CN110779967B - 一种基于传统玻碳电极的NF-κB电化学检测方法 - Google Patents

一种基于传统玻碳电极的NF-κB电化学检测方法 Download PDF

Info

Publication number
CN110779967B
CN110779967B CN201910889867.XA CN201910889867A CN110779967B CN 110779967 B CN110779967 B CN 110779967B CN 201910889867 A CN201910889867 A CN 201910889867A CN 110779967 B CN110779967 B CN 110779967B
Authority
CN
China
Prior art keywords
pna
ssdna2
electrode
dna hybrid
glassy carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910889867.XA
Other languages
English (en)
Other versions
CN110779967A (zh
Inventor
许媛媛
苗晋锋
蔡莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Agricultural University
Original Assignee
Nanjing Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Agricultural University filed Critical Nanjing Agricultural University
Priority to CN201910889867.XA priority Critical patent/CN110779967B/zh
Publication of CN110779967A publication Critical patent/CN110779967A/zh
Application granted granted Critical
Publication of CN110779967B publication Critical patent/CN110779967B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3276Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a hybridisation with immobilised receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明属于分析化学技术领域,涉及一种基于传统玻碳电极的NF‑κB电化学检测方法。本发明主要是利用肽核酸(PNA)能够竞争性的结合含NF‑κB结合序列dsDNA中的互补ssDNA形成稳定的PNA‑DNA杂交链,NF‑κB的存在会抑制PNA‑DNA杂交链生成的原理。实验首先在激活的电极表面镀金并共价修饰PNA,PNA竞争性的结合含NF‑κB结合序列dsDNA中的互补ssDNA在电极表面形成稳定的PNA‑DNA杂交链,NF‑κB的存在会与dsDNA结合并抑制PNA‑DNA杂交链的形成且NF‑κB含量的差别会导致PNA‑DNA杂交链形成量不同,选取特异性嵌合于PNA‑DNA杂交链中MB作为电信号分子,利用差分脉冲伏安法测量NF‑κB不同浓度时MB的峰电流值,绘制NF‑κB浓度与峰电流值的关系曲线得出线性方程,通过检测电信号计算待测样品中NF‑κB含量。该方法灵敏度高,为NF‑κB的检测提供新思路。

Description

一种基于传统玻碳电极的NF-κB电化学检测方法
技术领域
本发明涉及一种基于传统玻碳电极的NF-κB电化学检测方法,属于分析化学领域。
背景技术
核转录因子NF-κB是隶属于锌指结构家族的转录因子,能与B细胞免疫球蛋白κ轻链启动子区域相结合,并且调控该区域基因启动表达的蛋白。NF-κB广泛存在于哺乳动物的各个细胞类型中,不同类型研究皆发现机体在健康状态和病理状态下NF-κB的表达量有明显的差异,NF-κB的含量变化在机体免疫、代谢、炎症反应、肿瘤发展以及其他病程的发生过程中发挥着重要的指示作用,对于疾病的发展、早期诊断或预防具有重要意义。因此,建立一种灵敏、快速、便捷检测NF-κB水平的方法是非常必要的。
现今,NF-κB的检测方法包括电泳迁移率变动分析,蛋白质免疫印迹等。然而,这些方法通常需要特异性抗体,繁琐的标记或特殊仪器。众所周知,标记过程往往是非常耗时且昂贵,甚至可能会导致生物分子的变性。电化学检测技术具有设备简单,价格低廉、灵敏度高、简便快捷,同时可以实现无标记检测等优点。其中玻璃碳电极具有化学稳定性高,热胀系数小,气密性好,可制成圆柱、圆盘电极形状等优点,在电化学实验中得到日益广泛的应用,近年来,被成功的应用于生物大分子定性或定量的检测。
发明内容
本发明的目的是发挥电化学检测技术的优势,建立一种简单、无需标记、成本低廉和高灵敏度的NF-κB检测方法。
本发明的技术方案:一种基于传统玻碳电极的NF-κB电化学检测方法,利用PNA与DNA的结合具有高亲和力与特异性,能够竞争性的结合dsDNA中的互补ssDNA形成稳定的PNA-DNA杂交链;MB能够嵌合于杂交双链,作为氧化还原指示剂放大电信号响应;设计了含有NF-κB结合序列的DNA,当NF-κB蛋白存在时,NF-κB蛋白与dsDNA的靶向结合能抑制PNA-DNA杂交链的生成,电极表面修饰的PNA单链与MB互作力不强,信号微弱;NF-κB含量的差别导致不同程度的信号响应,测得标准曲线,通过统计学分析得出NF-κB检测的线性方程并计算其含量。该方法具有良好的重复性,高的灵敏度,可应用于NF-κB的检测。
方法包括以下步骤:玻碳电极的预处理、金粒子修饰玻碳电极、PNA修饰镀金玻碳电极、样品与修饰电极共孵育、MB与修饰电极共孵育、NF-κB的电化学检测。
(1)玻碳电极的预处理
采用经典的预处理方式进行玻碳电极的预处理。具体步骤如下:用1、0.3μm的三氧化二粉末分别对直径为3mm圆盘玻碳电极进行抛光,之后用酒精和超纯水分别超声5min。之后将处理好的电极置于0.5M H2SO4中,在0V-1.5V电压范围内进行循环伏安扫描,扫速参数设置为0.1V/s,直至达到稳定后,室温干燥。
(2)金粒子修饰玻碳电极
将上述(1)中经过经典方法预处理的玻碳电极浸泡于5mL 2mM的氯金酸溶液(0.5MH2SO4溶解)中电沉积750s,沉积电位为-200mV。
(3)PNA修饰镀金玻碳电极
将上述(2)中镀金玻碳电极表面滴加0.5μM 5.0μL的PNA(0.1M PBS,pH=7.4),37℃孵育1.5h,蒸馏水冲洗。后将PNA修饰的电极置于100μL 1.0mM MCH溶液中30min进行占位去除非特异性吸附。
上述PNA的序列为:5′-Cys-ATG-GTC-GGG-ACT-TTC-CCT-3′。
(4)样品与修饰电极共孵育
对待测样品预处理:取12.5μL 0.06μM ssDNA1(0.1M PBS,0.25M NaCl,pH=7.4)与12.5μL 0.06μM ssDNA2(0.1M PBS,0.25M NaCl,pH=7.4),经90℃5min→70℃10min→50℃10min→30℃10min→10℃25min杂交得dsDNA。再与25μL不同浓度(0→0.1ng/mL)NF-κBp50(50mM HEPES,1mM TCEP,50mM NaCl,pH=7.4)溶液混合,37℃孵育0.5h。将经过上述(3)处理的电极置于dsDNA与蛋白的混合溶液中,37℃孵育2.0h。
上述ssDNA1的序列为:5′-ATG-GTC-GGG-ACT-TTC-CCT-3′;
上述ssDNA2的序列为:5′-AGG-GAA-AGT-CCC-GAC-CAT-3′
(5)MB与修饰电极共孵育
将经过上述(4)处理的电极置于100μL,浓度为20mM的MB溶液(20mM Tris-HCl,pH=7.4)中,避光,室温孵育2h。
(6)NF-κB的电化学检测
将经过上述(5)处理的电极置于5mL 20mM Tris-HCl,pH为7.4的溶液,进行电化学定量分析,本检测采用的电化学工作站(CHI 660E),以饱和甘汞电极为参比电极,铂电极为对电极。使用的扫描方法为微分脉冲伏安法,参数设置:初始电位-0.6V,终止电位0.3V,电位增量0.004V,振幅0.05V,脉冲宽度0.05s,脉冲周期0.5s。在NF-κB含量多的情况下,形成PNA-DNA的杂交链就越少,电信号分子MB吸附量就越少,因此得到的电化学信号也随之减小。以MB的电化学信号为纵坐标,NF-κB的浓度为横坐标,绘制标准曲线,通过计算NF-κB的浓度,即可实现NF-κB的灵敏检测。
本发明的有益效果:该方法简便快速、灵敏度高,成功实现了NF-κB的无标记检测。简化了实验步骤,避免了标记过程,对各类疾病包括癌症的监控与治疗具有重要意义。
附图说明
图1:NF-κB的检测原理图。
图2:NF-κB在不同浓度下,电化学信号值与NF-κB浓度关系的标准曲线图。
具体实施方式
实施例1.NF-κB标准溶液电化学信号值-浓度标准曲线图的测定
将25μL不同浓度NF-κB标准液分别按照上述步骤与DNA共孵育后修饰于电极,经电信号分子MB处理后测得电化学信号。如图2所示电化学信号值(ip)与NF-κB浓度的变化关系曲线,NF-κB在0.02-0.1ng/mL范围内,ip与浓度存在线性关系,线性回归方程为:y=-55.05x+7.101,R2=0.995,式中y为DPV的峰电流ip(μA),x为NF-κB的浓度(ng/mL)。
Figure ISA0000190365930000011

Claims (6)

1.一种基于传统玻碳电极的NF-κB电化学检测方法,其特征是设计了针对NF-κB中p50结构域为靶标的三个探针:PNA、ssDNA1和ssDNA2;
PNA:5′-Cys-ATGGTCGGGACTTTCCCT-3′
ssDNA1:5′-ATGGTC-GGGACT-TTCCCT-3′
ssDNA2:5′-AGGGAAAGTCCCGACCAT-3′
s sDNA1和ssDNA2互补形成的双链DNA含NF-kB结合序列,ssDNA2能被肽核酸PNA竞争性的结合形成稳定的PNA-ssDNA2杂交链,利用了NF-κB的存在会抑制PNA-ssDNA2杂交链生成的原理,实验首先在经处理的传统玻碳表面镀金并共价修饰PNA,PNA竞争性的结合含NF-kB结合序列dsDNA中的互补ssDNA2在电极表面形成稳定的PNA-DNA杂交链,NF-κB的存在会与dsDNA结合并抑制PNA-DNA杂交链的形成且NF-κB含量的差别会导致PNA-DNA杂交链形成量不同,选取特异性嵌合于PNA-DNA杂交链中MB作为电信号分子,利用差分脉冲伏安法测量NF-κB不同浓度时MB的峰电流值,绘制NF-κB浓度与峰电流值的关系曲线得出线性方程,通过检测电信号计算待测样品中NF-κB含量。
2.根据权利要求1所述的一种基于传统玻碳电极的NF-κB电化学检测方法,其特征是设计了ssDNA2能被肽核酸PNA竞争性的结合形成稳定的PNA-ssDNA2杂交链,利用了NF-κB的存在会抑制PNA-ssDNA2杂交链生成的原理。
3.根据权利要求1所述的一种基于传统玻碳电极的NF-κB电化学检测方法,其特征是实验首先在经处理的传统玻碳表面镀金并共价修饰PNA,该修饰过程首先通过经典方法预处理玻碳电极,之后将其浸泡于5mL 0.5M H2SO4溶解的浓度为2mM的氯金酸溶液中-200mV电沉积750s,双蒸水清洗后再于电极表面滴加5.0μL含0.5μM PNA、0.1M PBS,pH值为7.4的溶液,37℃孵育1.5h,蒸馏水冲洗后,于1mM巯基己醇溶液浸泡0.5h,蒸馏水冲洗,得到PNA稳定修饰的镀金玻碳电极表面。
4.根据权利要求1所述的一种基于传统玻碳电极的NF-κB电化学检测方法,其特征是PNA竞争性的结合含NF-κB结合序列dsDNA中的互补ssDNA2在电极表面形成稳定的PNA-ssDNA2杂交链,NF-κB的存在会与dsDNA结合并抑制PNA-DNA杂交链的形成且NF-κB含量的差别会导致PNA-DNA杂交链形成量不同,实验中取用0.25M NaCl、0.1M PBS,pH值为7.4溶液溶解的0.06μM ssDNA1与0.06μM ssDNA2各12.5μL混合,经90℃5min→70℃ 10min→50℃10min→30℃ 10min→10℃ 25min杂交得dsDNA,再将其与25μL用1mM TCEP、50mM NaCl、50mM HEPES,pH值7.4的溶液溶解NF-κB标准溶液混合,37℃孵育0.5h后,将权利要求2中的玻碳电极浸泡于该溶液中,37℃孵育2.0h。
5.根据权利要求1所述的一种基于传统玻碳电极的NF-κB电化学检测方法,其特征是选取特异性嵌合于PNA-DNA杂交链中MB作为电信号分子,利用差分脉冲伏安法测量NF-κB不同浓度时MB的峰电流值,将权利要求4中的电极浸泡在100μL含20mM MB、20mM Tris-HCl,pH值为7.4的溶液中,室温避光孵育2h,双蒸水清洗后,将电极置于5mL 20mM Tris-HCl,pH为7.4的溶液中进行差分脉冲伏安法分析,参数设置:初始电位-0.6V,终止电位0.3V,电位增量0.004V,振幅0.05V,脉冲宽度0.05s,脉冲周期0.5s。
6.根据权利要求1所述的一种基于传统玻碳电极的NF-κB电化学检测方法,其特征是绘制NF-κB浓度与峰电流值的关系曲线,得出线性方程:y=-55.05x+7.101,R2=0.995,式中y为DPV的峰电流ipμA,x为NF-κB的浓度ng/mL,通过检测电信号计算待测样品中NF-κB含量。
CN201910889867.XA 2019-09-18 2019-09-18 一种基于传统玻碳电极的NF-κB电化学检测方法 Active CN110779967B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910889867.XA CN110779967B (zh) 2019-09-18 2019-09-18 一种基于传统玻碳电极的NF-κB电化学检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910889867.XA CN110779967B (zh) 2019-09-18 2019-09-18 一种基于传统玻碳电极的NF-κB电化学检测方法

Publications (2)

Publication Number Publication Date
CN110779967A CN110779967A (zh) 2020-02-11
CN110779967B true CN110779967B (zh) 2022-06-17

Family

ID=69384155

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910889867.XA Active CN110779967B (zh) 2019-09-18 2019-09-18 一种基于传统玻碳电极的NF-κB电化学检测方法

Country Status (1)

Country Link
CN (1) CN110779967B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1477399A (zh) * 2003-07-09 2004-02-25 杨清武 一种以酶联免疫方式检测核转录因子活性的方法
CN1570140A (zh) * 2003-07-25 2005-01-26 宋克 双探针基因芯片信号放大方法
CN1580278A (zh) * 2003-07-31 2005-02-16 王进科 NF-κB检测双链DNA微阵列芯片及制备
CN102262117A (zh) * 2011-04-27 2011-11-30 上海大学 检测核因子-kappaB的生物电化学传感器、其制备方法及其应用
EP3249055A1 (en) * 2013-12-12 2017-11-29 Altratech Limited A nucleic acid analysis method and apparatus
CN109295167A (zh) * 2018-11-09 2019-02-01 江南大学 基于雄激素受体识别元件和g-四链体杂交链式放大反应检测雄激素受体的电化学方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2861400T3 (es) * 2015-08-14 2021-10-06 Koninklijke Philips Nv Evaluación de la actividad de la ruta de señalización celular de NFkB usando modelos matemáticos de la expresión de genes diana

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1477399A (zh) * 2003-07-09 2004-02-25 杨清武 一种以酶联免疫方式检测核转录因子活性的方法
CN1570140A (zh) * 2003-07-25 2005-01-26 宋克 双探针基因芯片信号放大方法
CN1580278A (zh) * 2003-07-31 2005-02-16 王进科 NF-κB检测双链DNA微阵列芯片及制备
CN102262117A (zh) * 2011-04-27 2011-11-30 上海大学 检测核因子-kappaB的生物电化学传感器、其制备方法及其应用
EP3249055A1 (en) * 2013-12-12 2017-11-29 Altratech Limited A nucleic acid analysis method and apparatus
CN109295167A (zh) * 2018-11-09 2019-02-01 江南大学 基于雄激素受体识别元件和g-四链体杂交链式放大反应检测雄激素受体的电化学方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Highly sensitive electrochemical nuclear factor kappa B aptasensor based on target-induced dual-signal ratiometric and polymerase-assisted protein recycling amplification strategy;Kanfu Peng 等;《Biosensors and Bioelectronics》;20171026;第102卷;第282-286页 *
Molecular interactions between nuclear factor kB (NF-kB) transcription factors and a PNA–DNA chimera mimicking NF-kB binding sites;Alessandra Romanelli 等;《Eur. J. Biochem.》;20011231;第268卷;第6066页 *
基于微/纳米加工技术的微型电化学免疫传感器研究;许媛媛 等;《传感技术学报》;20061031;第19卷(第5期);第2149-2152页 *

Also Published As

Publication number Publication date
CN110779967A (zh) 2020-02-11

Similar Documents

Publication Publication Date Title
Kilic et al. A new insight into electrochemical microRNA detection: a molecular caliper, p19 protein
WO2016062101A1 (zh) 检测ndm-1的修饰电极及其制备方法和应用
Erdem et al. Detection of interaction between metal complex indicator and DNA by using electrochemical biosensor
Lawal et al. Polypyrrole based amperometric and potentiometric phosphate biosensors: A comparative study B
Li et al. Aptamer biosensor for label-free square-wave voltammetry detection of angiogenin
Niu et al. An electrochemical aptasensor for highly sensitive detection of CEA based on exonuclease III and hybrid chain reaction dual signal amplification
CN109072284A (zh) 用于电化学检测相关分子的***
CN109613095A (zh) 基于i-motif构型变化的末端转移酶电化学生物传感器制备方法及应用
Song et al. A novel assay strategy based on isothermal amplification and cascade signal amplified electrochemical DNA sensor for sensitive detection of Helicobacter pylori
CN114441616B (zh) 一种新冠病毒生物探针在电化学生物传感器上的修饰方法
CN111007137A (zh) 一种有机磷检测的方法及其设备
Yan et al. Target-triggered substantial stacking of electroactive indicators based on digestion-to-growth regulated tandem isothermal amplification for ultrasensitive miRNA determination
CN109856211B (zh) 一种同时检测Exo I和TdT的电化学生物传感器的制备方法及其应用
Fu et al. Sensitive electrochemical immunoassay of a biomarker based on biotin-avidin conjugated DNAzyme concatamer with signal tagging
CN105567808B (zh) 滚环扩增产物为模板的铜纳米颗粒合成方法及其在电化学检测中的应用
Won et al. Enzyme-catalyzed signal amplification for electrochemical DNA detection with a PNA-modified electrode
CN111187806B (zh) 一种基于3D DNA纳米网状结构双信号放大技术的microRNA检测方法
CN110779967B (zh) 一种基于传统玻碳电极的NF-κB电化学检测方法
CN111595916B (zh) 一种基于丝网印刷电极的NF-κB电化学检测方法
Chen et al. Ultrasensitive Detection of ctDNA by Target‐Mediated In Situ Growth of DNA Three‐Way Junction on the Electrode
Jiang et al. An electrochemical sensor based on allosteric molecular beacons for DNA detection of escherichia coli. O157: H7
Yu et al. Electrochemical aptasensor based on Klenow fragment polymerase reaction for ultrasensitive detection of PDGF-BB
CN112322703B (zh) 基于dna自组装结构对两种循环肿瘤dna同时检测的方法
CN113049656B (zh) 一种具有高阶重复性及重现性的电化学快扫伏安方法及其分析应用
CN110470712A (zh) 一种基于通道内生成DNA纳米花的miRNA检测装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant