CN110714836B - 天然气发动机***和天然气发动机***的控制方法 - Google Patents

天然气发动机***和天然气发动机***的控制方法 Download PDF

Info

Publication number
CN110714836B
CN110714836B CN201910866613.6A CN201910866613A CN110714836B CN 110714836 B CN110714836 B CN 110714836B CN 201910866613 A CN201910866613 A CN 201910866613A CN 110714836 B CN110714836 B CN 110714836B
Authority
CN
China
Prior art keywords
air
engine system
real
natural gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910866613.6A
Other languages
English (en)
Other versions
CN110714836A (zh
Inventor
王文霞
王龙
赵淞
宋国梁
高古祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weichai Power Co Ltd
Original Assignee
Weichai Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weichai Power Co Ltd filed Critical Weichai Power Co Ltd
Priority to CN201910866613.6A priority Critical patent/CN110714836B/zh
Publication of CN110714836A publication Critical patent/CN110714836A/zh
Application granted granted Critical
Publication of CN110714836B publication Critical patent/CN110714836B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/20Feeding recirculated exhaust gases directly into the combustion chambers or into the intake runners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • F02B2043/103Natural gas, e.g. methane or LNG used as a fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

本发明涉及发动机技术领域,具体涉及一种天然气发动机***和天然气发动机***的控制方法。本发明旨在解决通入气缸内的实际燃气量与气缸内空气所需燃气量存在较大误差的技术问题。为此目的,本发明提供了一种天然气发动机***,天然气发动机***包括气缸和进气管,进气管的一端与气缸连通,进气管的另一端分别与空气管路和燃气管路连通,且进气管上位于燃气管的上游位置设置有节流装置,天然气发动机***还包括与节流装置电连接的控制器,控制器根据节流装置处流通的空气量控制燃气管路通入进气管内的燃气量。本发明根据节流装置处流通的空气量控制燃气管路通入进气管内的燃气量,以此减少燃气在进气管内的损失导致燃气量出现较大误差的现象。

Description

天然气发动机***和天然气发动机***的控制方法
技术领域
本发明涉及发动机技术领域,具体涉及一种天然气发动机***和天然气发动机***的控制方法。
背景技术
本部分提供的仅仅是与本公开相关的背景信息,其并不必然是现有技术。
据统计,目前大气污染的主要原因之一是尾气排放,因此,开发满足国六排放要求的商用车是蓝天保卫事业的重点工作。由于国六天然气发动机***比柴油发动机提前进入市场,因此,国六天然气发动机***的排放性能、经济性和稳定性将面临严峻考验。
目前国六天然气发动机***主要采用燃气单点喷射,燃气在进气管喷射并与新鲜空气预混合后经过进气歧管进入气缸内进行燃烧,如图1所示,单点喷射***在空气管路30’上设置有电子节气门31’,新鲜空气在空气管路30’上经过电子节气门31’后首先与燃气管路40’中的燃气混合,然后在进气管路20’上与EGR管路50’中的废气混合,三者的混合气体经过进气歧管21’后到达气缸10’内进行燃烧。
目前国六天然气发动机***根据进入气缸内的新鲜空气量和空气量变化趋势,以及引入理论空燃比和过量空气系数来计算所需要的燃气量,但是,按照单点喷射***的管路布置结构,燃气喷出后首先在进气管内与空气混合,然后与EGR混合,混合气流经进气歧管,最后才到达相应气缸。因此,如果根据当前t1时刻气缸内的新鲜空气量来计算燃气量的话,当实际喷出的燃气经过进气管到达气缸时已经出现了延时现象,即实际喷出的燃气到达气缸时已经为t2时刻,此时的燃气量已经无法满足t2时刻新鲜空气对燃气量的需求,尤其是瞬态工况下,气缸内的新鲜空气量频繁变化,即使考虑到气缸内新鲜空气量的变化趋势,也很难实现通入气缸内的燃气能够满足气缸内新鲜空气的需求。
发明内容
本发明提供了一种天然气发动机***,目的是至少解决上述现有技术中存在的问题之一,该目的是通过以下技术方案实现的:
本发明提供了一种天然气发动机***,天然气发动机***包括气缸和进气管,进气管的一端与气缸连通,进气管的另一端分别与空气管路和燃气管路连通,且进气管上位于燃气管的上游位置设置有节流装置,天然气发动机***还包括与节流装置电连接的控制器,控制器根据节流装置处流通的空气量控制燃气管路通入进气管的燃气量。
本发明的天然气发动机***根据节流装置处流通的空气量控制燃气管路通入进气管的燃气量,以此减少燃气在进气管处的损失使燃气量出现较大误差的现象。具体地,本实施例根据节流装置处流通的空气量利用理论空燃比和过量空气系数确定燃气量,并控制燃气与空气在进气管处混合后通入气缸内,即,混合后的燃气与空气的混合气体即使在进气管内有气体损失,损失后的混合气体仍能够基本上使燃气与空气按照指定指定比例混合,减少通入气缸内的空气量过大或者通入气缸内的燃气量过大。
进一步地,节流装置上设置有开度传感器,开度传感器与控制器电连接,控制器根据开度传感器检测到的开度信号控制节流装置。
进一步地,节流装置的上游设置有第一压强传感器,节流装置的下游设置有第二压强传感器,控制器分别与第一压强传感器和第二压强传感器电连接。
进一步地,节流装置的上游还设置有温度传感器,温度传感器与控制器电连接。
进一步地,天然气发动机***还包括设置于进气管上的EGR管路,且EGR管路位于空气管路和燃气管路的下游。
本发明的第二方面还提供了一种天然气发动机***的控制方法,天然气发动机***的控制方法是根据本发明第一方面的天然气发动机***来实施的,天然气发动机***的控制方法包括步骤:确定天然气发动机***中空气管路的节气装置处的实时空气量;确定实时空气量所需的实时燃气量;控制燃气管路向进气管内通入实时燃气量并与实时空气量混合。
进一步地,确定空气管路的节气装置处的实时空气量包括:获取节气装置处开度传感器检测到的开度值;获取节气装置的上游压强值和下游压强值;根据开度值、上游压强值和下游压强值确定实时空气量。
进一步地,确定空气管路的节气装置处的实时空气量还包括:获取空气管路中的温度传感器检测到的节气装置的上游温度值;根据上游温度值修正实时空气量。
进一步地,根据开度值、上游压强值和下游压强值确定实时空气量包括:
根据上游压强值与下游压强值的比值小于等于0.95,利用伯努利方程计算实时空气量:
Figure BDA0002201445030000031
其中,Qm为实时空气量实时空气量,C为流出系数,β为直径比,ε为膨胀系数,d为节流装置流通直径,Δp为节气装置的上下游压强差;ρ为空气密度。
进一步地,根据上游压强值与下游压强值的比值大于0.95,利用插值法计算实时空气量。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为现有技术中天然气发动机***的结构示意图;
图2为本发明一个实施例的天然气发动机***的结构示意图;
图3为本发明一个实施例的天然气发动机***的控制方法流程示意图.
其中,10’、气缸;20’、进气管;21’、进气歧管;30’、空气管路;31’、电子节气门;40’、燃气管路;50’、EGR管路;10、气缸;20、进气管;21、进气歧管;30、空气管路;31、节流装置;32、第一压强传感器;33、第二压强传感器;34、温度传感器;35、开度传感器;40、燃气管路;50、EGR管路。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
应理解的是,文中使用的术语仅出于描述特定示例实施方式的目的,而无意于进行限制。除非上下文另外明确地指出,否则如文中使用的单数形式“一”、“一个”以及“所述”也可以表示包括复数形式。术语“包括”、“包含”以及“具有”是包含性的,并且因此指明所陈述的特征、元件和/或部件的存在,但并不排除存在或者添加一个或多个其它特征、元件、部件、和/或它们的组合。
尽管可以在文中使用术语第一、第二等来描述多个元件、部件、区域、层和/或部段,但是,这些元件、部件、区域、层和/或比段不应被这些术语所限制。这些术语可以仅用来将一个元件、部件、区域、层或部段与另一区域、层或部段区分开。除非上下文明确地指出,否则诸如“第一”、“第二”、“第三”和“第四”之类的术语以及其它数字术语在文中使用时并不暗示顺序或者次序。另外,在本发明的描述中,除非另有明确的规定和限定,术语“设置”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体式连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
为了便于描述,可以在文中使用空间相对关系术语来描述如图中示出的一个元件或者特征相对于另一元件或者特征的关系,这些相对关系术语例如为“端”、“上”、“下”等。这种空间相对关系术语意于包括除图中描绘的方位之外的在使用或者操作中装置的不同方位。例如,如果在图中的装置翻转,那么描述为“在其它元件或者特征下面”或者“在其它元件或者特征下方”的元件将随后定向为“在其它元件或者特征上面”或者“在其它元件或者特征上方”。因此,示例术语“在……下方”可以包括在上和在下的方位。装置可以另外定向(旋转90度或者在其它方向)并且文中使用的空间相对关系描述符相应的进行解释。
如图2所示,根据本发明的实施例,本发明的第一方面提供了一种天然气发动机***,天然气发动机***包括气缸10和进气管20,进气管20的一端通过进气歧管21与气缸10连通(图2中的发动机具有四个气缸,进气管20的一端设置有分别与四个气缸连通的四个进气歧管21),进气管20的另一端分别与空气管路30和燃气管路40连通,且进气管20上位于燃气管路40的上游位置设置有节流装置31,节流装置31可以选用电子节气门,天然气发动机***还包括与节流装置31电连接的控制器(图中未示出),控制器根据节流装置31处流通的空气量控制燃气管路40通入进气管20的燃气量。
在上述实施例中,天然气发动机***根据节流装置31处流通的空气量控制燃气管路40通入进气管20的燃气量,以此减少燃气在进气管20处的损失使燃气量出现较大误差的现象。具体地,本实施例根据节流装置31处流通的空气量利用理论空燃比和过量空气系数确定燃气量,并控制燃气与空气在进气管20处混合后通入气缸10内,即,混合后的燃气与空气的混合气体即使在进气管20内有气体损失,损失后的混合气体仍能够基本上使燃气与空气按照指定指定比例混合,减少通入气缸10内的空气量过大或者通入气缸10内的燃气量过大。需要说明的是,燃气管路40上设置有与控制器电连接的电磁阀,控制器能够控制电磁阀的通断时间控制燃气管路40中的燃气量。
进一步地,天然气发动机***还包括设置于进气管20上的EGR管路50,且EGR管路50位于空气管路30和燃气管路40的下游,即,空气和燃气在进气管20内混合形成混合气体后,混合气体再与EGR管路50中的废气进行混合,考虑到EGR管路50中的废气为按照指定比例混合的混合气体的废气,因此,EGR管路50中空气和燃气可以认为以合适的混合比进行混合,因此,在根据空气量确定燃气量时可以忽略废气中的空气。
继续参阅图2,根据本发明的实施例,节流装置31上设置有开度传感器35,开度传感器35可以为直线位移传感器或编码器传感器,开度传感器35与控制器电连接,控制器根据开度传感器35检测到的开度信号控制节流装置31。进一步地,节流装置31的上游设置有第一压强传感器32,节流装置31的下游设置有第二压强传感器33,控制器分别与第一压强传感器32和第二压强传感器33电连接。
在本实施例中,利用伯努利方程计算实时空气量:
Figure BDA0002201445030000061
其中,Qm为实时空气量,C为流出系数,表示通过节流装置31的实际流量与理论流量之间关系的系数,β为直径比,即节流装置31的实际流通截面与进气管20截面的直径比,ε为膨胀系数,d为节流装置31的流通直径,Δp为节气装置31的上下游压强差;ρ为空气密度,参数C、参数β和参数d可以根据开度传感器35检测到的开度信号通过计算得出,参数ε为节流装置31的常数,ρ可以根据空气的密度得出,Δp可通过节气装置31上游的第一压强传感器32检测的上游压强值以及节气装置31下游的第二压强传感器33检测的下游压强值计算得出。
继续参阅图2,根据本发明的实施例,节流装置31的上游还设置有温度传感器34,温度传感器34与控制器电连接。
在本实施例中,温度传感器34用于检测节流装置31的上游温度,控制器根据节流装置31的上游空气的温度值确定节流装置31处的气压变化,并根据节流装置31处的气压变化确定节流装置31处的空气量。
继续参阅图2以及参阅图3,本发明的第二方面还提供了一种天然气发动机***的控制方法,天然气发动机***的控制方法是根据本发明第一方面的天然气发动机***来实施的,天然气发动机***的控制方法包括步骤:S10,确定天然气发动机***中空气管路的节气装置处的实时空气量;S12,根据实时空气量确定实时空气量所需的实时燃气量;S14,控制燃气管路40向进气管20中通入实时燃气量并与实时空气量混合。
在上述实施例中,天然气发动机***根据节流装置31处流通的空气量控制燃气管路40通入进气管20的燃气量,以此减少燃气在进气管20处的损失使燃气量出现较大误差的现象。具体地,本实施例根据节流装置31处流通的空气量利用理论空燃比和过量空气系数确定燃气量,并控制燃气与空气在进气管20处混合后通入气缸10内,即,混合后的燃气与空气的混合气体即使在进气管20内有气体损失,损失后的混合气体仍能够基本上使燃气与空气按照指定指定比例混合,减少通入气缸10内的空气量过大或者通入气缸10内的燃气量过大。需要说明的是,燃气管路40上设置有与控制器电连接的电磁阀,控制器能够控制电磁阀的通断时间控制燃气管路40中的燃气量。
继续参阅图2和图3,根据本发明的实施例,步骤S10还包括:获取空气管路中的温度传感器34检测到的节气装置的上游温度值;根据上游温度值修正实时空气量。
在本实施例中,温度传感器34用于检测节流装置31的上游温度,控制器根据节流装置31的上游空气的温度值确定节流装置31处的气压变化,并根据节流装置31处的气压变化确定节流装置31处的空气量。
继续参阅图2和图3,根据本发明的实施例,步骤S10包括:获取节气装置处开度传感器35检测到的开度值;获取节气装置的上游压强值和下游压强值;根据开度值、上游压强值和下游压强值确定实时空气量。具体地,根据开度值、上游压强值和下游压强值确定实时空气量包括:
根据上游压强值与下游压强值的比值小于等于0.95,利用伯努利方程计算实时空气量:
Figure BDA0002201445030000071
其中,Qm为实时空气量,C为流出系数,表示通过节流装置31的实际流量与理论流量之间关系的系数,β为直径比,即节流装置31的实际流通截面与进气管20截面的直径比,ε为膨胀系数,d为节流装置流通直径,Δp为节气装置31的上下游压强差;ρ为空气密度,参数C、参数β和参数d可以根据开度传感器35检测到的开度信号通过计算得出,参数ε为节流装置31的常数,ρ可以根据空气的密度得出,Δp可通过节气装置31上游的第一压强传感器32检测的上游压强值以及节气装置31下游的第二压强传感器33检测的下游压强值计算得出。
继续参阅图2和图3,根据本发明的实施例,根据上游压强值与下游压强值的比值大于0.95,利用插值法计算实时空气量。
在本实例中,可以通过列表的方法列举出与多个下游压强值对应的多个空气量值,然后将多个下游压强值与多个空气量值制成二维坐标图,然后根据第二压强传感器33检测到的下游压强值通过***二维坐标图的方式查询与其对应的空气量值。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (8)

1.一种天然气发动机***,其特征在于,所述天然气发动机***包括气缸和进气管,所述进气管的一端与所述气缸连通,所述进气管的另一端分别与空气管路和燃气管路连通,且所述进气管上位于所述燃气管的上游位置设置有节流装置,所述天然气发动机***还包括与所述节流装置电连接的控制器,所述控制器根据所述节流装置处流通的空气量控制所述燃气管路通入所述进气管内的燃气量,所述节流装置的上游设置有第一压强传感器,所述节流装置的下游设置有第二压强传感器,所述控制器分别与所述第一压强传感器和所述第二压强传感器电连接,所述节流装置的上游还设置有温度传感器,所述温度传感器与所述控制器电连接。
2.根据权利要求1所述的天然气发动机***,其特征在于,所述节流装置上设置有开度传感器,所述开度传感器与所述控制器电连接,所述控制器根据所述开度传感器检测到的开度信号控制所述节流装置。
3.根据权利要求1所述的天然气发动机***,其特征在于,所述天然气发动机***还包括设置于所述进气管上的EGR管路,且所述EGR管路位于所述空气管路和所述燃气管路的下游。
4.一种天然气发动机***的控制方法,其特征在于,所述天然气发动机***的控制方法是根据权利要求1至3中任一项所述的天然气发动机***来实施的,所述天然气发动机***的控制方法包括步骤:
确定天然气发动机***中空气管路的节气装置处的实时空气量;
确定所述实时空气量所需的实时燃气量;
控制燃气管路向进气管内通入所述实时燃气量并与所述实时空气量混合。
5.根据权利要求4所述的天然气发动机***的控制方法,其特征在于,所述确定空气管路的节气装置处的实时空气量包括:
获取所述节气装置处开度传感器检测到的开度值;
获取所述节气装置的上游压强值和下游压强值;
根据所述开度值、所述上游压强值和所述下游压强值确定所述实时空气量。
6.根据权利要求5所述的天然气发动机***的控制方法,其特征在于,所述确定空气管路的节气装置处的实时空气量还包括:
获取空气管路中的温度传感器检测到的所述节气装置的上游温度值;
根据所述上游温度值修正所述实时空气量。
7.根据权利要求5所述的天然气发动机***的控制方法,其特征在于,根据所述开度值、所述上游压强值和所述下游压强值确定所述实时空气量包括:
根据所述上游压强值与所述下游压强值的比值小于等于0.95,利用伯努利方程计算所述实时空气量:
Figure FDA0002573861900000021
其中,Qm为实时空气量,C为流出系数,β为直径比,ε为膨胀系数,d为节流装置流通直径,Δp为节气装置的上下游压强差;ρ为空气密度。
8.根据权利要求5所述的天然气发动机***的控制方法,其特征在于,根据所述上游压强值与所述下游压强值的比值大于0.95,利用插值法计算所述实时空气量。
CN201910866613.6A 2019-09-12 2019-09-12 天然气发动机***和天然气发动机***的控制方法 Active CN110714836B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910866613.6A CN110714836B (zh) 2019-09-12 2019-09-12 天然气发动机***和天然气发动机***的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910866613.6A CN110714836B (zh) 2019-09-12 2019-09-12 天然气发动机***和天然气发动机***的控制方法

Publications (2)

Publication Number Publication Date
CN110714836A CN110714836A (zh) 2020-01-21
CN110714836B true CN110714836B (zh) 2020-11-20

Family

ID=69210386

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910866613.6A Active CN110714836B (zh) 2019-09-12 2019-09-12 天然气发动机***和天然气发动机***的控制方法

Country Status (1)

Country Link
CN (1) CN110714836B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113267339B (zh) * 2021-05-18 2022-09-23 潍柴动力股份有限公司 计算节气门后的压力的方法、测量装置、发动机及车辆

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206681861U (zh) * 2017-04-06 2017-11-28 中国第一汽车股份有限公司 一种集成式气体混合器
CN109184961A (zh) * 2018-10-04 2019-01-11 李晨天 进气(歧)管真空吸入式气体燃料供应方法和装置
CN109339996A (zh) * 2018-10-29 2019-02-15 潍柴动力股份有限公司 大缸径气体机的进气***、进气控制方法及控制装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206681861U (zh) * 2017-04-06 2017-11-28 中国第一汽车股份有限公司 一种集成式气体混合器
CN109184961A (zh) * 2018-10-04 2019-01-11 李晨天 进气(歧)管真空吸入式气体燃料供应方法和装置
CN109339996A (zh) * 2018-10-29 2019-02-15 潍柴动力股份有限公司 大缸径气体机的进气***、进气控制方法及控制装置

Also Published As

Publication number Publication date
CN110714836A (zh) 2020-01-21

Similar Documents

Publication Publication Date Title
US7469691B2 (en) Exhaust gas recirculation cooler bypass
US6837227B2 (en) System and method for estimating EGR mass flow and EGR fraction
US7267117B2 (en) Method and device for controlling the exhaust gas recirculation in an internal-combustion engine based on the measurement of the oxygen concentration in the gaseous mixture taken in by the engine
EP2198141B1 (en) Exhaust-gas recirculation apparatus and exhaust-gas recirculation flow rate estimation method for internal combustion engines
CN109209659B (zh) 一种基于内燃机充量因数的egr率修正***和方法
US8121774B2 (en) Exhaust gas recirculation system and method of operating such system
CN1880744B (zh) 控制由内燃机产生的排气排放物的***
CN111736456B (zh) 一种egr***的控制和诊断机构,重型汽车和方法
EP1358399B1 (en) A device and a method for controlling the fuel-air ratio
US20020100467A1 (en) System for estimating engine exhaust temperature
US20080189027A1 (en) Coordinated control of throttle and egr valve
US6508241B2 (en) Equivalence ratio-based system for controlling transient fueling in an internal combustion engine
CN112377315B (zh) 基于可压缩气体方程的egr控制方法与***
US20050103309A1 (en) Controller of internal combustion engine
CN113250864B (zh) Egr流量诊断方法、诊断***及汽车
CN110714836B (zh) 天然气发动机***和天然气发动机***的控制方法
DE102011079726A1 (de) Verfahren und System zur Steuerung eines Motors
US6550464B1 (en) System for controlling engine exhaust temperature
EP0892164B1 (en) Exhaust gas recirculation control system for automobile engine
CN217538854U (zh) 发动机***和发动机***控制器
CN113738521B (zh) 一种用于天然气发动机的egr流量计量***及方法
EP2642103B1 (en) Exhaust-gas recirculation system and method for exhaust-gas recirculation
JP2010053755A (ja) 内燃機関のegr制御方法
CN113898486B (zh) Egr流量控制方法、低压egr***及计算机存储介质
WO2013098953A1 (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant