,在一个调速***中,如欲控制转矩,必先控制磁通。在磁场定向控制(或称矢量控制,FOC)中,借助于坐标变换把静止坐标系中的各交流量转化为同步坐标系中两个互相垂直的分量,即励磁分量和转矩分量,进而实现磁通和转矩的分别闭环控制(也即解耦)。直接转矩控制(DTC)则抛弃了坐标变换的做法,不去考虑如何使定子电流解耦,而直接着眼于对转矩的控制,而且这种“直接自控制”的思路不仅用于转矩控制,而且也用于磁通的自控制。
对于五相异步电机数学模型的分析可以证明,五相异步电机在静止坐标系下的数学模型与三相异步电机数学的数学模型是一致的。这样,广泛用于三相异步电机的FOC和DTC等调速控制技术都可以用于五相异步电机的变频调速。但是五相异步电机的特点决定了它的应用场合应该是可靠性要求高、稳态转速脉动小、运行平稳的***。五相异步电机本身的控制量要远远多于三相***,这就要求***的调速控制策略在满足性能要求的前提下,尽量简化。从这一角度看,DTC有优势,因为矢量控制算法中坐标变换及磁场定向等环节比较复杂,会大大增加处理器的负担,而且转子磁场定向控制受转子参数变化影响较大。但传统的DTC控制中由于对磁链和转矩的调节都是采用滞环或双位砰-砰控制,低速时转矩脉动较大,造成DTC***低速性能恶化、调速范围不宽。因此可以综合矢量控制和直接转矩控制的优点,寻找一种控制策略,既简单又能满足高性能传动要求。目前这已成为高性能调速***追求的目标之一。对五相异步电机调速***而言,这一点显得尤为必要。
发明内容
本发明的目的在于提出一种五相异步电机按定子磁场定向的控制策略,此控制策略可以用于其他多相异步电机变频调速***的分析研究,为达到上述目的,本发明采用如下技术方案:
本发明提出一种五相异步电机按定子磁场定向的控制策略,其特征是:
一、定子磁链采用连续的闭环控制,在补偿定子电阻压降的基础上直接控制定子磁链的变化率;
二、转速控制采用与矢量控制相仿的结构,内环为定子电流转矩分量控制,实现了转矩电流的快速跟随;
三、第二环是电磁转矩闭环控制,用以抑制定子磁链对转矩的扰动,最外环为转速闭环。
在一中,定子磁链采用连续的闭环控制,在补偿定子电阻压降的基础上直接控制定子磁链的变化率,其定子磁链的变换率表示为:
Figure BDA0002195222300000021
其中:Rsd为定子直轴电阻,isd为定子直轴电流,usd为定子直轴电压,ed为直轴电势。
在二中,通过定子直轴电势控制定子磁链,当***稳态时,定子磁链的表达式为:
ψsd=lsisd-Trσlsmr)isq
其中:ψsd为定子磁链,ls为定子侧电感,Tr为转子时间常数,σ为漏磁系数,ωm为定子磁场旋转角速度,ωr为电机转速。
在三中,为了抑制定子磁链对转矩的影响,使用电磁转矩闭环控制,电磁转矩的表达式为:
Te=npisqψsd
其中:np为电动机极对数。
综上所述,可以得到五相异步电机按定子磁场定向控制***原理图。
根据上述控制策略,对五相异步电机的变频调速进行按定子磁场的定向控制,比直接使用FOC或DTC控制更加满足五相异步电机的调速性能要求,能够对其他多相异步电机的调速控制***进行进一步的分析研究。
附图说明
为了更清楚地说明本发明实施,下面将对实施例描述中所需要使用的附图作简单的介绍。
图1为五相异步电机按定子磁场定向控制***原理图图2为定子磁链控制图图3为电磁转矩控制图
具体实施方式
下面将结合本发明中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例
本实施例提出一种五相异步电机按定子磁场定向的控制策略,该控制策略包括:
一、定子磁链采用连续的闭环控制,在补偿定子电阻压降的基础上直接控制定子磁链的变化率;
二、转速控制采用与矢量控制相仿的结构,内环为定子电流转矩分量控制,实现了转矩电流的快速跟随;
三、第二环是电磁转矩闭环控制,用以抑制定子磁链对转矩的扰动,最外环为转速闭环。
在一中,结合附图2,根据定子磁链与定子电流转矩分量共同作用产生电磁转矩,而定子电流转矩分量也同时影响定子磁链,耦合较大。因此,需要采用定子磁链闭环控制,在补偿定子电阻压降的基础上直接控制定子磁链的变化率,以抑制定子电流转矩分量对定子磁链的影响。根据定子磁链给定值ψ*sd和实际值ψsd的偏差Δψsd设计磁链调节器,产生直轴电势给定值e*d,再加上定子电阻压降,产生定子电压直轴分量给定值u*sd。定子磁链变换率表示为:
其中:Rsd为定子直轴电阻,isd为定子直轴电流,usd为定子直轴电压,ed为直轴电势。
在二中,通过定子直轴电势控制定子磁链,当***稳态时,定子磁链的表达式为:
ψsd=lsisd-Trσlsmr)isq
其中:ψsd为定子磁链,ls为定子侧电感,Tr为转子时间常数,σ为漏磁系数,ωm为定子磁场旋转角速度,ωr为电机转速。
在三中,结合附图3,为了有效抑制定子磁链对转矩的影响,可在转速环和电流转矩分量环之间增设转矩闭环。转速调节器的输出作为转矩调节器的给定T*e,转矩调节器的输出作为电流调节器的输入i*sq。当定子磁链变化时,电磁转矩随之改变,转矩调节器对转矩偏差进行调节及时改i*sq。从而使得电磁转矩跟随给定值,抑制定子转矩的扰动。电磁转矩的表达式为:
Te=npisqψsd
其中:np为电动机极对数。
综上所述,结合附图1,是五相异步电机按定子磁场定向控制***原理图。
根据上述控制方法,对五相异步电机的变频调速进行按定子磁场的定向控制,比直接使用FOC或DTC控制更加满足五相异步电机的调速性能要求,能够对其他多相异步电机的调速控制***进行进一步的分析研究。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (4)

1.一种五相异步电机按定子磁场定向的控制策略,其特征是:
一、定子磁链采用连续的闭环控制,在补偿定子电阻压降的基础上直接控制定子磁链的变化率;
二、转速控制采用与矢量控制相仿的结构,内环为定子电流转矩分量控制,实现了转矩电流的快速跟随;
三、第二环是电磁转矩闭环控制,用以抑制定子磁链对转矩的扰动,最外环为转速闭环。
2.根据权利要求1所述的定子磁链采用连续的闭环控制,在补偿定子电阻压降的基础上直接控制定子磁链的变化率,其特征是:定子磁链与定子电流转矩分量共同作用产生电磁转矩,而定子电流转矩分量也同时影响定子磁链,耦合较大,因此,需要采用定子磁链闭环控制,以抑制定子电流转矩分量对定子磁链的影响,根据定子磁链给定值ψ*sd和实际值ψsd的偏差Δψsd设计磁链调节器,产生直轴电
势给定值e*d,再加上定子电阻压降,产生定子电压直轴分量给定值u*sd,定子磁链幅值变化率为:
其中:Rsd为定子直轴电阻,isd为定子直轴电流,usd为定子直轴电压,ed为直轴电势。
3.根据权利要求1所述的转速控制的内环为定子电流转矩分量控制,其特征是:将定子电流分解成两个分量isd和isq,isq是定子电流的转矩分量,isd定子电流的励磁分量,当稳态时,即:
Figure 992027DEST_PATH_IMAGE002
其中:ψsd为定子磁链,ls为定子侧电感,Tr为转子时间常数,σ为漏磁系数,
ωm为定子磁场旋转角速度,ωr为电机转速。
4.根据权利要求1所述的转速控制的第二环是电磁转矩闭环控制,其特征是:转速调节器的输出作为转矩调节器的给定T*e,转矩调节器的输出作为电流调节器的输入i*sq,当定子磁链变化时,电磁转矩随之改变,转矩调节器对转矩偏差进行调节及时改i*sq,从而使得电磁转矩跟随给定值,抑制定子转矩的扰动,电机的电磁转矩表示为:
Figure 568502DEST_PATH_IMAGE003
其中:np为电动机极对数。
CN201910846877.5A 2019-09-09 2019-09-09 一种五相异步电机按定子磁场定向的控制策略 Pending CN110784140A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910846877.5A CN110784140A (zh) 2019-09-09 2019-09-09 一种五相异步电机按定子磁场定向的控制策略

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910846877.5A CN110784140A (zh) 2019-09-09 2019-09-09 一种五相异步电机按定子磁场定向的控制策略

Publications (1)

Publication Number Publication Date
CN110784140A true CN110784140A (zh) 2020-02-11

Family

ID=69383401

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910846877.5A Pending CN110784140A (zh) 2019-09-09 2019-09-09 一种五相异步电机按定子磁场定向的控制策略

Country Status (1)

Country Link
CN (1) CN110784140A (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112436775A (zh) * 2020-11-12 2021-03-02 武汉科技大学 一种吊车钢绳消谐控制方法、装置、设备、储存介质及终端
GB2596400A (en) * 2020-05-20 2021-12-29 Cirrus Logic Int Semiconductor Ltd Prediction of load current and control current in a power converter using output voltage thresholds
CN114362602A (zh) * 2022-01-18 2022-04-15 华侨大学 一种多相电机的控制方法、装置、设备及可读存储介质
US11387732B2 (en) 2019-09-12 2022-07-12 Cirrus Logic, Inc. Efficient use of energy in a switching power converter
US11469661B2 (en) 2019-10-25 2022-10-11 Cirrus Logic, Inc. Multiphase inductive boost converter with multiple operational phases
US11476766B2 (en) 2020-05-20 2022-10-18 Cirrus Logic, Inc. Prediction of load current and control current in a power converter using output voltage thresholds
US11515707B2 (en) 2020-07-29 2022-11-29 Cirrus Logic, Inc. Control of power converter based on dynamic constraint factors
US11522460B2 (en) 2020-07-24 2022-12-06 Cirrus Logic, Inc. Optimizing the control of a hysteretic power converter at low duty cycles
US11522440B2 (en) 2020-07-29 2022-12-06 Cirrus Logic, Inc. Use of shared feedback among two or more reactive schemes
US11671018B2 (en) 2020-05-20 2023-06-06 Cirrus Logic, Inc. Randomization of current in a power converter
US11735942B2 (en) 2020-07-29 2023-08-22 Cirrus Logic Inc. Maintaining operation within a stable region of a power curve of a power converter
US11843317B2 (en) 2021-08-25 2023-12-12 Cirrus Logic Inc. Pseudo-bypass mode for power converters
US11855471B2 (en) 2020-08-14 2023-12-26 Cirrus Logic Inc. Power supply architecture with bidirectional battery idealization
US11953531B2 (en) 2020-05-20 2024-04-09 Cirrus Logic Inc. Sense resistor and method for forming same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
朱军: "五相异步电机变频调速***控制方法研究", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅱ辑》 *
梅柏杉: "带定子电阻补偿的异步电机定子磁场定向控制", 《控制与应用技术》 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11387732B2 (en) 2019-09-12 2022-07-12 Cirrus Logic, Inc. Efficient use of energy in a switching power converter
US11909317B2 (en) 2019-09-12 2024-02-20 Cirrus Logic Inc. Efficient use of energy in a switching power converter
US11616434B2 (en) 2019-10-25 2023-03-28 Cirrus Logic, Inc. Multiphase inductive boost converter with multiple operational phases
US11469661B2 (en) 2019-10-25 2022-10-11 Cirrus Logic, Inc. Multiphase inductive boost converter with multiple operational phases
US11953531B2 (en) 2020-05-20 2024-04-09 Cirrus Logic Inc. Sense resistor and method for forming same
GB2596400B (en) * 2020-05-20 2022-06-15 Cirrus Logic Int Semiconductor Ltd Prediction of load current and control current in a power converter using output voltage thresholds
US11671018B2 (en) 2020-05-20 2023-06-06 Cirrus Logic, Inc. Randomization of current in a power converter
US11476766B2 (en) 2020-05-20 2022-10-18 Cirrus Logic, Inc. Prediction of load current and control current in a power converter using output voltage thresholds
US12046986B2 (en) 2020-05-20 2024-07-23 Cirrus Logic Inc. Load regulation of a power converter based on adjustable output voltage thresholds
US11770064B2 (en) 2020-05-20 2023-09-26 Cirrus Logic Inc. Prediction of load current and control current in a power converter using output voltage thresholds by pre-seeding target current values
US11552569B2 (en) 2020-05-20 2023-01-10 Cirrus Logic, Inc. Randomization of current in a power converter
GB2596400A (en) * 2020-05-20 2021-12-29 Cirrus Logic Int Semiconductor Ltd Prediction of load current and control current in a power converter using output voltage thresholds
US11658559B2 (en) 2020-05-20 2023-05-23 Cirrus Logic, Inc. Minimizing voltage droop in a power converter
US11522460B2 (en) 2020-07-24 2022-12-06 Cirrus Logic, Inc. Optimizing the control of a hysteretic power converter at low duty cycles
US11522440B2 (en) 2020-07-29 2022-12-06 Cirrus Logic, Inc. Use of shared feedback among two or more reactive schemes
US11722054B2 (en) 2020-07-29 2023-08-08 Cirrus Logic Inc. Use of shared feedback among two or more reactive schemes
US11735942B2 (en) 2020-07-29 2023-08-22 Cirrus Logic Inc. Maintaining operation within a stable region of a power curve of a power converter
US11515707B2 (en) 2020-07-29 2022-11-29 Cirrus Logic, Inc. Control of power converter based on dynamic constraint factors
US11855471B2 (en) 2020-08-14 2023-12-26 Cirrus Logic Inc. Power supply architecture with bidirectional battery idealization
CN112436775A (zh) * 2020-11-12 2021-03-02 武汉科技大学 一种吊车钢绳消谐控制方法、装置、设备、储存介质及终端
CN112436775B (zh) * 2020-11-12 2022-04-22 武汉科技大学 吊车钢绳消谐控制方法、装置、设备、储存介质及终端
US11843317B2 (en) 2021-08-25 2023-12-12 Cirrus Logic Inc. Pseudo-bypass mode for power converters
CN114362602A (zh) * 2022-01-18 2022-04-15 华侨大学 一种多相电机的控制方法、装置、设备及可读存储介质

Similar Documents

Publication Publication Date Title
CN110784140A (zh) 一种五相异步电机按定子磁场定向的控制策略
Farah et al. A novel self-tuning fuzzy logic controller based induction motor drive system: An experimental approach
Lascu et al. Direct torque control with feedback linearization for induction motor drives
Lin et al. Power perturbation based MTPA with an online tuning speed controller for an IPMSM drive system
Lin et al. Decoupled stator-flux-oriented induction motor drive with fuzzy neural network uncertainty observer
Grcar et al. Control-based reduction of pulsating torque for PMAC machines
Tabasian et al. A novel direct field‐oriented control strategy for fault‐tolerant control of induction machine drives based on EKF
CN106849812A (zh) 一种基于磁链补偿的异步电机控制方法
Dhanasekar et al. Sliding mode control of electric drives/review
Changpan et al. Control strategy for dual three‐phase PMSM based on reduced order mathematical model under fault condition due to open phases
Konstantopoulos et al. Bounded nonlinear stabilizing speed regulators for VSI-fed induction motors in field-oriented operation
CN115004542A (zh) 用于调节电机的方法和设备
Nunes et al. Proposal of a fuzzy controller for radial position in a bearingless induction motor
Sun et al. Research of novel modeling and simulation approach of brushless DC motor control system
Banerjee et al. Control architecture for a switched doubly fed machine propulsion drive
Liu et al. Disturbance‐observer‐based speed control for SPMSM drives using modified super‐twisting algorithm and extended state observer
Rabiaa et al. Scalar speed control of dual three phase induction motor using PI and IP controllers
Oumar et al. Modeling and control of double star induction machine by active disturbance rejection control
Ahmed et al. Speed control of induction motor using new sliding mode control technique
Li et al. Research on an improved single neuron PI control strategy
Zhu et al. Dual active disturbance rejection control of permanent magnet synchronous wind generators
CN113765452A (zh) 一种基于qpr的电动汽车***控制方法
Kumar et al. Investigations on energy efficient sensorless induction motor drive
Zhang et al. Internal model decoupling control of direct-drive permanent magnet synchronous motor based on disturbance observer
Tran et al. The Sensorless Speed Controller of Induction Motor in DFOC Model Based on the Voltage and Current

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200211

WD01 Invention patent application deemed withdrawn after publication