CN110690313A - 一种Si衬底MoS2近红外光探测器及制备方法 - Google Patents

一种Si衬底MoS2近红外光探测器及制备方法 Download PDF

Info

Publication number
CN110690313A
CN110690313A CN201911022500.4A CN201911022500A CN110690313A CN 110690313 A CN110690313 A CN 110690313A CN 201911022500 A CN201911022500 A CN 201911022500A CN 110690313 A CN110690313 A CN 110690313A
Authority
CN
China
Prior art keywords
mos
substrate
metal layer
functional layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911022500.4A
Other languages
English (en)
Inventor
王文樑
李国强
杨昱辉
孔德麒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201911022500.4A priority Critical patent/CN110690313A/zh
Publication of CN110690313A publication Critical patent/CN110690313A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种Si衬底MoS2近红外光探测器及制备方法,从下到上依次包括Si衬底、MoS2功能层及Ni/Au金属层电极,所述Ni/Au金属层电极位于MoS2功能层上表面的两端,所述MoS2功能层的上表面镀一层纳米级的Ag颗粒。本发明有效降低表面对近红外光的反射损耗,增强近红外光谐振吸收,实现高灵敏度高带宽探测。

Description

一种Si衬底MoS2近红外光探测器及制备方法
技术领域
本发明涉及近红外光探测器领域,具体涉及一种Si衬底MoS2近红外光探测器及制备方法。
背景技术
光电探测器是一种将光信号转换成为电信号的器件,普遍存在于我们日常生活中的每一个角落。而光是一种电磁波,根据其波长的不同可以分为很多种,近红外光就是其中的一种。所谓近红外光,就是指波长范围在780nm~3μm之间的光,而近红外光探测器由于特殊的光谱响应范围,在军民领域具有广泛的应用。
目前为止,得以应用的近红外光探测器按所使用材料的尺寸可以分为块状材料探测器、薄膜材料探测器和纳米材料探测器三种。块状材料探测器目前应用最广泛的是块状硅基光电探测器和InGaAs基探测器等,但是这些探测器具有很明显的缺点,就是这些材料对光的吸收率很低,因此光响应度很低;并且这些材料易碎,在柔性器件方面不能得到应用。为此人们开始寻找新型的具有更高光吸收率和柔韧性的材料,于是纳米材料探测器的研究就应运而生。
纳米薄膜材料拥有许多块状材料所不具备的光电性质,使其在光电探测领域拥有很大优势。首先,纳米材料拥有很大的比表面积,因此对光的吸收面积比较大,能够尽可能的吸收更多的光;其次,纳米材料由于其尺寸很小,使其电荷的运输时间大大缩小,从而提高响应的速度;最后,材料由于其为纳米尺寸,具有量子限域效应,当减少材料厚度时,会导致强烈的束缚激子,增强其对光的吸收效率。
虽然MoS2基探测器研究取得了显著成果,但是由于材料问题和器件问题,导致MoS2基探测器的应用效果不佳。
发明内容
为了克服现有技术存在的缺点与不足,本发明提供一种Si衬底MoS2近红外光探测器。该探测器具有外量子效率高,响应速度快、带宽高等优点。
本发明还提供一种Si衬底MoS2近红外光探测器的制备方法。
本发明采用的技术方案:
一种Si衬底MoS2近红外光探测器,从下到上依次包括Si衬底、MoS2功能层及Ni/Au金属层电极,所述Ni/Au金属层电极位于MoS2功能层上表面的两端,所述MoS2功能层的上表面镀一层纳米级的Ag颗粒。
所述MoS2功能层的厚度为10~12nm。
所述Ni/Au金属层电极为叉指电极。
Ni/Au金属层电极中Ni金属层的厚度为95~105nm,Au金属层的厚度为95~105nm。
一种Si衬底MoS2近红外光探测器,包括如下步骤:
S1在Si衬底上采用PLD低温外延方法生长MoS2功能层,所述PLD低温外延方法生长MoS2功能层的温度为440~460℃,激光能量为0.46~0.50J/cm2,生长时间为40~60min;
S2在MoS2功能层上表面匀胶、烘干、曝光、显影和氧离子处理,确定电极形状,并通过蒸镀工艺将Ni/Au金属层电极蒸镀在MoS2功能层上表面的两端。
所述S2中,烘干时间为42~48s,曝光时间为4~7s,显影时间为44~49s,氧离子处理时间为2.5~3.5min。
本发明先蒸镀Ni金属层再蒸镀Au金属层。
本发明电极的蒸镀速率为0.17~0.21nm/min。
所述生长时间为40min。
本发明的有益效果:
(1)本发明一种Si衬底MoS2近红外光探测器在820nm波段有明显的波峰,响应度为0.0213A/W,表明该探测器在近红外波段范围有较高的响应度,灵敏度高。
(2)本发明探测器的制备方法,结合PLD低温外延方法,在Si衬底上生长高质量MoS2材料,再通过光刻蒸镀工艺,在MoS2上制作Ni/Au电极,该方法具有生长的材料质量高、能在较低温度下生长、制备的器件性能好、省时高效及能耗低的特点,有利于规模化生产。
(3)本发明在探测芯片表面进行红外光增敏微纳结构设计,有效降低表面对近红外光的反射损耗,增强近红外光谱谐振吸收,实现高灵敏度高带宽探测。
附图说明
图1是本发明的结构示意图;
图2是图1的俯视结构图;
图3是采用PLD生长方法的MoS2样品的AFM测试图样;
图4是本实施例制备得到Si衬底MoS2近红外光探测器的光响应特性曲线图。
具体实施方式
下面结合实施例及附图,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例1
一种Si衬底MoS2近红外光探测器,如图1所示,从下到上依次排布的Si衬底1和MoS2功能层2,MoS2功能层2的上表面的两端连接Ni/Au金属层电极3。MoS2功能层2的厚度为10nm。Ni/Au金属层电极3中Ni金属层的厚度为100nm,Au金属层的厚度为100nm,所述MoS2功能层的上表面镀一层纳米级的Ag颗粒。
每层MoS2由S-Mo-S三次原子层组成,上下两层为S原子组成平面,中间为金属Mo原子层。MoS2具有特殊的能带结构,其层数对能带结构具有很大影响,随着MoS2层数的减少,其禁带宽度逐渐变大,能带由间接带隙转变为直接带隙。MoS2材料的禁带宽度在1.29~1.8eV之间。同时MoS2在低温时具有很高的电子迁移率。
本实施例还提供了所述Si衬底MoS2近红外光探测器的制备方法,包括如下步骤:
(1)在Si衬底1上采用PLD方法生长MoS2功能层2,并采用AFM分析样品表面形貌;
(2)在MoS2功能层2上表面的两端进行光刻,在MoS2功能层2上表面匀胶、烘干45s、曝光5s、显影47s和氧离子处理2.5min,确定电极形状,如图2所示,所述电极为叉指电极,通过蒸镀工艺将Ni/Au金属层电极3蒸镀在MoS2功能层2上表面的两端。
采用PLD方法生长MoS2功能层时温度为450℃,激光能量为0.48J/cm2。电极的蒸镀速率为0.18nm/min,生长时间为40min。
将制备得到的Si衬底MoS2近红外光探测器进行测试。
本发明采用PLD低温外延方法能实现交底温度条件下的生长,生长的材料无界面反应,质量比较高,有利于制备高性能器件。
图3为实施例PLD外延生长的MoS2样品的AFM测试图样。可见样品上有MoS2材料的生长,且表面粗糙度为5.9nm。测试表明PLD生长时间为40min时的表面比较平整,粗糙度很小。
图4为本实施例所得Si衬底MoS2近红外光探测器所测得的光响应特性曲线。由曲线可看出,实施例所得Si衬底MoS2近红外光探测器在820nm波段有明显的波峰,响应度为0.0213A/W。测试表明该光电探测器在近红外波段范围有高的响应度,说明该光电探测器有较高的灵敏度。
实施例2
本实施例与实施例1的制备过程相同,不同之处在于:本实施例采用PLD方法生长MoS2功能层时温度为440℃,激光能量为0.46J/cm2。生长时间为60min。
实施例3
本实施例与实施例1的制备过程相同,不同之处在于:本实施例采用PLD方法生长MoS2功能层时温度为460℃,激光能量为0.50J/cm2。生长时间为50min。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

1.一种Si衬底MoS2近红外光探测器,其特征在于,从下到上依次包括Si衬底、MoS2功能层及Ni/Au金属层电极,所述Ni/Au金属层电极位于MoS2功能层上表面的两端,所述MoS2功能层的上表面镀一层纳米级的Ag颗粒。
2.根据权利要求1所述的一种Si衬底MoS2近红外光探测器,其特征在于,所述MoS2功能层的厚度为10~12nm。
3.根据权利要求1所述的一种Si衬底MoS2近红外光探测器,其特征在于,所述Ni/Au金属层电极为叉指电极。
4.根据权利要求3所述的一种Si衬底MoS2近红外光探测器,其特征在于,Ni/Au金属层电极中Ni金属层的厚度为95~105nm,Au金属层的厚度为95~105nm。
5.一种如权利要求1-4任一项所述Si衬底MoS2近红外光探测器的制备方法,其特征在于,包括如下步骤:
S1在Si衬底上采用PLD低温外延方法生长MoS2功能层,所述PLD低温外延方法生长MoS2功能层的温度为440~460℃,激光能量为0.46~0.50J/cm2,生长时间为40~60min;
S2在MoS2功能层上表面匀胶、烘干、曝光、显影和氧离子处理,确定电极形状,并通过蒸镀工艺将Ni/Au金属层电极蒸镀在MoS2功能层上表面的两端。
6.根据权利要求5所述的制备方法,其特征在于,所述S2中,烘干时间为42~48s,曝光时间为4~7s,显影时间为44~49s,氧离子处理时间为2.5~3.5min。
7.根据权利要求5所述的制备方法,其特征在于,先蒸镀Ni金属层再蒸镀Au金属层。
8.根据权利要求5所述的制备方法,其特征在于,电极的蒸镀速率为0.17~0.21nm/min。
9.根据权利要求5所述的制备方法,其特征在于,所述生长时间为40min。
CN201911022500.4A 2019-10-25 2019-10-25 一种Si衬底MoS2近红外光探测器及制备方法 Pending CN110690313A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911022500.4A CN110690313A (zh) 2019-10-25 2019-10-25 一种Si衬底MoS2近红外光探测器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911022500.4A CN110690313A (zh) 2019-10-25 2019-10-25 一种Si衬底MoS2近红外光探测器及制备方法

Publications (1)

Publication Number Publication Date
CN110690313A true CN110690313A (zh) 2020-01-14

Family

ID=69114062

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911022500.4A Pending CN110690313A (zh) 2019-10-25 2019-10-25 一种Si衬底MoS2近红外光探测器及制备方法

Country Status (1)

Country Link
CN (1) CN110690313A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111223957A (zh) * 2020-02-24 2020-06-02 电子科技大学 一种法布罗共振近红外热电子光电探测器及其制备方法
CN111952395A (zh) * 2020-07-20 2020-11-17 西安电子科技大学 一种可见光与红外双波段光输运管探测器及其制备方法
WO2023045171A1 (zh) * 2021-09-26 2023-03-30 华南理工大学 一种二硒化钼/InGaN多光谱光电探测器及其制备方法与应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008263015A (ja) * 2007-04-11 2008-10-30 Hitachi Cable Ltd 半導体発光素子
JP2009272358A (ja) * 2008-05-01 2009-11-19 Hitachi Cable Ltd 半導体発光素子及びその製造方法
US20100065869A1 (en) * 2008-09-12 2010-03-18 Hitachi Cable, Ltd. Light emitting device and method for fabricating the same
EP2306523A2 (en) * 2009-10-02 2011-04-06 Mitsubishi Heavy Industries Infrared detector, infrared detecting apparatus and method of manufacturing infrared detector
CN105633191A (zh) * 2016-03-25 2016-06-01 合肥工业大学 一种具有垂直生长结构的二维过渡金属硫属化物同质结光电探测器及其制备方法
CN105789367A (zh) * 2016-04-15 2016-07-20 周口师范学院 非对称电极二维材料/石墨烯异质结级联光电探测器及其制备方法
CN105895728A (zh) * 2016-05-23 2016-08-24 中国科学院长春光学精密机械与物理研究所 一种近红外探测器及其制备方法
CN107591487A (zh) * 2017-06-05 2018-01-16 西安电子科技大学 平面型光电探测器及其制备方法
CN108231924A (zh) * 2018-02-28 2018-06-29 华南理工大学 生长在r面蓝宝石衬底上的非极性AlGaN基MSM型紫外探测器及其制备方法
CN108400183A (zh) * 2018-02-28 2018-08-14 华南理工大学 一种Si衬底上AlGaN基金属-半导体-金属型紫外探测器及其制备方法
US20190257690A1 (en) * 2018-02-12 2019-08-22 National University Of Singapore MoS2 BASED PHOTOSENSOR FOR DETECTING BOTH LIGHT WAVELENGTH AND INTENSITY

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008263015A (ja) * 2007-04-11 2008-10-30 Hitachi Cable Ltd 半導体発光素子
JP2009272358A (ja) * 2008-05-01 2009-11-19 Hitachi Cable Ltd 半導体発光素子及びその製造方法
US20100065869A1 (en) * 2008-09-12 2010-03-18 Hitachi Cable, Ltd. Light emitting device and method for fabricating the same
EP2306523A2 (en) * 2009-10-02 2011-04-06 Mitsubishi Heavy Industries Infrared detector, infrared detecting apparatus and method of manufacturing infrared detector
CN105633191A (zh) * 2016-03-25 2016-06-01 合肥工业大学 一种具有垂直生长结构的二维过渡金属硫属化物同质结光电探测器及其制备方法
CN105789367A (zh) * 2016-04-15 2016-07-20 周口师范学院 非对称电极二维材料/石墨烯异质结级联光电探测器及其制备方法
CN105895728A (zh) * 2016-05-23 2016-08-24 中国科学院长春光学精密机械与物理研究所 一种近红外探测器及其制备方法
CN107591487A (zh) * 2017-06-05 2018-01-16 西安电子科技大学 平面型光电探测器及其制备方法
US20190257690A1 (en) * 2018-02-12 2019-08-22 National University Of Singapore MoS2 BASED PHOTOSENSOR FOR DETECTING BOTH LIGHT WAVELENGTH AND INTENSITY
CN108231924A (zh) * 2018-02-28 2018-06-29 华南理工大学 生长在r面蓝宝石衬底上的非极性AlGaN基MSM型紫外探测器及其制备方法
CN108400183A (zh) * 2018-02-28 2018-08-14 华南理工大学 一种Si衬底上AlGaN基金属-半导体-金属型紫外探测器及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111223957A (zh) * 2020-02-24 2020-06-02 电子科技大学 一种法布罗共振近红外热电子光电探测器及其制备方法
CN111223957B (zh) * 2020-02-24 2023-03-24 电子科技大学 一种法布罗共振近红外热电子光电探测器及其制备方法
CN111952395A (zh) * 2020-07-20 2020-11-17 西安电子科技大学 一种可见光与红外双波段光输运管探测器及其制备方法
CN111952395B (zh) * 2020-07-20 2023-02-10 西安电子科技大学 一种可见光与红外双波段光输运管探测器及其制备方法
WO2023045171A1 (zh) * 2021-09-26 2023-03-30 华南理工大学 一种二硒化钼/InGaN多光谱光电探测器及其制备方法与应用

Similar Documents

Publication Publication Date Title
CN110690313A (zh) 一种Si衬底MoS2近红外光探测器及制备方法
Lam et al. High-sensitive ultraviolet photodetectors based on ZnO nanorods/CdS heterostructures
Young et al. growth of Al-, Ga-, and In-doped ZnO nanostructures via a low-temperature process and their application to field emission devices and ultraviolet photosensors
CN105347297B (zh) 用于制备纳米线结构的方法
Ji et al. Ultraviolet photodetectors based on selectively grown ZnO nanorod arrays
CN106910786B (zh) 一种量子点增强的纳米线以及紫外光电探测器
CN111554757A (zh) 一种基于等离激元增强的石墨烯中红外光探测器及制备方法
Farhat et al. Growth of vertically aligned ZnO nanorods on Teflon as a novel substrate for low-power flexible light sensors
Abbasi et al. Fabricating and investigating high photoresponse UV photodetector based on Ni-doped ZnO nanostructures
Shabannia et al. ZnO nanorod ultraviolet photodetector on porous silicon substrate
Li et al. Broadband InSb/Si heterojunction photodetector with graphene transparent electrode
Chetri et al. Au/GLAD-SnO 2 nanowire array-based fast response Schottky UV detector
Bashkany et al. A self-powered heterojunction photodetector based on a PbS nanostructure grown on porous silicon substrate
CN110416333B (zh) 一种紫外光电探测器及其制备方法
Benlamri et al. Planar microwave resonator with electrodeposited ZnO thin film for ultraviolet detection
Liu et al. A flower-inspired divergent light-trapping structure with quasi-spherical symmetry towards a high-performance flexible photodetector
Li et al. A high performance surface acoustic wave visible light sensor using novel materials: Bi 2 S 3 nanobelts
CN111525036A (zh) 一种自驱动钙钛矿光电探测器及其制备方法
KR102004650B1 (ko) 태양전지용 메타소재 전극 및 이의 제조방법
Li et al. Preparation and photoelectric properties of silver nanowire/zno thin film ultraviolet detector
Yan et al. Photodetector based on Ruddlesden-Popper perovskite microwires with broader band detection
CN210805801U (zh) 一种Si衬底MoS2近红外光探测器
Liu et al. Fabrication of tree-like CdS nanorods-Si pillars structure for photosensitive application
CN111312851A (zh) 一种AlN纳米线日盲区探测器的制备方法
Abed et al. Comparative study of UV-ZnO NRs photodetectors based on seeded porous silicon by RF-sputtering and drop-casting methods

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination