CN110718301A - 基于动态脑功能网络的阿尔茨海默病辅助诊断装置及方法 - Google Patents

基于动态脑功能网络的阿尔茨海默病辅助诊断装置及方法 Download PDF

Info

Publication number
CN110718301A
CN110718301A CN201910916563.8A CN201910916563A CN110718301A CN 110718301 A CN110718301 A CN 110718301A CN 201910916563 A CN201910916563 A CN 201910916563A CN 110718301 A CN110718301 A CN 110718301A
Authority
CN
China
Prior art keywords
nuclear magnetic
magnetic resonance
dynamic
functional nuclear
feature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910916563.8A
Other languages
English (en)
Other versions
CN110718301B (zh
Inventor
信俊昌
卢思成
王中阳
王之琼
汪新蕾
陈金义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201910916563.8A priority Critical patent/CN110718301B/zh
Publication of CN110718301A publication Critical patent/CN110718301A/zh
Application granted granted Critical
Publication of CN110718301B publication Critical patent/CN110718301B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2411Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/33Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/38Registration of image sequences
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30016Brain

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Pathology (AREA)
  • Databases & Information Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明公布了一种基于动态脑功能网络的阿尔茨海默病辅助诊断装置及方法。诊断装置包括fMRI数据预处理单元、构建动态脑功能网络单元、生成用于训练的特征单元以及svm分类辅助诊断单元,该诊断装置的使用方法为:首先进行图像预处理,然后构建动态脑网络,其次计算分割后的脑网络的节点度量,并通过时间序列生成器将每个节点度量构成一个时间序列,随后通过特征提取器为构成的时间序列提取特征,再通过特征过滤器将过滤后的特征拼接成一个矩阵并通过特征筛选器筛选,最后通过数据训练器进行数据的分类训练,最终通过辅助诊断器实现对阿尔茨海默病的诊断。该方法克服了静态脑功能网络无法表示动态信息的缺陷,起到了更好的为医疗辅助诊断服务的效果。

Description

基于动态脑功能网络的阿尔茨海默病辅助诊断装置及方法
技术领域
本发明属于计算机辅助诊断技术领域,涉及一种基于支持向量机分类算法的阿尔茨海默病辅助诊断装置及方法,特别涉及一种基于动态脑功能网络的阿尔茨海默病辅助诊断装置及方法。
背景技术
近些年来,神经影像技术特别是功能影像学取得了飞速的进步,这为研究患有阿尔茨海默病病人各个脑区具有的功能提供了相应的技术。功能磁共振成像作为其中一种成熟的功能影像学检测技术,它的优势在于无创监测大脑功能和活动,时空分辨率较高。使用基于血氧水平依赖方法来测量大脑各个区域之间的相关性已被证明是研究大脑功能组织的有力工具。在静息态fMRI中,可以看出人脑的各个脑区在此时存在着有序的功能活动。
大脑是一个动态结构,随着时间的变化,大脑里的神经元之间的连接是变化的,基于动态网络的方法对脑功能连接网络进行分析,可以更好的分析出fMRI数据中每个时间段的瞬时特性。通过对动态脑功能网络的构建和分析,可以更好地描述大脑的活动状态以及各个神经元或脑区之间的交互。
发明内容
针对现有技术的不足,本发明的目的是提出基于动态脑功能网络的阿尔茨海默病辅助诊断装置及方法,利用支持向量机分类算法技术与构建动态脑功能网络技术对功能核磁共振图像(functional Magnetic Resonance Imaging,fMRI)进行脑网络的分类,进而能够有效的对阿尔茨海默病进行诊断,这种方法可以获取更多大脑动态活动的信息,并且可以准确地判断不同状态下脑网络之间的差异性,具体方案如下:
一种基于动态脑功能网络的阿尔茨海默病辅助诊断装置包括fMRI数据预处理单元、构建动态脑功能网络单元、生成用于训练的特征单元以及svm分类辅助诊断单元,首先将获取的i个待测功能核磁共振图像通过所述fMRI数据预处理单元得到预处理后的的i个标准功能核磁共振图像,然后将预处理后的i个标准功能核磁共振图像通过所述构建动态脑功能网络单元进行时间维度上的分割,构建出i个功能核磁共振图像的i*s个动态脑功能网络,其次将构建出的i*s个动态脑功能网络通过所述生成用于训练的特征单元横向的提取出每个动态脑功能网络的动态特征,最后将从i*s个动态脑功能网络提取出的经过特征过滤器过滤后的动态特征拼接成一个动态特征矩阵,最后通过所述svm分类辅助诊断单元使用Fisher算法进行特征筛选,筛选出具有代表性的特征,并进行训练,用于辅助诊断。
所述的fMRI数据预处理单元包括时间片校正器、头动校正器、空间标准化器、平滑降噪器,首先将获取的i个待测功能核磁共振图像通过所述时间片校正器进行时间片校正,得到i个时间片校正后的功能核磁共振图像,然后将所述i个时间校正后的功能核磁共振图像通过所述头动校正器进行头动校正,得到i个头动校正后的功能核磁共振图像,其次将所述i个头动校正后的功能核磁共振图像通过所述空间标准化器进行空间标准化,得到i个空间标准化后的功能核磁共振图像,最后将所述i个空间标准化后的功能核磁共振图像通过所述平滑降噪器进行平滑降噪,得到i个标准功能核磁共振图像;
所述时间片校正器用于将输入的i个待测功能核磁图像进行时间片校正,得到i个时间片校正后的功能核磁共振图像(I-1,I-2,I-3,…,I-i),其中i表示选取的待测功能核磁共振图像的个数;
所述头动校正器用于将i个时间片校正后的功能核磁图像(I-1,I-2,I-3,…,I-i)进行头动校正,得到i个头动校正后的功能核磁共振图像(H-1,H-2,H-3,...,H-i);
所述空间标准化器用于将i个头动校正后的功能核磁图像(H-1,H-2,H-3,...,H-i)进行空间标准化,得到i个空间标准化后的功能核磁共振图像(F-1,F-2,F-3,...,F-i);
所述平滑降噪器用于将i个空间标准化后的功能核磁共振图像(F-1,F-2,F-3,…,F-i)进行平滑降噪,得到i个标准功能核磁共振图像(S-1,S-2,S-3,…,S-i)。
所述构建动态脑功能网络单元包括模板匹配器、时间序列分割器以及脑网络构建器,首先将i个标准功能核磁共振图像中的每个标准功能核磁共振图像通过所述模板匹配器与规格为m的标准匹配模板进行感兴趣区域的匹配,则每个匹配后的功能核磁共振图像包含m个脑区,然后将匹配后的功能核磁共振图像通过所述时间序列分割器将每个脑区的时间序列进行分割,得到s段瞬时时间序列,最后将分割得到的s段瞬时时间序列通过所述脑网络构建器构建出i个分割后的功能核磁共振图像的i*s个动态脑功能网络;
所述模板匹配器用于将每个标准功能核磁共振图像与规格为m的标准匹配模板进行匹配,匹配后的每个功能核磁共振图像包含m个脑区,i个匹配后的功能核磁共振图像表示为(A-1,A-2,A-3,...,A-i);
所述时间序列分割器用于将每个匹配后的功能核磁共振图像中的m个脑区的时间序列进行分割,将每个脑区的时间序列分割为s段瞬时时间序列,每段瞬时时间序列代表一个脑区的瞬时信息(T-1,T-2,...,T-s),i个分割后的功能核磁共振图像表示为
Figure BDA0002216257420000031
其中s的取值范围根据预设的分割间隔确定;
所述脑网络构建器用于将每个分割后的功能核磁共振图像中的s段瞬时时间序列构建出s个动态脑功能网络,则i个分割后的功能核磁共振图像得到i*s个动态脑功能网络
Figure BDA0002216257420000032
所述生成用于训练的特征单元包括节点度量生成器、时间序列生成器、特征提取器以及特征过滤器,首先将构建动态脑功能网络单元输出的i个分割后的功能核磁共振图像的i*s个动态脑功能网络通过所述节点度量生成器计算i*s个动态脑功能网络的节点度量,然后通过时间序列生成器将i*s个动态脑功能网络中的每个节点度量构成一个时间序列,其次通过所述特征提取器为每个节点度量形成的时间序列提取新特征值,最后将提取到的所有的新特征值通过所述特征过滤器过滤后拼接为一个动态特征矩阵;
所述节点度量生成器用于生成i*s个动态脑功能网络的节点度量,并计算得到z个动态特征的特征值表示为
Figure BDA0002216257420000033
所述z个动态特征包括i*s*x个全局特征和i*s*m*y个局部特征,即z=i*s*x+i*s*m*y,x表示每个动态脑功能网络计算的全局特征的个数,y表示每个动态脑功能网络计算的局部特征的个数;
所述时间序列生成器用于将得到的每组特征值生成一个时间序列,则i*s个动态脑功能网络构成的z/s个时间序列表示为
Figure BDA0002216257420000034
所述每组特征值包括全局的每组特征值和局部的每组特征值,所述全局的每组特征值包括每个分割后的功能核磁共振图像中的每个全局特征的s个动态脑功能网络的特征值,所述局部的每组特征值包括从每个分割后的功能核磁共振图像中的s*m*y个局部特征中的每个局部特征按照m个脑区分组得到的s个动态脑功能网络的特征值;
所述特征提取器用于对每组特征生成的时间序列,基于小波的时间序列熵再次提取特征,得到z/s个特征的新特征值
Figure BDA0002216257420000035
所述特征过滤器用于对所述节点度量中的i*s*m*y个局部特征进行过滤,首先通过节点度量中的degree方法计算出每个匹配后的功能核磁共振图像中的每个脑区的degree,并计算出每个匹配后的功能核磁共振图像中的m个脑区degree的平均值
Figure BDA0002216257420000036
然后计算出每个匹配后的功能核磁共振图像中的m个脑区的标准方差σ,其次将所述m个脑区中degree属于区间
Figure BDA0002216257420000037
的脑区过滤为关键脑区,最后将i个匹配后的功能核磁共振图像过滤得到的N个脑区的N*y个局部特征生成的新特征值与i*x个全局特征生成的新特征值通过特征过滤器拼接为一个动态特征矩阵,
Figure BDA0002216257420000041
其中nj表示第j个匹配后的功能核磁共振图像中的关键脑区的个数,i表示匹配后的功能核磁共振图像的个数。
所述的svm分类辅助诊断单元包括特征筛选器、数据训练器、辅助诊断器,首先将生成用于训练的特征单元输出的动态特征矩阵通过特征筛选器,使用Fisher算法对所述动态特征矩阵进行动态特征筛选,然后通过数据训练器进行分类训练,最终通过辅助诊断器实现对阿尔茨海默病的诊断;
所述特征筛选器用于将特征过滤器提取的动态特征矩阵,使用Fisher算法对所述动态特征矩阵中的N*y+i*x个特征进行打分,并按照分数从高到底的顺序排序,筛选分数高的前w个特征作为最具有代表性的特征,w根据实际情况确定;
所述数据训练器用于在支持向量机分类中,根据功能核磁共振图像对筛选出的前w个最具有代表性的特征进行训练得到一个分类器;
所述辅助诊断器用于根据训练得到的分类器进行阿尔茨海默病的辅助诊断。
一种基于动态脑功能网络的阿尔茨海默病辅助诊断装置的使用方法,包括以下步骤:
步骤1:功能核磁共振图像的预处理;
步骤2:利用预处理后的图像构建动态脑功能网络;
步骤3:对动态脑功能网络计算节点度量,并提取每个动态脑功能网络的动态特征,然后将过滤后的动态特征的特征值拼接为一个动态特征矩阵;
步骤4:运用生成的动态特征矩阵对阿尔茨海默病进行辅助诊断。
所述的步骤1功能核磁共振图像的预处理包括以下步骤:
1.1)将获取的i个待测功能核磁共振图像通过所述时间片校正器进行时间片校正,得到i个时间片校正后的功能核磁共振图像(I-1,I-2,I-3,…,I-i),其中i表示选取的待测功能核磁共振图像的个数;
1.2)将所述i个时间校正后的功能核磁共振图像通过所述头动校正器进行头动校正,得到i个头动校正后的功能核磁共振图像(H-1,H-2,H-3,...,H-i);
1.3)将所述i个头动校正后的功能核磁共振图像通过所述空间标准化器进行空间标准化,得到i个空间标准化后的功能核磁共振图像(F-1,F-2,F-3,...,F-i);
1.4)所述i个空间标准化后的功能核磁共振图像通过所述平滑降噪器进行平滑降噪,得到i个标准功能核磁共振图像(S-1,S-2,S-3,...,S-i)。
所述的步骤2利用预处理后的图像构建动态脑功能网络,包括以下步骤:
2.1)将i个标准功能核磁共振图像中的每个标准功能核磁共振图像通过所述模板匹配器与规格为m的标准匹配模板进行感兴趣区域的匹配,匹配后的每个功能核磁共振图像包含m个脑区,得到i个匹配后的功能核磁共振图像(A-1,A-2,A-3,...,A-i);
2.2)将i个匹配后的功能核磁共振图像通过所述时间序列分割器对每个匹配后的功能核磁共振图像中的每个脑区的时间序列进行分割,得到s段瞬时时间序列,每段瞬时时间序列代表一个脑区的瞬时信息(T-1,T-2,...,T-s),i个分割后的功能核磁共振图像表示为
Figure BDA0002216257420000051
其中s的取值范围根据预设的分割间隔确定;
2.3)将分割得到的s段瞬时时间序列通过所述脑网络构建器构建出i个分割后的功能核磁共振图像的i*s个动态脑功能网络
Figure BDA0002216257420000052
所述的步骤3对动态脑功能网络计算节点度量,并提取每个动态脑功能网络的动态特征,然后将过滤后的动态特征的特征值拼接为一个动态特征矩阵,包括以下步骤:
3.1)将i个分割后的功能核磁共振图像的i*s个动态脑功能网络通过所述节点度量生成器生成i*s个动态脑功能网络的节点度量,并计算得到z个动态特征的特征值表示为
Figure BDA0002216257420000053
所述z个动态特征包括i*s*x个全局特征和i*s*m*y个局部特征,即z=i*s*x+i*s*m*y,x表示每个动态脑功能网络计算的全局特征的个数,y表示每个动态脑功能网络计算的局部特征的个数;
3.2)将每组特征值通过时间序列生成器生成一个时间序列,则i*s个动态脑功能网络构成的z/s个时间序列表示为
Figure BDA0002216257420000054
所述每组特征值包括全局的每组特征值和局部的每组特征值,所述全局的每组特征值包括每个分割后的功能核磁共振图像中的每个全局特征的s个动态脑功能网络的特征值,所述局部的每组特征值包括从每个分割后的功能核磁共振图像中的s*m*y个局部特征中的每个局部特征按照m个脑区分组得到的s个动态脑功能网络的特征值;
3.3)将每组特征生成的时间序列通过特征提取器中的基于小波的时间序列熵再次提取特征,得到z/s个特征的新特征值
Figure BDA0002216257420000055
3.4)将所述节点度量中的i*s*m*y个局部特征通过特征过滤器进行过滤,首先通过节点度量中的degree方法计算出每个匹配后的功能核磁共振图像中的每个脑区的degree,并计算出每个匹配后的功能核磁共振图像中的m个脑区degree的平均值
Figure BDA0002216257420000061
然后计算出每个匹配后的功能核磁共振图像中的m个脑区的标准方差σ,其次将所述m个脑区中degree属于区间
Figure BDA0002216257420000062
的脑区过滤为关键脑区,最后将i个匹配后的功能核磁共振图像过滤得到的N个脑区的N*y个局部特征生成的新特征值与i*x个全局特征生成的新特征值通过特征过滤器拼接为一个动态特征矩阵,
Figure BDA0002216257420000063
其中nj表示第j个匹配后的功能核磁共振图像中的关键脑区的个数,i表示匹配后的功能核磁共振图像的个数;
所述步骤4运用生成的动态特征矩阵对阿尔茨海默病进行辅助诊断,包括以下步骤:
4.1)将特征过滤器提取的动态特征矩阵通过特征筛选器中的Fisher算法对所述动态特征矩阵中的N*y+i*x个特征进行打分,并按照分数从高到底的顺序排序,筛选分数高的前w个特征作为最具有代表性的特征,w根据实际情况确定;
4.2)将筛选出的前w个最具有代表性的特征通过数据训练器中的支持向量机进行训练得到分类器;
4.3)使用辅助诊断器通过得到的分类器进行阿尔茨海默病的辅助诊断。
本发明的有益效果是:
本发明是一种基于动态脑功能网络的阿尔茨海默病辅助诊断装置及方法,克服了以往的静态脑功能网络无法表示动态信息的缺陷,使得对大脑活动信息进行动态分析成为可能,令功能核磁共振图像的信号信息得到充分发挥,起到了更好的为医疗辅助诊断服务的效果。
附图说明
图1为本发明实施例中的基于动态脑功能网络的阿尔茨海默病辅助诊断装置结构框图。
图2为本发明实施例中的动态脑功能网络构建方法流程图。
图3为本发明实施例中的动态信息特征提取和过滤及辅助诊断的方法流程图。
具体实施方式
下面是结合附图对本发明的技术方案进行详细说明。
在fMRI数据中,不同时间下的信号包含了大脑活动信息,而现有的研究都是基于对复杂网络进行静态网络分析,忽略了大脑是一个动态结构,随着时间的变化,大脑里的神经元之间的连接是变化的,因而需要构建动态脑功能网络来对大脑活动信息进行更全面的描述,并计算每个动态脑功能网络的节点度量特征值的特征。因此,提出了基于动态脑功能网络的设计方法,既考虑了脑网络在多个时间段下的瞬时差异,又考虑到了脑网络的结构,并将其用于基于支持向量机进行阿尔茨海默病的辅助诊断。
如图1所示,基于动态脑功能网络的阿尔茨海默病辅助诊断装置包括fMRI数据预处理单元、构建动态脑功能网络单元、生成用于训练的特征单元以及svm分类辅助诊断单元,首先将获取的606个待测功能核磁共振图像通过所述fMRI数据预处理单元得到预处理后的606个标准功能核磁共振图像,然后将预处理后的606个标准功能核磁共振图像通过所述构建动态脑功能网络单元进行时间维度上的分割,构建出606个功能核磁共振图像的15150个动态脑功能网络,其次将构建出的15150个动态脑功能网络通过所述生成用于训练的特征单元横向的提取出每个动态脑功能网络的动态特征,最后将从15150个动态脑功能网络提取出的经过特征过滤器过滤后的动态特征拼接成一个动态特征矩阵,最后通过所述svm分类辅助诊断单元使用Fisher算法进行特征筛选,筛选出具有代表性的特征,并进行训练,用于辅助诊断。
所述fMRI数据预处理单元包括时间片校正器、头动校正器、空间标准化器、平滑降噪器,首先将获取的606个待测功能核磁共振图像通过所述时间片校正器进行时间片校正,得到606个时间片校正后的功能核磁共振图像,然后将所述606个时间校正后的功能核磁共振图像通过所述头动校正器进行头动校正,得到606个头动校正后的功能核磁共振图像,其次将所述606个头动校正后的功能核磁共振图像通过所述空间标准化器进行空间标准化,得到606个空间标准化后的功能核磁共振图像,最后将所述606个空间标准化后的功能核磁共振图像通过所述平滑降噪器进行平滑降噪,得到606个标准功能核磁共振图像;
所述时间片校正器用于将输入的606个待测功能核磁图像进行时间片校正,得到606个时间片校正后的功能核磁共振图像(I-1,I-2,I-3,...,I-606);
所述头动校正器用于将606个时间片校正后的功能核磁图像(I-1,I-2,I-3,...,I-606)进行头动校正,得到606个头动校正后的功能核磁共振图像(H-1,H-2,H-3,...,H-606);
所述空间标准化器用于将606个头动校正后的功能核磁图像(H-1,H-2,H-3,...,H-606)进行空间标准化,得到606个空间标准化后的功能核磁共振图像(F-1,F-2,F-3,...,F-606);
所述平滑降噪器用于将606个空间标准化后的功能核磁共振图像(F-1,F-2,F-3,...,F-606)进行平滑降噪,得到606个标准功能核磁共振图像(S-1,S-2,S-3,...,S-606)。
所述构建动态脑功能网络单元包括模板匹配器、时间序列分割器以及脑网络构建器,首先将606个标准功能核磁共振图像中的每个标准功能核磁共振图像通过所述模板匹配器与264个脑区的标准power-264模板进行感兴趣区域的匹配,则每个匹配后的功能核磁共振图像包含264个脑区,然后将匹配后的功能核磁共振图像通过所述时间序列分割器将每个脑区的时间序列进行分割,得到25段瞬时时间序列,最后将分割得到的25段瞬时时间序列通过所述脑网络构建器构建出606个分割后的功能核磁共振图像的15150个动态脑功能网络;
所述模板匹配器用于将每个标准功能核磁共振图像与264个脑区的标准power-264模板进行匹配,匹配后的每个功能核磁共振图像包含264个脑区,606个匹配后的功能核磁共振图像表示为(A-1,A-2,A-3,...,A-606);
所述时间序列分割器用于将每个匹配后的功能核磁共振图像中的264个脑区的时间序列进行分割,将每个脑区的时间序列分割为25段瞬时时间序列,每段瞬时时间序列代表一个脑区的瞬时信息(T-1,T-2,...,T-25),606个分割后的功能核磁共振图像表示为
Figure BDA0002216257420000081
所述脑网络构建器用于将每个分割后的功能核磁共振图像中的25段瞬时时间序列构建出25个动态脑功能网络,则606个分割后的功能核磁共振图像得到15150个动态脑功能网络
Figure BDA0002216257420000082
所述生成用于训练的特征单元包括节点度量生成器、时间序列生成器、特征提取器以及特征过滤器,首先将构建动态脑功能网络单元输出的606个分割后的功能核磁共振图像的15150个动态脑功能网络通过所述节点度量生成器计算15150个动态脑功能网络的节点度量,然后通过时间序列生成器将15150个动态脑功能网络中的每个节点度量构成一个时间序列,其次通过所述特征提取器为每个节点度量形成的时间序列提取新特征值,最后将提取到的所有的新特征值通过所述特征过滤器过滤后拼接为一个动态特征矩阵;
所述节点度量生成器用于生成15150个动态脑功能网络的节点度量,并计算得到28057800个动态特征的特征值表示为
Figure BDA0002216257420000083
所述28057800个动态特征包括60600个全局特征和27997200个局部特征,每个动态脑功能网络计算的全局特征的个数为4个,每个动态脑功能网络计算的局部特征的个数为7个;
所述时间序列生成器用于将得到的每组特征值生成一个时间序列,则15150个动态脑功能网络构成的1122312个时间序列表示为
Figure BDA0002216257420000084
所述每组特征值包括全局的每组特征值和局部的每组特征值,所述全局的每组特征值包括每个分割后的功能核磁共振图像中的每个全局特征的25个动态脑功能网络的特征值,所述局部的每组特征值包括从每个分割后的功能核磁共振图像中的46200个局部特征中的每个局部特征按照264个各脑区分组得到的25个动态脑功能网络的特征值;
所述特征提取器用于对每组特征生成的时间序列,基于小波的时间序列熵再次提取特征,得到1122312个特征的新特征值
Figure BDA0002216257420000091
所述特征过滤器用于对所述节点度量中的27997200个局部特征进行过滤,首先通过节点度量中的degree方法计算出每个匹配后的功能核磁共振图像中的每个脑区的degree(度),并计算出每个匹配后的功能核磁共振图像中的264个脑区degree的平均值
Figure BDA0002216257420000092
然后计算出每个匹配后的功能核磁共振图像中的264个脑区的标准方差σ,其次将264个脑区中degree属于区间
Figure BDA0002216257420000093
的脑区过滤为关键脑区,最后将606个匹配后的功能核磁共振图像过滤得到的8484个脑区的59388个局部特征生成的新特征值与2424个全局特征生成的新特征值通过特征过滤器拼接为一个动态特征矩阵。
所述的svm分类辅助诊断单元包括特征筛选器、数据训练器、辅助诊断器,首先将生成用于训练的特征单元输出的动态特征矩阵通过特征筛选器,使用Fisher算法对所述动态特征矩阵进行动态特征筛选,然后通过数据训练器进行分类训练,最终通过辅助诊断器实现对阿尔茨海默病的诊断;
所述特征筛选器用于将特征过滤器提取的动态特征矩阵,使用Fisher算法对所述动态特征矩阵中的61812个特征进行打分,并按照分数从高到底的顺序排序,筛选分数高的前80个特征作为最具有代表性的特征;
所述数据训练器用于在支持向量机分类中,根据功能核磁共振图像对筛选出的前80个最具有代表性的特征进行训练得到一个分类器;
所述辅助诊断器用于根据训练得到的分类器进行阿尔茨海默病的辅助诊断。
一种基于动态脑功能网络的阿尔茨海默病辅助诊断装置的使用方法,包括以下步骤:
步骤1:功能核磁共振图像的预处理,包括以下步骤:
1.1)将获取的606个待测功能核磁共振图像通过所述时间片校正器进行时间片校正,得到606个时间片校正后的功能核磁共振图像(I-1,I-2,I-3,…,I-606);
1.2)将所述606个时间校正后的功能核磁共振图像通过所述头动校正器进行头动校正,得到606个头动校正后的功能核磁共振图像(H-1,H-2,H-3,…,H-606);
1.3)将所述606个头动校正后的功能核磁共振图像通过所述空间标准化器进行空间标准化,得到606个空间标准化后的功能核磁共振图像(F-1,F-2,F-3,…,F-606);
1.4)所述606个空间标准化后的功能核磁共振图像通过所述平滑降噪器进行平滑降噪,得到606个标准功能核磁共振图像(S-1,S-2,S-3,...,S-606)。
步骤2:利用预处理后的图像构建动态脑功能网络,具体构建流程如图2所示,包括以下步骤:
2.1)将606个标准功能核磁共振图像中的每个标准功能核磁共振图像通过所述模板匹配器与264个脑区的标准power-264模板进行匹配,匹配后的每个功能核磁共振图像包含264个脑区,得到606个匹配后的功能核磁共振图像(A-1,A-2,A-3,...,A-606);
2.2)将606个匹配后的功能核磁共振图像通过所述时间序列分割器对每个匹配后的功能核磁共振图像中的每个脑区的时间序列进行分割,得到25段瞬时时间序列,每段瞬时时间序列代表一个脑区的瞬时信息(T-1,T-2,...,T-25),606个分割后的功能核磁共振图像表示为
Figure BDA0002216257420000101
并将分割后的每个图像依次通过互信息计算器,对分割得到的图像的各个节点之间的匹配关系进行计算,确定每个动态脑功能网络中边的表示,采用互信息的方法来计算各个节点之间的相关关系,并将其构成关联矩阵;
2.3)将计算得到的互信息值通过所述脑网络构建器构建出606个分割后的功能核磁共振图像的15150个动态脑功能网络
Figure BDA0002216257420000102
计算出fMRI图像任意两个节点的互信息并得到关联矩阵后,设置互信息的阈值为0.18,将互信息值与设定的阈值0.18进行比较,当互信息值比设定的阈值0.18大时,将其边设为1,即两节点之间有关联,否则将其边设为0,即无关联,由此将关联矩阵转化为邻接矩阵,构建出动态脑功能网络。
本实施方式是对功能核磁共振图像进行计算机辅助诊断,帮助医生进行诊断,其中动态信息特征提取和过滤和筛选及辅助诊断的方法流程图如图3所示,具体步骤包括步骤3和步骤4两部分。
步骤3对动态脑功能网络计算节点度量,并提取每个动态脑功能网络的动态特征,然后将过滤后的动态特征的特征值拼接为一个动态特征矩阵,包括以下步骤:
3.1)将606个分割后的功能核磁共振图像的15150个动态脑功能网络通过所述节点度量生成器生成15150个动态脑功能网络的节点度量,并计算得到28057800个动态特征的特征值表示为所述28057800个动态特征包括60600个全局特征和27997200个局部特征,每个动态脑功能网络计算的全局特征的个数为4个,每个动态脑功能网络计算的局部特征的个数为7个;
4个全局特征分别为:clustering_coefficients(聚类系数)、characteristicpath length(特征路径长度)、Global efficiency(全局效率)、Transitivity(传递性);
7个局部特征分别为:Local efficiency(局部效率)、degree(度)、betweennesscentrality(中介中心性)、Pagerank centrality(pagerank中心性)、node strength(节点强度)、k-coreness centrality(k-核心中心性)、flow coefficient(流量系数)。
3.2)将每组特征值通过时间序列生成器生成一个时间序列,则15150个动态脑功能网络构成的1122312个时间序列表示为所述每组特征值包括全局的每组特征值和局部的每组特征值,所述全局的每组特征值包括每个分割后的功能核磁共振图像中的每个全局特征的25个动态脑功能网络的特征值,所述局部的每组特征值包括从每个分割后的功能核磁共振图像中的46200个局部特征中的每个局部特征按照264个脑区分组得到的25个动态脑功能网络的特征值;
对于一个功能核磁共振图像可以通过时间序列分割器再通过脑网络构建器,构建25个脑功能网络,每个构成的脑网络计算全局特征和局部特征,对于每种特征在25个脑功能网络下可以通过时间序列生成器生成具有25个时间点的时间序列。
3.3)将每组特征生成的时间序列通过特征提取器中的基于小波的时间序列熵再次提取特征,得到1122312个特征的新特征值
基于小波的时间序列熵再次提取特征。熵这个概念最早是用于热力学中,毕竟这个字是火字旁,用于衡量一个***能量的不可用程度,熵越大,能量的不可用程度就越大;越小能量的不可用程度越低。它的物理意义是体系中混乱程度或者复杂程度的度量。关于熵的应用也在不断拓展,从热力学到生物学、物理学,以及在时间序列分析上都有应用。香农熵(信息熵)是一个数学上颇为抽象的概念,可以把信息熵理解成某种特定信息的出现概率(离散随机事件的出现概率)。一个***越是有序,信息熵就越低;反之,一个***越是混乱,信息熵就越高。信息熵也可以说是***有序化程度的一个度量
3.4)将所述节点度量中的27997200个局部特征通过特征过滤器进行过滤,首先通过节点度量中的degree方法计算出每个匹配后的功能核磁共振图像中的每个脑区的degree(度),并计算出每个匹配后的功能核磁共振图像中的264个脑区degree的平均值
Figure BDA0002216257420000113
然后计算出每个匹配后的功能核磁共振图像中的264个脑区的标准方差σ,其次将264个脑区中degree属于区间
Figure BDA0002216257420000114
的脑区过滤为关键脑区,最后将606个匹配后的功能核磁共振图像过滤得到的8484个脑区的59388个局部特征生成的新特征值与2424个全局特征生成的新特征值通过特征过滤器拼接为一个动态特征矩阵。
步骤4运用生成的动态特征矩阵对阿尔茨海默病进行辅助诊断,包括以下步骤:
4.1)将特征过滤器提取的动态特征矩阵通过特征筛选器中的Fisher算法对所述动态特征矩阵中的61812个特征进行打分,并按照分数从高到底的顺序排序,筛选分数高的前80个特征作为最具有代表性的特征;
将所有功能核磁共振图像构建的动态脑功能网络,对于所有节点度量生成的时间序列提取的特征拼成一个矩阵,通过Fisher算法进行特征筛选,Fisher准则基本原理是找到一个最合适的投影轴,使两类样本在该轴上投影之间的距离尽可能远,而每一类样本的投影尽可能紧凑,从而使分类效果为最佳。
4.2)将筛选出的前80个最具有代表性的特征通过数据训练器中的支持向量机进行训练得到分类器;
4.3)使用辅助诊断器通过得到的分类器进行阿尔茨海默病的辅助诊断。

Claims (10)

1.一种基于动态脑功能网络的阿尔茨海默病辅助诊断装置,其特征在于,包括fMRI数据预处理单元、构建动态脑功能网络单元、生成用于训练的特征单元以及svm分类辅助诊断单元,首先将获取的i个待测功能核磁共振图像通过所述fMRI数据预处理单元得到预处理后的的i个标准功能核磁共振图像,然后将预处理后的i个标准功能核磁共振图像通过所述构建动态脑功能网络单元进行时间维度上的分割,构建出i个功能核磁共振图像的i*s个动态脑功能网络,其次将构建出的i*s个动态脑功能网络通过所述生成用于训练的特征单元横向的提取出每个动态脑功能网络的动态特征,最后将从i*s个动态脑功能网络提取出的经过特征过滤器过滤后的动态特征拼接成一个矩阵,最后通过所述svm分类辅助诊断单元使用Fisher算法进行特征筛选,筛选出具有代表性的特征,并进行训练,用于辅助诊断。
2.根据权利要求1所述的一种基于动态脑功能网络的阿尔茨海默病辅助诊断装置,其特征在于,所述的fMRI数据预处理单元包括时间片校正器、头动校正器、空间标准化器、平滑降噪器,首先将获取的i个待测功能核磁共振图像通过所述时间片校正器进行时间片校正,得到i个时间片校正后的功能核磁共振图像,然后将所述i个时间校正后的功能核磁共振图像通过所述头动校正器进行头动校正,得到i个头动校正后的功能核磁共振图像,其次将所述i个头动校正后的功能核磁共振图像通过所述空间标准化器进行空间标准化,得到i个空间标准化后的功能核磁共振图像,最后将所述i个空间标准化后的功能核磁共振图像通过所述平滑降噪器进行平滑降噪,得到i个标准功能核磁共振图像;
所述时间片校正器用于将输入的i个待测功能核磁图像进行时间片校正,得到i个时间片校正后的功能核磁共振图像(I-1,I-2,I-3,…,I-i),其中i表示选取的待测功能核磁共振图像的个数;
所述头动校正器用于将i个时间片校正后的功能核磁图像(I-1,I-2,I-3,...,I-i)进行头动校正,得到i个头动校正后的功能核磁共振图像(H-1,H-2,H-3,...,H-i);
所述空间标准化器用于将i个头动校正后的功能核磁图像(H-1,H-2,H-3,...,H-i)进行空间标准化,得到i个空间标准化后的功能核磁共振图像(F-1,F-2,F-3,...,F-i);
所述平滑降噪器用于将i个空间标准化后的功能核磁共振图像(F-1,F-2,F-3,...,F-i)进行平滑降噪,得到i个标准功能核磁共振图像(S-1,S-2,S-3,...,S-i)。
3.根据权利要求1所述的一种基于动态脑功能网络的阿尔茨海默病辅助诊断装置,其特征在于,所述构建动态脑功能网络单元包括模板匹配器、时间序列分割器以及脑网络构建器,首先将i个标准功能核磁共振图像中的每个标准功能核磁共振图像通过所述模板匹配器与规格为m的标准匹配模板进行感兴趣区域的匹配,则每个匹配后的功能核磁共振图像包含m个脑区,然后将匹配后的功能核磁共振图像通过所述时间序列分割器将每个脑区的时间序列进行分割,得到s段瞬时时间序列,最后将分割得到的s段瞬时时间序列通过所述脑网络构建器构建出i个分割后的功能核磁共振图像的i*s个动态脑功能网络;
所述模板匹配器用于将每个标准功能核磁共振图像与规格为m的标准匹配模板进行匹配,匹配后的每个功能核磁共振图像包含m个脑区,i个匹配后的功能核磁共振图像表示为(A-1,A-2,A-3,...,A-i);
所述时间序列分割器用于将每个匹配后的功能核磁共振图像中的m个脑区的时间序列进行分割,将每个脑区的时间序列分割为s段瞬时时间序列,每段瞬时时间序列代表一个脑区的瞬时信息(T-1,T-2,...,T-s),i个分割后的功能核磁共振图像表示为
Figure FDA0002216257410000021
其中s的取值范围根据预设的分割间隔确定;
所述脑网络构建器用于将每个分割后的功能核磁共振图像中的s段瞬时时间序列构建出s个动态脑功能网络,则i个分割后的功能核磁共振图像得到i*s个动态脑功能网络
Figure FDA0002216257410000022
4.根据权利要求1所述的一种基于动态脑功能网络的阿尔茨海默病辅助诊断装置,其特征在于,所述生成用于训练的特征单元包括节点度量生成器、时间序列生成器、特征提取器以及特征过滤器,首先将构建动态脑功能网络单元输出的i个分割后的功能核磁共振图像的i*s个动态脑功能网络通过所述节点度量生成器计算i*s个动态脑功能网络的节点度量,然后通过时间序列生成器将i*s个动态脑功能网络中的每个节点度量构成一个时间序列,其次通过所述特征提取器为每个节点度量形成的时间序列提取新特征值,最后将提取到的所有的新特征值通过所述特征过滤器过滤后拼接为一个动态特征矩阵;
所述节点度量生成器用于生成i*s个动态脑功能网络的节点度量,并计算得到z个动态特征的特征值表示为
Figure FDA0002216257410000023
所述z个动态特征包括i*s*x个全局特征和i*s*m*y个局部特征,即z=i*s*x+i*s*m*y,x表示每个动态脑功能网络计算的全局特征的个数,y表示每个动态脑功能网络计算的局部特征的个数;
所述时间序列生成器用于将得到的每组特征值生成一个时间序列,则i*s个动态脑功能网络构成的z/s个时间序列表示为
Figure FDA0002216257410000024
所述每组特征值包括全局的每组特征值和局部的每组特征值,所述全局的每组特征值包括每个分割后的功能核磁共振图像中的每个全局特征的s个动态脑功能网络的特征值,所述局部的每组特征值包括从每个分割后的功能核磁共振图像中的s*m*y个局部特征中的每个局部特征按照m个脑区分组得到的s个动态脑功能网络的特征值;
所述特征提取器用于对每组特征生成的时间序列,基于小波的时间序列熵再次提取特征,得到z/s个特征的新特征值
Figure FDA0002216257410000031
所述特征过滤器用于对所述节点度量中的i*s*m*y个局部特征进行过滤,首先通过节点度量中的degree方法计算出每个匹配后的功能核磁共振图像中的每个脑区的degree,并计算出每个匹配后的功能核磁共振图像中的m个脑区degree的平均值
Figure FDA0002216257410000032
然后计算出每个匹配后的功能核磁共振图像中的m个脑区的标准方差σ,其次将所述m个脑区中degree属于区间
Figure FDA0002216257410000033
的脑区过滤为关键脑区,最后将i个匹配后的功能核磁共振图像过滤得到的N个脑区的N*y个局部特征生成的新特征值与i*x个全局特征生成的新特征值通过特征过滤器拼接为一个动态特征矩阵,
Figure FDA0002216257410000034
其中nj表示第j个匹配后的功能核磁共振图像中的关键脑区的个数,i表示匹配后的功能核磁共振图像的个数。
5.根据权利要求1所述的一种基于动态脑功能网络的阿尔茨海默病辅助诊断装置,其特征在于,所述的svm分类辅助诊断单元包括特征筛选器、数据训练器、辅助诊断器,首先将生成用于训练的特征单元输出的动态特征矩阵通过特征筛选器,使用Fisher算法对所述动态特征矩阵进行动态特征筛选,然后通过数据训练器进行分类训练,最终通过辅助诊断器实现对阿尔茨海默病的诊断;
所述特征筛选器用于将特征过滤器提取的动态特征矩阵,使用Fisher算法对所述动态特征矩阵中的N*y+i*x个特征进行打分,并按照分数从高到底的顺序排序,筛选分数高的前w个特征作为最具有代表性的特征,w根据实际情况确定;
所述数据训练器用于在支持向量机分类中,根据功能核磁共振图像对筛选出的前w个最具有代表性的特征进行训练得到一个分类器;
所述辅助诊断器用于根据训练得到的分类器进行阿尔茨海默病的辅助诊断。
6.权利要求1-5任意一项所述的一种基于动态脑功能网络的阿尔茨海默病辅助诊断装置的使用方法,其特征在于,包括以下步骤:
步骤1:功能核磁共振图像的预处理;
步骤2:利用预处理后的图像构建动态脑功能网络;
步骤3:对动态脑功能网络计算节点度量,并提取每个动态脑功能网络的动态特征,然后将过滤后的动态特征的特征值拼接为一个动态特征矩阵;
步骤4:运用生成的动态特征矩阵对阿尔茨海默病进行辅助诊断。
7.根据权利要求6所述的一种基于动态脑功能网络的阿尔茨海默病辅助诊断装置的使用方法,其特征在于,所述的步骤1功能核磁共振图像的预处理包括以下步骤:
1.1)将获取的i个待测功能核磁共振图像通过所述时间片校正器进行时间片校正,得到i个时间片校正后的功能核磁共振图像(I-1,I-2,I-3,…,I-i),其中i表示选取的待测功能核磁共振图像的个数;
1.2)将所述i个时间校正后的功能核磁共振图像通过所述头动校正器进行头动校正,得到i个头动校正后的功能核磁共振图像(H-1,H-2,H-3,...,H-i);
1.3)将所述i个头动校正后的功能核磁共振图像通过所述空间标准化器进行空间标准化,得到i个空间标准化后的功能核磁共振图像(F-1,F-2,F-3,...,F-i);
1.4)所述i个空间标准化后的功能核磁共振图像通过所述平滑降噪器进行平滑降噪,得到i个标准功能核磁共振图像(S-1,S-2,S-3,...,S-i)。
8.根据权利要求6所述的一种基于动态脑功能网络的阿尔茨海默病辅助诊断装置的使用方法,其特征在于,所述的步骤2利用预处理后的图像构建动态脑功能网络,包括以下步骤:
2.1)将i个标准功能核磁共振图像中的每个标准功能核磁共振图像通过所述模板匹配器与规格为m的标准匹配模板进行感兴趣区域的匹配,匹配后的每个功能核磁共振图像包含m个脑区,得到i个匹配后的功能核磁共振图像(A-1,A-2,A-3,...,A-i);
2.2)将i个匹配后的功能核磁共振图像通过所述时间序列分割器对每个匹配后的功能核磁共振图像中的每个脑区的时间序列进行分割,得到s段瞬时时间序列,每段瞬时时间序列代表一个脑区的瞬时信息(T-1,T-2,...,T-s),i个分割后的功能核磁共振图像表示为其中s的取值范围根据预设的分割间隔确定;
2.3)将分割得到的s段瞬时时间序列通过所述脑网络构建器构建出i个分割后的功能核磁共振图像的i*s个动态脑功能网络
Figure FDA0002216257410000042
9.根据权利要求6所述的一种基于动态脑功能网络的阿尔茨海默病辅助诊断装置的使用方法,其特征在于,所述的步骤3对动态脑功能网络计算节点度量,并提取每个动态脑功能网络的动态特征,然后将过滤后的动态特征的特征值拼接为一个动态特征矩阵,包括以下步骤:
3.1)将i个分割后的功能核磁共振图像的i*s个动态脑功能网络通过所述节点度量生成器生成i*s个动态脑功能网络的节点度量,并计算得到z个动态特征的特征值表示为
Figure FDA0002216257410000051
所述z个动态特征包括i*s*x个全局特征和i*s*m*y个局部特征,即z=i*s*x+i*s*m*y,x表示每个动态脑功能网络计算的全局特征的个数,y表示每个动态脑功能网络计算的局部特征的个数;
3.2)将每组特征值通过时间序列生成器生成一个时间序列,则i*s个动态脑功能网络构成的z/s个时间序列表示为
Figure FDA0002216257410000052
所述每组特征值包括全局的每组特征值和局部的每组特征值,所述全局的每组特征值包括每个分割后的功能核磁共振图像中的每个全局特征的s个动态脑功能网络的特征值,所述局部的每组特征值包括从每个分割后的功能核磁共振图像中的s*m*y个局部特征中的每个局部特征按照m个脑区分组得到的s个动态脑功能网络的特征值;
3.3)将每组特征生成的时间序列通过特征提取器中的基于小波的时间序列熵再次提取特征,得到z/s个特征的新特征值
Figure FDA0002216257410000053
3.4)将所述节点度量中的i*s*m*y个局部特征通过特征过滤器进行过滤,首先通过节点度量中的degree方法计算出每个匹配后的功能核磁共振图像中的每个脑区的degree,并计算出每个匹配后的功能核磁共振图像中的m个脑区degree的平均值
Figure FDA0002216257410000054
然后计算出每个匹配后的功能核磁共振图像中的m个脑区的标准方差σ,其次将所述m个脑区中degree属于区间
Figure FDA0002216257410000055
的脑区过滤为关键脑区,最后将i个匹配后的功能核磁共振图像过滤得到的N个脑区的N*y个局部特征生成的新特征值与i*x个全局特征生成的新特征值通过特征过滤器拼接为一个动态特征矩阵,其中nj表示第j个匹配后的功能核磁共振图像中的关键脑区的个数,i表示匹配后的功能核磁共振图像的个数。
10.根据权利要求6所述的一种基于动态脑功能网络的阿尔茨海默病辅助诊断装置的使用方法,其特征在于,所述步骤4运用生成的动态特征矩阵对阿尔茨海默病进行辅助诊断,包括以下步骤:
4.1)将特征过滤器提取的动态特征矩阵通过特征筛选器中的Fisher算法对所述动态特征矩阵中的N*y+i*x个特征进行打分,并按照分数从高到底的顺序排序,筛选分数高的前w个特征作为最具有代表性的特征,w根据实际情况确定;
4.2)将筛选出的前w个最具有代表性的特征通过数据训练器中的支持向量机进行训练得到分类器;
4.3)使用辅助诊断器通过得到的分类器进行阿尔茨海默病的辅助诊断。
CN201910916563.8A 2019-09-26 2019-09-26 基于动态脑功能网络的阿尔茨海默病辅助诊断装置及方法 Active CN110718301B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910916563.8A CN110718301B (zh) 2019-09-26 2019-09-26 基于动态脑功能网络的阿尔茨海默病辅助诊断装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910916563.8A CN110718301B (zh) 2019-09-26 2019-09-26 基于动态脑功能网络的阿尔茨海默病辅助诊断装置及方法

Publications (2)

Publication Number Publication Date
CN110718301A true CN110718301A (zh) 2020-01-21
CN110718301B CN110718301B (zh) 2024-04-19

Family

ID=69210922

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910916563.8A Active CN110718301B (zh) 2019-09-26 2019-09-26 基于动态脑功能网络的阿尔茨海默病辅助诊断装置及方法

Country Status (1)

Country Link
CN (1) CN110718301B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112991335A (zh) * 2021-04-23 2021-06-18 合肥综合性国家科学中心人工智能研究院(安徽省人工智能实验室) 一种想像能力评估方法、***及可读存储介质
CN113177633A (zh) * 2021-04-20 2021-07-27 浙江大学 一种深度解耦时间序列预测方法
CN116541751A (zh) * 2023-07-03 2023-08-04 中国医学科学院生物医学工程研究所 一种基于脑功能连接网络特征的脑电信号分类方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110301431A1 (en) * 2010-06-05 2011-12-08 The Board Of Trustees Of The Leland Stanford Junior University Methods of classifying cognitive states and traits and applications thereof
US20130231552A1 (en) * 2012-03-05 2013-09-05 Siemens Corporation Method and System for Diagnosis of Attention Deficit Hyperactivity Disorder from Magnetic Resonance Images
CN104715261A (zh) * 2015-03-23 2015-06-17 南京工业大学 fMRI动态脑功能子网络构建及并联SVM加权识别方法
CN107256408A (zh) * 2017-05-12 2017-10-17 常州大学 一种大脑功能网络的关键路径搜索方法
CN109859839A (zh) * 2019-01-23 2019-06-07 桂林电子科技大学 一种基于分层集成学习的阿尔茨海默症分类方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110301431A1 (en) * 2010-06-05 2011-12-08 The Board Of Trustees Of The Leland Stanford Junior University Methods of classifying cognitive states and traits and applications thereof
US20130231552A1 (en) * 2012-03-05 2013-09-05 Siemens Corporation Method and System for Diagnosis of Attention Deficit Hyperactivity Disorder from Magnetic Resonance Images
CN104715261A (zh) * 2015-03-23 2015-06-17 南京工业大学 fMRI动态脑功能子网络构建及并联SVM加权识别方法
CN107256408A (zh) * 2017-05-12 2017-10-17 常州大学 一种大脑功能网络的关键路径搜索方法
CN109859839A (zh) * 2019-01-23 2019-06-07 桂林电子科技大学 一种基于分层集成学习的阿尔茨海默症分类方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
皇甫浩然;杨剑;杨阳;: "基于fMRI动态功能连接的抑郁症患者分类研究", 计算机应用研究, no. 03 *
董国昭;曾晓天;杨柳;张逸鹤;张勇;唐晓英;: "基于动态图论特征的阿尔茨海默病早期预测", 北京生物医学工程, no. 06 *
马士林;梅雪;李微微;周宇;: "fMRI动态功能网络构建及其在脑部疾病识别中的应用", 计算机科学, no. 10 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113177633A (zh) * 2021-04-20 2021-07-27 浙江大学 一种深度解耦时间序列预测方法
CN113177633B (zh) * 2021-04-20 2023-04-25 浙江大学 一种深度解耦时间序列预测方法
CN112991335A (zh) * 2021-04-23 2021-06-18 合肥综合性国家科学中心人工智能研究院(安徽省人工智能实验室) 一种想像能力评估方法、***及可读存储介质
CN112991335B (zh) * 2021-04-23 2024-04-26 合肥中聚源智能科技有限公司 一种想像能力评估方法、***及可读存储介质
CN116541751A (zh) * 2023-07-03 2023-08-04 中国医学科学院生物医学工程研究所 一种基于脑功能连接网络特征的脑电信号分类方法
CN116541751B (zh) * 2023-07-03 2023-09-12 中国医学科学院生物医学工程研究所 一种基于脑功能连接网络特征的脑电信号分类方法

Also Published As

Publication number Publication date
CN110718301B (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
Li et al. Epileptic seizure detection in EEG signals using sparse multiscale radial basis function networks and the Fisher vector approach
CN110188836B (zh) 一种基于变分自编码器的脑功能网络分类方法
CN107133651B (zh) 基于超网络判别子图的功能磁共振影像数据分类方法
CN110718301A (zh) 基于动态脑功能网络的阿尔茨海默病辅助诊断装置及方法
CN110705456A (zh) 一种基于迁移学习的微型电机异常检测方法
CN111009324B (zh) 脑网络多特征分析的轻度认知障碍辅助诊断***及方法
KR20160049897A (ko) 연속적인 의료 영상을 이용한 컴퓨터 보조 진단 장치 및 방법
US9811904B2 (en) Method and system for determining a phenotype of a neoplasm in a human or animal body
CN111783887B (zh) 基于fMRI小世界脑网络计算机分类测谎识别方法
Naresh et al. Early detection of lung cancer using neural network techniques
WO2013097118A1 (zh) 对脑功能磁共振数据进行处理的方法
Tun et al. Feature extraction and classification of lung cancer nodule using image processing techniques
CN113069117A (zh) 一种基于时间卷积神经网络的脑电情绪识别方法及***
CN115272295A (zh) 基于时域-空域联合状态的动态脑功能网络分析方法及***
Thomas et al. Artificial neural network for diagnosing autism spectrum disorder
CN108805181B (zh) 一种基于多分类模型的图像分类装置及分类方法
CN112336369B (zh) 一种多通道心音信号的冠心病风险指数评估***
Ramana Alzheimer disease detection and classification on magnetic resonance imaging (MRI) brain images using improved expectation maximization (IEM) and convolutional neural network (CNN)
Mousavian et al. Depression detection using atlas from fMRI images
CN116543154A (zh) 一种基于多层次语义特征的医学影像分割方法
Dinu et al. A novel modelling technique for early recognition and classification of Alzheimer’s disease
Pedoia et al. fMRI analysis software tools: an evaluation framework
CN110647870A (zh) 一种基于滑动窗计算静息态fMRI数据近似熵的方法
AltundoĞan et al. Cracked Wall Image Classification Based on Deep Neural Network Using Visibility Graph Features
EP4198997A1 (en) A computer implemented method, a method and a system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant