CN110724390B - 一种仿生物质珍珠贝材料及其制备方法 - Google Patents

一种仿生物质珍珠贝材料及其制备方法 Download PDF

Info

Publication number
CN110724390B
CN110724390B CN201910994863.8A CN201910994863A CN110724390B CN 110724390 B CN110724390 B CN 110724390B CN 201910994863 A CN201910994863 A CN 201910994863A CN 110724390 B CN110724390 B CN 110724390B
Authority
CN
China
Prior art keywords
suspension
nano
biomass
fiber
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910994863.8A
Other languages
English (en)
Other versions
CN110724390A (zh
Inventor
孙庆丰
陈逸鹏
党宝康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang A&F University ZAFU
Original Assignee
Zhejiang A&F University ZAFU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang A&F University ZAFU filed Critical Zhejiang A&F University ZAFU
Priority to CN201910994863.8A priority Critical patent/CN110724390B/zh
Publication of CN110724390A publication Critical patent/CN110724390A/zh
Priority to US16/894,915 priority patent/US11597832B2/en
Application granted granted Critical
Publication of CN110724390B publication Critical patent/CN110724390B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • C08K2003/162Calcium, strontium or barium halides, e.g. calcium, strontium or barium chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • C08K2003/166Magnesium halide, e.g. magnesium chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2275Ferroso-ferric oxide (Fe3O4)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3045Sulfates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

本发明公开了一种制备生物质珍珠贝材料的方法,其特征在于,包括以下步骤:S1:采用热磨法将纳米物质均匀地附着在生物质纤维上,以制备纳米物质‑生物质纤维复合材料混悬液;S2:采用冷冻铸造法将S1得到的混悬液生成层状仿珍珠贝结构基体混悬液;S3:将有机高分子材料浸渍至S2所得基体混悬液中,然后经过热压得到木质珍珠贝材料。本发明制备方法更为环保,制备出的仿贝壳样的仿生层状材料具有更高的机械强度、比强度,官能团赋予材料新的性能,用途十分广泛。

Description

一种仿生物质珍珠贝材料及其制备方法
技术领域
本发明涉及复合材料领域,具体涉及一种仿生物质珍珠贝材料及其制备方法。
背景技术
自然界在长期的进化演变过程中,形成了具有完美组织结构形态和独特优异性能的生物材料,如哺乳动物的牙床、骨骼以及软体动物的壳等,尤其是贝壳中的珍珠贝层具有杰出的力学性能而备受关注,如鲍鱼的贝壳主要由CaCO3和少量的生物大分子构成,其硬度是普通CaCO3晶体的2倍,韧性则为普通CaCO3晶体的1000余倍。这些结构主要是利用有机大分子(蛋白质、多糖、脂类等)自组装形成的预组织体制造模板,经过分子识别无机分子在其上面沉积而成。受自然界的启发,材料研究者试图揭示生物***中的结构特征和形成机制,从而进一步应用于材料科学设计与制备。
珍珠贝属于天然的有机/无机层状多级结构复合材料,其中95%(体积分数)是片状文石,蛋白质-多糖有机体等有机基质仅为5%左右,但这些有机基质在文石晶体核化、定向、生长和空间形态等方面的调控作用使其在纳米水平上表现出非凡的有序性和强度。珍珠层的这种有机/无机层状结构使得其结构优美,力学性能独特。因此,通过环境友好的方法仿生制备多尺度有序无机或无机/有机杂化材料,并显示出微观和宏观的多重功能,成为化学、材料科学、生物科学和纳米技术等多学科交叉的研究热点。
纤维板的缺陷,如力学性能不足吸湿膨胀,会导致木材尺寸稳定性下降、易被细菌侵蚀、易被有机物污染而使其表面丧失美丽的颜色、受到紫外线照射后会发生严重表面劣化、在高温或者有火源的情况下易燃等,大大地限制了纤维板的使用范围和领域。因此要解决这些难题,必须另外开辟途径。随着纤维板功能性改良技术的发展,特别是将人造板与纳米、仿生技术相交叉融合,以制备高附加值多功能复合新型结构材,是纤维板领域日益受到重视的高新技术之一。而将珍珠贝高力学性能的结构与纤维板进行结合,改善纤维板原有缺陷提高纤维板性能并赋予其新的特殊性能,使制备的材料同时具有纤维板特性和纳米材料特性的双重功能,将是纤维板功能性改良的重要发展方向。
发明内容
本发明所要解决的技术问题是提供一种仿生物质珍珠贝及其制备方法,该制备方法操作简单,生成仿生材料后极大的丰富了其性能。
一方面本发明提供了一种制备生物质珍珠贝材料的方法,包括以下步骤:
S1:采用热磨法将纳米物质均匀地附着在生物质纤维上,以制备纳米物质-生物质纤维复合材料混悬液;
S2:采用冷冻铸造法将S1得到的混悬液生成层状仿珍珠贝结构基体混悬液;
S3:将有机高分子材料浸渍至S2所得基体混悬液中,然后经过热压得到木质珍珠贝材料。
进一步的,所述S1步骤包括:将生物质纤维粉碎后,与纳米物质共同溶于蒸馏水中,形成混悬液,所述生物质纤维:纳米物质:蒸馏水的质量比为1:(5×10-4~0.2):20;然后将该混悬液送入转速为2500~3000rpm胶体磨中,处理5~10h后得悬浮液,然后再将上述悬浮液送入转速为2500~3000rpm的圆盘磨床中处理5~10h,得纳米物质-生物质纤维复合材料混悬液,所述纳米物质-生物质纤维复合材料混悬液的粒径为50-500nm;优选的,所述生物质纤维:纳米物质:蒸馏水的质量比为1:0.02:20;所述胶体磨和圆盘磨的转速为2880rpm,处理时间为6h;
进一步可选的,S1中所述纳米物质为CaCO3、TiO2、ZnO、Ag、SiO2、Al2O3、Fe3O4、Mg(OH)2、Al(OH)3、石墨烯、碳纤维,碳纳米管中的任意一种或几种;
进一步可选的,S1中所述生物质纤维为木纤维、竹纤维、稻草、麦草、玉米秸秆、棉花杆、甘蔗渣、芦苇、芒杆中任意一种或几种;
进一步的,所述S2步骤包括:将S1所得纳米混悬液与由3.632g/L NaCl、0.113g/LNa2SO4、0.332g/L NaHCO3、0.328g/L MgCl2·6H2O、0.284g/L CaCl2和0.177g/L KCl组成的混合盐溶液进行均匀混合后,保持40~60℃下反应36~60h,得到矿化的纳米生物质纤维混悬液,将所述矿化的纳米生物质纤维混悬液预冷至1~5℃,然后倒入模具中,在液氮环境下,在-196~-30℃进行冷冻铸造,然后将铸造成型的样品在放进冷冻干燥机中,在10~40Pa下进行冻干12-48h,得到层状仿珍珠贝结构基体;优选的,所述S1所得纳米混悬液与混合盐溶液的反应温度为50℃,时间为48h;所述预冷温度为4℃;所述冷冻铸造温度为-90℃,所述冷冻铸造模具材料为聚二甲基硅氧烷,冷冻干燥时间为24h;
进一步的,所述S3步骤包括:将有机高分子材料为聚甲基丙烯酸甲酯(缩写为PMMA),聚乙烯(缩写为PE)、聚乙烯醇(缩写为PVA),对苯二胺,热塑性聚氨酯弹性体橡胶,丙烯酸树脂,聚醚酰亚胺或壳聚糖浸渍入S2所得层状仿珍珠贝结构基体混悬液中,然后在100~250℃,压力为0.8~20Mpa下进行热压0.5~24h,即得成品,所述成品中有机高分子材料的质量百分含量为1~10%;优选的,所述有机高分子材料为聚甲基丙烯酸甲酯(缩写为PMMA),聚乙烯(缩写为PE)或聚乙烯醇;所述热压温度为168℃,热压压力为5MPa,热压时间为1h。
本发明的另一方面还提供了一种仿生物质珍珠贝材料,根据以上任一项所述的制备方法制备得到。
有益效果
1、本方法制备出的纳米粒子能够均匀地分布在纤维上,附着牢固,改变了纤维本身的结构,形成了仿贝壳样的仿生层状材料,同等强度下该材料密度更大,在无胶纤维板生产领域中具有广阔的应用前景。
2、本方法采用生物质纤维与无机纳米材料以及高分子材料进行反应制备,无需采用聚合反应,而直接通过混合进行制备,该方法制备工艺简便,且可操作性强、环保且能耗低,适合工业化生产。
3、该方法能够引入如CaCO3、TiO2、ZnO等纳米级粒子的各种官能团,从而赋予生物质材料各种新的功能,例如增加材料光催化、耐磨性、抗菌、磁性等多种性能,极大的拓展了该复合材料的应用领域。
附图说明
图1是实施例3得到的CaCO3/木纤维复合材料的扫描电镜图
图2是实施例3得到的仿珍珠贝层状结构基体的扫描电镜图
图3是实施例3得到的木质珍珠贝的横截面扫描电镜图
图4是实施例3得到的木质珍珠贝和其他相关木质材料的抗弯应力应变曲线
图5是实施例3得到的木质珍珠贝和其他材料比强度的比较图,其中,1.混凝土;2.玻璃;3.铜合金;4.天然背角无齿蚌贝壳;5.合成贝壳;6.聚氨酯;7.Al2O3/聚丙烯酸复合材料;8.铝合金;9.聚苯乙烯;10.环氧树脂;11.石英玻璃;12.木质珍珠贝;13.铁合金;14.天然加州红鲍贝壳;15.褶纹冠蚌贝壳;16.天然正珠母贝贝壳;17.尼龙;18.Al2O3材料19.碳化硅材料
图6是实施例5得到的木质珍珠贝类材料对甲醛的降解结果图
具体实施方式
下面将对本发明技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本发明的技术方案,因此只是作为示例,而不能以此来限制本发明的保护范围。需要注意的是,除非另有说明,本申请使用的技术术语或者科学术语应当为本发明所属领域技术人员所理解的通常意义。
实施例1
一种制备木质珍珠贝材料的方法,包括以下步骤:
S1:将木质纤维粉碎后,与纳米CaCO3共同溶于蒸馏水中,形成混悬液,所述木质纤维:纳米物质:蒸馏水的质量比为1:5×10-4:20;然后将该混悬液送入转速为2500rpm胶体磨中,处理10h后得悬浮液,然后再将上述悬浮液送入转速为2500rpm的圆盘磨床中处理10h,得纳米物质-木质纤维复合材料混悬液,所述纳米物质-木质纤维复合材料混悬液的粒径为50-500nm;S2:将S1所得纳米混悬液与由3.632g/L NaCl、0.113g/L Na2SO4、0.332g/LNaHCO3、0.328g/L MgCl2·6H2O、0.284g/L CaCl2和0.177g/L KCl组成的混合盐溶液进行均匀混合后,保持40℃下反应60h,得到矿化的纳米木质纤维混悬液,将所述矿化的纳米木质纤维混悬液预冷至1℃,然后倒入模具中,在液氮环境下,在-196℃进行冷冻铸造,然后将铸造成型的样品在放进冷冻干燥机中,在40Pa、-30℃~20℃下进行冻干24h,得到层状仿珍珠贝结构基体;S3:将有机高分子材料PMMA浸渍入S2所得层状仿珍珠贝结构基体混悬液中,然后在100℃,压力为0.8Mpa下进行热压24h,即得成品,所述成品中有机高分子材料的质量百分含量为1%。
实施例2
一种制备木质珍珠贝材料的方法,包括以下步骤:
S1:将木质纤维粉碎后,与纳米CaCO3共同溶于蒸馏水中,形成混悬液,所述木质纤维:纳米物质:蒸馏水的质量比为1:20:20;然后将该混悬液送入转速为3000rpm胶体磨中,处理5h后得悬浮液,然后再将上述悬浮液送入转速为3000rpm的圆盘磨床中处理5h,得纳米物质-木质纤维复合材料混悬液,所述纳米物质-木质纤维复合材料混悬液的粒径为50-500nm;S2:将S1所得纳米混悬液与由3.632g/L NaCl、0.113g/L Na2SO4、0.332g/L NaHCO3、0.328g/L MgCl2·6H2O、0.284g/L CaCl2和0.177g/L KCl组成的混合盐溶液进行均匀混合后,保持60℃下反应36h,得到矿化的纳米木质纤维混悬液,将所述矿化的纳米木质纤维混悬液预冷至5℃,然后倒入模具中,在液氮环境下,在-30℃进行冷冻铸造,然后将铸造成型的样品在放进冷冻干燥机中,在40Pa、-30℃~20℃下进行冻干36h,得到层状仿珍珠贝结构基体;S3:将有机高分子材料PMMA浸渍入S2所得层状仿珍珠贝结构基体混悬液中,然后在250℃,压力为20Mpa下进行热压0.5h,即得成品,所述成品中有机高分子材料的质量百分含量为10%。
实施例3
一种制备木质珍珠贝材料的方法,包括以下步骤:
S1:将木质纤维粉碎后,与纳米CaCO3共同溶于蒸馏水中,形成混悬液,所述木质纤维:纳米物质:蒸馏水的质量比为1:0.02:20;然后将该混悬液送入转速为2880rpm胶体磨中,处理6h后得悬浮液,然后再将上述悬浮液送入转速为2880rpm的圆盘磨床中处理6h,得纳米物质-木质纤维复合材料混悬液,所述纳米物质-木质纤维复合材料混悬液的粒径为50-500nm;S2:将S1所得纳米混悬液与由3.632g/L NaCl、0.113g/L Na2SO4、0.332g/LNaHCO3、0.328g/L MgCl2·6H2O、0.284g/L CaCl2和0.177g/L KCl组成的混合盐溶液进行均匀混合后,保持50℃下反应48h,得到矿化的纳米木质纤维混悬液,将所述矿化的纳米木质纤维混悬液预冷至4℃,然后倒入模具中,在液氮环境下-90℃进行冷冻铸造,将铸造成型的样品在放进冷冻干燥机中,在20Pa、-30℃~20℃下进行冻干36h;S3:将有机高分子材料PMMA浸渍入S2所得层状仿珍珠贝结构基体混悬液中,然后在168℃,压力为5Mpa下进行热压1h,即得成品,所述成品中有机高分子材料的质量百分含量为5%。
实施例4
一种制备竹质珍珠贝材料的方法,包括以下步骤:
S1:将竹纤维粉碎后,与纳米SiO2共同溶于蒸馏水中,形成混悬液,所述竹纤维:纳米物质:蒸馏水的质量比为1:0.02:20;然后将该混悬液送入转速为2880rpm胶体磨中,处理6h后得悬浮液,然后再将上述悬浮液送入转速为2880rpm的圆盘磨床中处理6h,得纳米物质-竹纤维复合材料混悬液,所述纳米物质-竹纤维复合材料混悬液的粒径为50-500nm;S2:将S1所得纳米混悬液与由3.632g/L NaCl、0.113g/L Na2SO4、0.332g/L NaHCO3、0.328g/LMgCl2·6H2O、0.284g/L CaCl2和0.177g/L KCl组成的混合盐溶液进行均匀混合后,保持50℃下反应48h,得到矿化的纳米竹纤维混悬液,将所述矿化的纳米竹纤维混悬液预冷至4℃,然后倒入模具中,在液氮环境下(-90℃)进行冷冻铸造,将铸造成型的样品在放进冷冻干燥机中,在20Pa、-30℃~20℃真空条件下进行冻干36h;S3:将有机高分子材料PE浸渍入S2所得层状仿珍珠贝结构基体混悬液中,然后在168℃,压力为5Mpa下进行热压1h,即得成品,所述成品中有机高分子材料的质量百分含量为5%。
实施例5
一种制备稻草珍珠贝材料的方法,包括以下步骤:
S1:将稻草纤维粉碎后,与纳米TiO2共同溶于蒸馏水中,形成混悬液,所述稻草纤维:纳米物质:蒸馏水的质量比为1:0.02:20;然后将该混悬液送入转速为2880rpm胶体磨中,处理6h后得悬浮液,然后再将上述悬浮液送入转速为2880rpm的圆盘磨床中处理6h,得纳米物质-稻草纤维复合材料混悬液,所述纳米物质-稻草纤维复合材料混悬液的粒径为50-500nm;S2:将S1所得纳米混悬液与由3.632g/L NaCl、0.113g/L Na2SO4、0.332g/LNaHCO3、0.328g/L MgCl2·6H2O、0.284g/L CaCl2和0.177g/L KCl组成的混合盐溶液进行均匀混合后,保持50℃下反应48h,得到矿化的纳米稻草纤维混悬液,将所述矿化的纳米稻草纤维混悬液预冷至4℃,然后倒入模具中,在液氮环境下(-120℃)进行冷冻铸造,将铸造成型的样品在放进冷冻干燥机中,在20Pa、-30℃~20℃条件下进行冻干36h;S3:将有机高分子材料PVA浸渍入S2所得层状仿珍珠贝结构基体混悬液中,然后在168℃,压力为5Mpa下进行热压1h,即得成品,所述成品中有机高分子材料的质量百分含量为5%。
实施例6
一种制备甘蔗渣珍珠贝材料的方法,包括以下步骤:
S1:将甘蔗渣纤维粉碎后,与纳米Fe3O4共同溶于蒸馏水中,形成混悬液,所述甘蔗渣纤维:纳米物质:蒸馏水的质量比为1:0.02:20;然后将该混悬液送入转速为2880rpm胶体磨中,处理6h后得悬浮液,然后再将上述悬浮液送入转速为2880rpm的圆盘磨床中处理6h,得纳米物质-甘蔗渣纤维复合材料混悬液,所述纳米物质-甘蔗渣纤维复合材料混悬液的粒径为50-500nm;S2:将S1所得纳米混悬液与由3.632g/L NaCl、0.113g/L Na2SO4、0.332g/LNaHCO3、0.328g/L MgCl2·6H2O、0.284g/L CaCl2和0.177g/L KCl组成的混合盐溶液进行均匀混合后,保持50℃下反应48h,得到矿化的纳米甘蔗渣纤维混悬液,将所述矿化的纳米甘蔗渣纤维混悬液预冷至4℃,然后倒入模具中,在液氮环境下(-150℃)进行冷冻铸造,将铸造成型的样品在放进冷冻干燥机中,在20Pa、-30℃~20℃真空条件下进行冻干36h:将有机高分子材料PMMA浸渍入S2所得层状仿珍珠贝结构基体混悬液中,然后在168℃,压力为5Mpa下进行热压1h,即得成品,所述成品中有机高分子材料的质量百分含量为5%。
实验例7:对木质珍珠贝类材料进行评价
1.形貌特征:
图1是实施例3得到的CaCO3/木纤维复合材料的扫描电镜图:该图反映出木纤维经过机械化学研磨阶段,木纤维在纳米尺度下***、断裂和细化;同时CaCO3通过静电吸附和范德华力复合在木纤维表面上;
图2是实施例3得到的仿珍珠贝层状结构基体的扫描电镜图;在冷冻铸造过程中,采用冰晶诱导的组装工艺技术,部分CaCO3/木纤维复合材料被排除在层状生长的冰晶之外,夹在相邻的冰晶之间,形成一个连续不断的网络,它由冰晶模板决定的结构。最后经过冷冻干燥,冰晶升华以后得到有序层状结构;
图3是实施例3得到的木质珍珠贝的横截面扫描电镜图;在冷冻干燥的有序层状基体中填充入有机高分子软物质,形成了硬质CaCO3/木纤维复合材料-软质有机高分子层叠结构,能够在受力过程中,使得应力在层间传递并消散,避免应力集中。
2.性能测试
1)抗弯强度:图4是实施例3得到的木质珍珠贝和其他相关木质材料的抗弯应力应变曲线的对比。抗弯强度反映了人造板抵抗弯曲破坏的能力。图4中,A线条表示纯木纤维板的抗弯应力应变曲线;B表示木质珍珠贝的抗弯应力应变曲线;C表示无序CaCO3/木纤维复合板的抗弯应力应变曲线。从图4中可以看出,三种复合材料的抗弯强度大小依次为B(木质珍珠贝)>C(无序CaCO3/木纤维复合板)>A(纯木纤维板)木质珍珠贝的协同增韧作用来自有机高分子和两层CaCO3/木纤维复合物之间的相互作用。如果不存在有机高分子,则CaCO3/木纤维复合层更倾向于聚集。CaCO3/木纤维复合材料的两层之间的阴离子相互作用相对较弱。此外,CaCO3/木纤维复合材料刚性较大。
2)比强度:参见附图5,由于木纤维本生的组成成分为低分子量的C,H,O元素,相较于其他金属制品以及金属氧化物等无机材料有着更低的密度,因此我们所制备的木质珍珠贝类材料在比强度和比韧性方面高于各种合金以及其复合材料。
3)功能性官能团举例说明
为了有效探索木质珍珠贝类材料的光催化应用,我们将条状(20mm×7mm×5mm)的复合材料(由实施例5制备获得)浸泡入甲醛水溶液(0.15mmol/L)中,然后暴露在紫外光下。通过图6所示,在紫外灯照射360min后的甲醛降解曲线可知,随着光照时间的推移,甲醛逐步降解,300min后甲醛浓度变化明显变小,360min后木质珍珠贝类材料降解了大约44.5%的甲醛。结果显示木质珍珠贝类材料在紫外光照射下能够显著降解甲醛。
除非另外具体说明,否则在这些实施例中阐述的数值并不限制本发明的范围。在这里示出和描述的所有示例中,除非另有规定,任何具体值应被解释为仅仅是示例性的,而不是作为限制,因此,示例性实施例的其他示例可以具有不同的值。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围,其均应涵盖在本发明的权利要求和说明书的范围当中。

Claims (6)

1.一种制备生物质珍珠贝材料的方法,其特征在于,包括以下步骤:
S1:采用热磨法将纳米物质均匀地附着在生物质纤维上,以制备纳米物质-生物质纤维复合材料混悬液,具体包括:将生物质纤维粉碎后,与纳米物质共同溶于蒸馏水中,形成混悬液,所述生物质纤维:纳米物质:蒸馏水的质量比为1:(5×10-4~0.2):20;然后将该混悬液送入转速为2500~3000rpm胶体磨中,处理5~10h后得悬浮液,然后再将上述悬浮液送入转速为2500~3000rpm的圆盘磨床中处理5~10h,得纳米物质-生物质纤维复合材料混悬液,所述纳米物质-生物质纤维复合材料混悬液的粒径为50~500nm,其中,所述纳米物质为CaCO3、TiO2、ZnO、Ag、SiO2、Al2O3、Fe3O4、Mg(OH)2、Al(OH)3、石墨烯、碳纤维、碳纳米管中的任意一种或几种;
S2:采用冷冻铸造法将S1得到的混悬液生成层状仿珍珠贝结构基体混悬液,具体包括:将S1所得纳米混悬液与由3.632g/LNaCl、0.113g/LNa2SO4、0.332g/LNaHCO3、0.328g/LMgCl2·6H2O、0.284g/LCaCl2和0.177g/L KCl组成的混合盐溶液进行均匀混合后,保持40~60℃下反应36~60h,得到矿化的纳米生物质纤维混悬液,将所述矿化的纳米生物质纤维混悬液预冷至1~5℃,然后倒入模具中,在液氮环境下,在-196~-30℃进行冷冻铸造,然后将铸造成型的样品在放进冷冻干燥机中,在10~40Pa、-30℃~20℃下进行冻干12~48h,得到层状仿珍珠贝结构基体;
S3:将有机高分子材料浸渍至S2所得基体混悬液中,然后经过热压得到木质珍珠贝材料,具体包括:所述S3步骤包括:将有机高分子材料聚甲基丙烯酸甲酯、聚乙烯、聚乙烯醇、对苯二胺、热塑性聚氨酯弹性体橡胶、丙烯酸树脂、聚醚酰亚胺或壳聚糖中的任意一种浸渍入S2所得层状仿珍珠贝结构基体中,然后在100~250℃,压力为0.8~20Mpa下进行热压0.5~24h,即得成品,所述成品中有机高分子材料的质量百分含量为1~10%。
2.根据权利要求1所述的制备生物质珍珠贝材料的方法,其特征在于,S1中所述生物质纤维为木纤维、竹纤维、稻草、麦草、玉米秸秆、棉花杆、甘蔗渣、芦苇、芒杆中任意一种或几种。
3.根据权利要求1所述的制备生物质珍珠贝材料的方法,其特征在于,步骤S1中,所述生物质纤维:纳米物质:蒸馏水的质量比为1:0.02:20;且所述胶体磨和圆盘磨的转速为2880rpm、处理时间为6h。
4.根据权利要求1所述的制备生物质珍珠贝材料的方法,其特征在于,步骤S2中,所述纳米混悬液与混合盐溶液的反应温度为50℃,时间为48h;且所述预冷温度为4℃;所述冷冻铸造温度为-90℃,且所述冷冻铸造模具材料为聚二甲基硅氧烷,且冷冻干燥的压力为20Pa、时间为24h。
5.根据权利要求1所述的制备生物质珍珠贝材料的方法,其特征在于,步骤S3中,所述有机高分子材料为聚甲基丙烯酸甲酯、聚乙烯或聚乙烯醇;且所述热压温度为168℃,热压压力为5MPa,热压时间为1h。
6.一种仿生物质珍珠贝材料,根据权利要求1~5任一项所述的制备方法制备得到。
CN201910994863.8A 2019-10-18 2019-10-18 一种仿生物质珍珠贝材料及其制备方法 Active CN110724390B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910994863.8A CN110724390B (zh) 2019-10-18 2019-10-18 一种仿生物质珍珠贝材料及其制备方法
US16/894,915 US11597832B2 (en) 2019-10-18 2020-06-08 Biomimetic composite material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910994863.8A CN110724390B (zh) 2019-10-18 2019-10-18 一种仿生物质珍珠贝材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110724390A CN110724390A (zh) 2020-01-24
CN110724390B true CN110724390B (zh) 2021-08-10

Family

ID=69221543

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910994863.8A Active CN110724390B (zh) 2019-10-18 2019-10-18 一种仿生物质珍珠贝材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110724390B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111574137B (zh) * 2020-04-29 2021-04-23 武汉理工大学 一种具有层状结构的仿贝壳珍珠母层材料及其制备方法
CN114230422B (zh) * 2022-01-11 2022-10-18 中国工程物理研究院化工材料研究所 一种仿珍珠贝界面结构增强pbx复合物及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105385875A (zh) * 2015-12-04 2016-03-09 中北大学 一种仿贝壳珍珠层的镁基复合材料的制备方法
JP2016094541A (ja) * 2014-11-14 2016-05-26 国立研究開発法人産業技術総合研究所 熱可塑性樹脂組成物の製造方法
CN107033493A (zh) * 2017-05-03 2017-08-11 马鞍山纽泽科技服务有限公司 一种植物纤维环保装饰板
CN108110133A (zh) * 2017-11-22 2018-06-01 浙江农林大学 一种层状二维纳米片/碳化纤维复合材料及制备方法和应用
CN108794932A (zh) * 2018-06-29 2018-11-13 钦州市宝业坭兴陶厂 一种纳米碳酸钙的改性方法及其应用在pvc木塑板材
EP3493221A1 (en) * 2017-11-29 2019-06-05 RISE Acreo AB Method for manufacturing a conductive sheet
CN110126256A (zh) * 2019-05-24 2019-08-16 中南大学 一种仿生贝壳材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016094541A (ja) * 2014-11-14 2016-05-26 国立研究開発法人産業技術総合研究所 熱可塑性樹脂組成物の製造方法
CN105385875A (zh) * 2015-12-04 2016-03-09 中北大学 一种仿贝壳珍珠层的镁基复合材料的制备方法
CN107033493A (zh) * 2017-05-03 2017-08-11 马鞍山纽泽科技服务有限公司 一种植物纤维环保装饰板
CN108110133A (zh) * 2017-11-22 2018-06-01 浙江农林大学 一种层状二维纳米片/碳化纤维复合材料及制备方法和应用
EP3493221A1 (en) * 2017-11-29 2019-06-05 RISE Acreo AB Method for manufacturing a conductive sheet
CN108794932A (zh) * 2018-06-29 2018-11-13 钦州市宝业坭兴陶厂 一种纳米碳酸钙的改性方法及其应用在pvc木塑板材
CN110126256A (zh) * 2019-05-24 2019-08-16 中南大学 一种仿生贝壳材料的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Biodegradable polymer nanocomposites: An overview;Bari, Sarang S. 等;《POLYMER REVIEWS》;20161231;第56卷(第02期);第287-328页 *
Fabrication and performance of wood fiber/carbon nanotube composite binderless fiberboard.;Qian TeMeng 等;《Journal of Forestry Engineering》;20181231;第03卷(第04期);第107-111页 *
Layer-by-layer self-assembly of reduced graphene oxide on bamboo timber surface with improved decay resistance;Wang, Jin 等;《EUROPEAN JOURNAL OF WOOD AND WOOD PRODUCTS》;20180731;第76卷(第04期);第1223-1231页 *
大自然给予的启发——木材仿生科学刍议;李坚 等;《中国工程科学》;20140430;第16卷(第04期);第4-12+2页 *

Also Published As

Publication number Publication date
CN110724390A (zh) 2020-01-24

Similar Documents

Publication Publication Date Title
Yaraghi et al. Biomimetic structural materials: inspiration from design and assembly
US11597832B2 (en) Biomimetic composite material and preparation method thereof
Burgert et al. Bio-inspired functional wood-based materials–hybrids and replicates
Cantaert et al. Use of amorphous calcium carbonate for the design of new materials
Pei et al. Biopolymer nanoscale assemblies as building blocks for new materials: A review
Ling et al. Nanofibrils in nature and materials engineering
Duan et al. Recent advances in chitin based materials constructed via physical methods
Wang et al. Self-assembled, iridescent, crustacean-mimetic nanocomposites with tailored periodicity and layered cuticular structure
Matsumura et al. Formation of helically structured chitin/CaCO3 hybrids through an approach inspired by the biomineralization processes of crustacean cuticles
CN110724390B (zh) 一种仿生物质珍珠贝材料及其制备方法
Grunenfelder et al. Crustacean‐Derived Biomimetic Components and Nanostructured Composites
Lizundia et al. Biomimetic photonic materials derived from chitin and chitosan
Ifuku et al. Chitin nanofibers: preparations, modifications, and applications
He et al. Construction of novel cellulose/chitosan composite hydrogels and films and their applications
Wicklein et al. Functional hybrids based on biogenic nanofibrils and inorganic nanomaterials
WO2010073758A1 (ja) キチンナノファイバーの製造方法、キチンナノファイバーを含む複合材料および塗料組成物、ならびにキトサンナノファイバーの製造方法、キトサンナノファイバーを含む複合材料および塗料組成物
KR20140133094A (ko) 박테리아 셀룰로오스와 강화재료의 복합재 및 그 제조방법
JP5283050B2 (ja) 繊維強化複合材料
Thiruganasambanthan et al. Emerging developments on nanocellulose as liquid crystals: a biomimetic approach
Gong et al. Bioinspired graphene-based nanocomposites via ionic interfacial interactions
Kuo et al. Bioinspired environmentally friendly amorphous CaCO3-based transparent composites comprising cellulose nanofibers
Santmarti et al. Transparent poly (methyl methacrylate) composites based on bacterial cellulose nanofiber networks with improved fracture resistance and impact strength
Yu et al. Naturally or artificially constructed nanocellulose architectures for epoxy composites: a review
Huang et al. Robust galactomannan/graphene oxide film with ultra-flexible, gas barrier and self-clean properties
Kiangkitiwan et al. Preparation and properties of bacterial cellulose/graphene oxide composite films using dyeing method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant