CN110702484B - 含水溶盐储层岩心原地孔隙度计算与含水饱和度建立方法 - Google Patents

含水溶盐储层岩心原地孔隙度计算与含水饱和度建立方法 Download PDF

Info

Publication number
CN110702484B
CN110702484B CN201911093605.9A CN201911093605A CN110702484B CN 110702484 B CN110702484 B CN 110702484B CN 201911093605 A CN201911093605 A CN 201911093605A CN 110702484 B CN110702484 B CN 110702484B
Authority
CN
China
Prior art keywords
water
core
soluble salt
reservoir
rock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911093605.9A
Other languages
English (en)
Other versions
CN110702484A (zh
Inventor
游利军
邵佳新
康毅力
谭启贵
孟森
王福荣
黄恒清
刘涛
徐弋影
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Petroleum University
Original Assignee
Southwest Petroleum University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Petroleum University filed Critical Southwest Petroleum University
Priority to CN201911093605.9A priority Critical patent/CN110702484B/zh
Publication of CN110702484A publication Critical patent/CN110702484A/zh
Application granted granted Critical
Publication of CN110702484B publication Critical patent/CN110702484B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/088Investigating volume, surface area, size or distribution of pores; Porosimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/14Investigating or analyzing materials by the use of thermal means by using distillation, extraction, sublimation, condensation, freezing, or crystallisation
    • G01N25/147Investigating or analyzing materials by the use of thermal means by using distillation, extraction, sublimation, condensation, freezing, or crystallisation by cristallisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • G01N33/246Earth materials for water content

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

本发明含水溶盐储层岩心原地孔隙度计算与含水饱和度建立方法,涉及石油与天然气致密储层岩心分析领域,含水溶盐储层原地岩样取至地面过程中,从地层温度压力条件到地面温度压力条件,岩样内部会发生盐结晶,导致岩样孔隙度发生变化,本方法考虑了常规孔隙度测试方法和建立含水饱和度方法的不足,同时通过质量守恒原理确定了地层水矿化度,从而计算原地孔隙度和建立含水饱和度,保证了实验的可靠性,是一种属于石油天然气勘探开发过程中岩心分析方面的实验方法。

Description

含水溶盐储层岩心原地孔隙度计算与含水饱和度建立方法
技术领域
本发明涉及石油与天然气致密储层岩心分析领域含水溶盐储层岩心原地孔隙度计算与含水饱和度建立方法,属于石油天然气勘探开发过程中岩心分析方面的实验方法。
背景技术
中国非常规油气资源量丰富,潜力巨大,前景广阔。致密砂岩油气、页岩油气、煤层气,碳酸盐岩油气产量不断增长,非常规油气资源的开发已经成为我国能源格局中不可或缺的一部分。非常规油气储层形成于海相或咸化湖等沉积环境时,储层内部形成大量水溶盐,导致地层水矿化度较高,含水溶盐储层岩心从原地温度压力条件取至地面温度压力条件过程中,盐结晶引起岩心孔隙结构变化,进而导致孔隙度发生变化。然而,获得含水溶盐储层的岩心原地孔隙度对于含水饱和度建立具有重要作用,且岩心含水饱和度的建立是开展致密储层岩电实验的基础。岩电实验作为岩石物理研究的一个重要手段,主要通过测量岩石的孔隙度、电阻率和饱和度等参数来求取阿尔奇公式中的4个关键参数,进而计算地层含油气饱和度。从储层保护的角度考虑,使用地层水矿化度建立岩心含水饱和度后开展含水溶盐储层岩心的岩电实验,符合储层条件,相比蒸馏水,它不会改变含水溶盐储层岩心的孔隙结构,对孔隙度影响较小。获得储层的原地岩心孔隙度和建立所需的含水饱和度对致密油气藏的开发具有重要意义。
常规孔隙度测试方法反映的是岩样的直观孔隙度,而含水溶盐储层原地岩样取至地面过程中,岩样内部会发生盐结晶,引起岩样孔隙度发生变化,导致常规测试方法无法反映原地孔隙度,同时也影响含水饱和度的建立。
发明内容
本发明的目的在于通过含水溶盐储层岩心原地孔隙度计算与含水饱和度建立方法,为后续致密储层岩电实验的开展奠定基础。
本发明通过以下技术方案实现:
步骤1、选取含水溶盐储层代表性岩心,测试岩心孔隙度
Figure GDA0003350850910000011
计算岩心的外观体积Vcore,确定岩心完全饱和地层水的体积Vfluid和岩心密度ρ,并分析含水溶盐储层地面产出地层水矿化度C’;
步骤2、分析储层水溶盐矿物类型与比例,配制实验用复合水溶盐,并将复合水溶盐完全溶解,开展复合水溶盐结晶实验,分析地层水从储层条件下到地面条件下的结晶程度,记盐结晶比例系数η,盐结晶比例系数η为结晶盐析出量与初始溶液中水溶盐质量比值;
步骤3、结合盐结晶比例系数η,运用式(1)计算地层水矿化度C,运用式(2)计算岩心原地孔隙度
Figure GDA0003350850910000021
Figure GDA0003350850910000022
Figure GDA0003350850910000023
步骤4、确定要建立的含水饱和度,通过岩心原地孔隙度确定孔隙体积,确定建立地层水矿化度条件下的含水饱和度所用地层水的体积与质量,根据地层水矿化度配制的模拟地层水将纤维浸湿,岩心在纤维上滚动,岩心两端不能接触水;
步骤5、重复步骤4,直至岩样吸水质量达到建立含水饱和度所需地层水质量即可,然后将岩样进行密封保存,使水在岩心中渗吸分散;
步骤6、检查岩心质量,确保建立了所需的岩心含水饱和度。
与现有技术相比,本发明具有如下有益效果:
(1)确定含水溶盐储层原地孔隙度计算的准确性。非常规油气储层形成于海相或咸化湖等沉积环境时,储层内部形成大量水溶盐,导致地层水矿化度较高,含水溶盐储层岩心从原地温度压力条件取至地面温度压力条件过程中,盐结晶引起岩心孔隙结构变化,进而导致孔隙度发生变化,使得孔隙度测试不准。同时,获取原地岩心孔隙度有助于岩心建立含水饱和度时确定地层水矿化度条件下的含水饱和度所用地层水的体积。
(2)提高岩电实验评价结果的客观性。岩电实验作为岩石物理研究的一个重要手段,主要通过测量岩石的孔隙度、电阻率和饱和度等参数来求取阿尔奇公式中的4个关键参数,进而准确地计算地层含油气饱和度。从储层保护的角度考虑,使用地层水矿化度建立岩心含水饱和度后开展含水溶盐储层岩心的岩电实验,符合储层的真实条件,它不会改变含水溶盐储层岩心的孔隙结构,对孔隙度影响较小。
(3)避免了洗盐对孔隙度测试造成的不便和人为测试孔隙度的误差。本发明通过产出水矿化度和盐结晶比例系数获得含水溶盐储层地层水矿化度,然后通过地层水矿化度和盐结晶比例系数计算含水溶盐储层的原地孔隙度,无需经过洗盐后开展孔隙度测试实验。
具体实施方式
为了对本发明的技术特征、目的和有益效果更加清楚的解释,结合具体参数和实施例进一步详细说明本发明的发明内容、特点,具体步骤如下:
步骤1、选取含水溶盐储层代表性岩心,测试岩心孔隙度
Figure GDA0003350850910000024
计算岩心的外观体积Vcore,并确定岩心完全饱和地层水体积Vfluid和岩心密度ρ,采用原子吸收分光光度计测试含水溶盐储层地面产出地层水矿化度C’;
步骤2、采用XRD分析储层水溶盐矿物类型与比例,配制实验用复合水溶盐,并将复合水溶盐完全溶解,开展复合水溶盐结晶实验,分析从储层条件下的地层水到地面温度压力条件下的产出水结晶程度,记盐结晶比例系数η,盐结晶比例系数η为结晶盐析出量与初始溶液中水溶盐质量比值;
步骤3、结合盐结晶比例系数η,运用式(1)计算地层水矿化度C,将式(1)中计算出的地层水矿化度C带入式(2)计算岩心原地孔隙度
Figure GDA0003350850910000031
Figure GDA0003350850910000032
Figure GDA0003350850910000033
步骤4、确定要建立的含水饱和度,通过岩心原地孔隙度确定孔隙体积,确定建立地层水矿化度条件下的含水饱和度所用地层水的体积与质量,根据地层水矿化度配制的模拟地层水将纤维浸湿,岩心在纤维上滚动,岩心两端不能接触水;
步骤5、重复步骤4,直至岩样吸水质量达到建立含水饱和度所需地层水质量即可,然后将岩样放入密封袋中密封保存,使水在岩心中渗吸分散;
步骤6、检查岩心质量,确保建立了正确的含水饱和度。
根据本发明,通过结晶实验确定地层水矿化度,基于地层水矿化度计算岩心原地孔隙度和建立岩心含水饱和度,保证了其客观准确性。此外,解决了含水溶盐储层常规孔隙度测试不准和含水饱和度建立的不足。
以上的具体实施方式已经结合具体参数和实施例对本发明的效果进行了详细描述,但是本发明并不局限于上述的具体实施方式,只要在不超出本发明的主旨范围内,可对实验条件及对象进行灵活的变更,这些均属于本发明的保护范围之内。

Claims (1)

1.含水溶盐储层岩心原地孔隙度计算与含水饱和度建立方法步骤如下:
步骤1、选取含水溶盐储层代表性岩心,测试岩心孔隙度
Figure FDA0003350850900000014
计算岩心的外观体积Vcore,确定岩心完全饱和地层水的体积Vfluid和岩心密度ρ,并分析含水溶盐储层地面产出地层水矿化度C’;
步骤2、分析储层水溶盐矿物类型与比例,配制实验用复合水溶盐,并将复合水溶盐完全溶解,开展复合水溶盐结晶实验,分析地层水从储层条件下到地面条件下的结晶程度,记盐结晶比例系数η,盐结晶比例系数η为结晶盐析出量与初始溶液中水溶盐质量比值;
步骤3、结合盐结晶比例系数η,运用式(1)计算地层水矿化度C,运用式(2)计算岩心原地孔隙度
Figure FDA0003350850900000011
Figure FDA0003350850900000012
Figure FDA0003350850900000013
步骤4、确定要建立的含水饱和度,通过岩心原地孔隙度确定孔隙体积,确定建立地层水矿化度条件下的含水饱和度所用地层水的体积与质量,根据地层水矿化度配制的模拟地层水将纤维浸湿,岩心在纤维上滚动,岩心两端不能接触水;
步骤5、重复步骤4,直至岩样吸水质量达到建立含水饱和度所需地层水质量即可,然后将岩样进行密封保存,使水在岩心中渗吸分散;
步骤6、检查岩心质量,确保建立了所需的岩心含水饱和度。
CN201911093605.9A 2019-11-11 2019-11-11 含水溶盐储层岩心原地孔隙度计算与含水饱和度建立方法 Active CN110702484B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911093605.9A CN110702484B (zh) 2019-11-11 2019-11-11 含水溶盐储层岩心原地孔隙度计算与含水饱和度建立方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911093605.9A CN110702484B (zh) 2019-11-11 2019-11-11 含水溶盐储层岩心原地孔隙度计算与含水饱和度建立方法

Publications (2)

Publication Number Publication Date
CN110702484A CN110702484A (zh) 2020-01-17
CN110702484B true CN110702484B (zh) 2022-01-28

Family

ID=69205619

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911093605.9A Active CN110702484B (zh) 2019-11-11 2019-11-11 含水溶盐储层岩心原地孔隙度计算与含水饱和度建立方法

Country Status (1)

Country Link
CN (1) CN110702484B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111751242B (zh) * 2020-06-19 2023-02-24 中国石油天然气股份有限公司 一种泥页岩油气储层岩石油水饱和度准确测量方法
CN112964604A (zh) * 2021-03-25 2021-06-15 西南石油大学 一种考虑含水饱和度和吸附气的岩石接触角测试装置与方法
CN113092337B (zh) * 2021-04-08 2022-01-28 西南石油大学 一种建立原地条件下致密岩心初始含水饱和度的方法
CN115059460B (zh) * 2022-07-14 2024-05-03 重庆大学 一种降低水力压裂页岩储层自吸水量的方法
CN116050629B (zh) * 2023-01-18 2023-09-12 重庆科技学院 一种考虑地层水蒸发盐析的储气库库容动态预测方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100469738C (zh) * 2007-01-22 2009-03-18 浙江大学 石材和石质文物的磷酸钙生物矿化加固方法
CN101381190A (zh) * 2008-10-14 2009-03-11 云南大学 一种适合于高盐分高浓度有机废水的处理工艺
CN102051159B (zh) * 2010-11-19 2014-01-22 原玉红 一种悬浮盐完井液
CN102169115B (zh) * 2010-12-29 2013-07-31 中国石油天然气集团公司 一种通过岩心求取地层水矿化度的方法
CN102434152B (zh) * 2011-12-05 2014-07-23 中国石油天然气股份有限公司 一种储层含油饱和度的计算方法
BE1020577A3 (fr) * 2012-03-22 2014-01-07 Lhoist Rech & Dev Sa Composition minerale a base d'une phase solide mixte de carbonates de calcium et de magnesium, son procede de preparation et son utilisation.
CN103422853B (zh) * 2012-05-24 2016-10-26 中国石油天然气集团公司 一种确定地层含水饱和度的方法及装置
US10197489B2 (en) * 2015-07-28 2019-02-05 Chevron U.S.A. Inc. Processes and systems for characterizing and optimizing fracturing fluids
US20170080389A1 (en) * 2015-09-18 2017-03-23 Maher Isaac Kelada Symbiotic reverse osmosis for maximizing desalinated water recovery from saline waters and brines
CN105334536B (zh) * 2015-12-01 2018-04-03 中国石油大学(华东) 致密砂岩储层网状裂缝***有效性评价方法
CN107271341B (zh) * 2016-04-07 2020-06-23 中国石油化工股份有限公司 动态水岩反应实验中的孔隙度测定方法
CN105859003A (zh) * 2016-05-06 2016-08-17 武汉宏澳绿色能源工程有限责任公司 一种煤化工高盐废水分盐结晶的装置及方法
WO2018045366A2 (en) * 2016-09-02 2018-03-08 Schlumberger Technology Corporation Methods for interpreting nmr data
CN106568912A (zh) * 2016-11-03 2017-04-19 西南石油大学 一种酸性气体在高温高压地层水中溶解度的测试方法和装置
CN109181643A (zh) * 2017-03-03 2019-01-11 侯英翔 金属矿、非金属矿及煤矿掘巷,露天矿开采时,降尘方法
CN110095584B (zh) * 2018-01-31 2021-10-29 中国石油化工股份有限公司 一种储层油水饱和度校正方法
CN207986949U (zh) * 2018-02-10 2018-10-19 湖北绿色家园材料技术股份有限公司 一种稀释剂生产浓缩结晶处理高盐度废水处理装置
CN108751969B (zh) * 2018-06-14 2021-01-19 哈尔滨工业大学 一种耐高温、隔热、透波陶瓷基复合材料及其制备方法
CN109796952A (zh) * 2019-03-28 2019-05-24 曹高维 一种用于井筒中防盐解堵的复合防盐生产方法

Also Published As

Publication number Publication date
CN110702484A (zh) 2020-01-17

Similar Documents

Publication Publication Date Title
CN110702484B (zh) 含水溶盐储层岩心原地孔隙度计算与含水饱和度建立方法
US8344721B2 (en) Method for locating sub-surface natural resources
Hu et al. Potential resources of conventional, tight, and shale oil and gas from Paleogene Wenchang Formation source rocks in the Huizhou Depression.
WO2021129164A1 (zh) 一种评价海洋天然气水合物储层优劣的方法
CN105134185A (zh) 储层流体性质识别方法
Zhou et al. The effect of inorganic salt precipitation on oil recovery during CO2 flooding: A case study of Chang 8 block in Changqing oilfield, NW China
CN110702491B (zh) 一种确定含水溶盐地层水矿化度与岩心洗盐程度的方法
Fadili et al. Groundwater hydrodynamics and salinity response to oceanic tide in coastal aquifers: case study of Sahel Doukkala, Morocco
Nie et al. Evaluation of the in-place adsorbed gas content of organic-rich shales using wireline logging data: a new method and its application
Wu et al. A novel permeability model for hydrate-bearing sediments integrating pore morphology evolution based on modified Kozeny-Carman equation
CN112443322A (zh) 一种基于等效饱和度的烃源岩测井评价方法
Neilson-Welch et al. Saline water intrusion adjacent to the fraser river, richmond, british columbia
Sun et al. Paleosalinity and lake level fluctuations of the 3rd Member of Paleogene Shahejie Formation, Chezhen Sag, Bohai Bay Basin
CN110320340A (zh) 蒸发岩与石油硫同位素对比判断石油烃源岩时代的方法
Ma et al. Variation of hydraulic conductivity with depth in the North China plain
Breier et al. Tidally regulated chemical fluxes across the sediment—water interface in Elkhorn Slough, California: Evidence from a coupled geochemical and hydrodynamic approach
CN112147053A (zh) 微生物碳酸盐岩储层埋藏热解增孔定量评价方法及装置
Bourdet et al. Adaptation of fluid inclusion techniques for investigating gas charge–examples from the Caswell Sub-basin, Browse Basin, Australia
McWhorter et al. Optimising drilling and completions performance by applying core and physics-based models to drilling data
CN109343121A (zh) 一种确定热接触变质岩储层中岩浆热液规模的方法
Khan et al. Estimation of porosity of Khewra Sandstone of Cambrian age by using Helium Porosimeter and its application in reservoir evaluation
JP7478503B1 (ja) 海域堆積盆地に対する塩水帯水層の二酸化炭素貯留容量の評価方法
CN108548765B (zh) 一种变粘土骨架的孔隙度计算方法
Yu et al. Resistivity correction and water saturation evaluation for calcareous tight sandstone reservoir: A case study of G oil field in Sichuan Basin
Zhu et al. Quantifying capillary trapping on ultimate coal seam gas recovery: A laboratory study

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant