CN110683962A - Method for preparing N-methyldiethanolamine by micro-reaction synthesis - Google Patents

Method for preparing N-methyldiethanolamine by micro-reaction synthesis Download PDF

Info

Publication number
CN110683962A
CN110683962A CN201810739129.2A CN201810739129A CN110683962A CN 110683962 A CN110683962 A CN 110683962A CN 201810739129 A CN201810739129 A CN 201810739129A CN 110683962 A CN110683962 A CN 110683962A
Authority
CN
China
Prior art keywords
micro
reaction
methyldiethanolamine
temperature
methylamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810739129.2A
Other languages
Chinese (zh)
Inventor
杨绪甲
毛松柏
朱道平
周志斌
余勇
宋丽
陈园园
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
China Petrochemical Corp
Research Institute of Sinopec Nanjing Chemical Industry Co Ltd
Original Assignee
China Petrochemical Corp
Research Institute of Sinopec Nanjing Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petrochemical Corp, Research Institute of Sinopec Nanjing Chemical Industry Co Ltd filed Critical China Petrochemical Corp
Priority to CN201810739129.2A priority Critical patent/CN110683962A/en
Publication of CN110683962A publication Critical patent/CN110683962A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/04Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reaction of ammonia or amines with olefin oxides or halohydrins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/10Separation; Purification; Stabilisation; Use of additives

Abstract

The invention discloses a method for preparing N-methyldiethanolamine by micro-reaction synthesis. The method mainly comprises the following steps: 1) premixing methylamine and deionized water, wherein the mass ratio of the content of methylamine is 25-35%, feeding the premixed methylamine into a micro-reaction synthesizer to react with ethylene oxide at the pressure of 1.0-2.5 Mpa and the temperature of 40-65 ℃ to obtain a mixture containing N-methyldiethanolamine, and the reaction residence time is 1-10 minutes. 2) Feeding the mixture obtained after the reaction into a flash tank for deamination, and 3) feeding the mixed solution discharged from the bottom of the flash tank into a rectifying tower for distillation to obtain an N-methyldiethanolamine product with the content of more than 98.5%. The method synthesizes the N-methyldiethanolamine in a continuous flow microreactor, accelerates the reaction speed, simplifies the process operation and improves the product yield by strengthening the reaction conditions of raw material mixing and synthesis.

Description

Method for preparing N-methyldiethanolamine by micro-reaction synthesis
Technical Field
The invention relates to the technical field of chemical synthesis, in particular to a method for preparing N-methyldiethanolamine by a micro-reaction synthesis technology.
Background
The natural gas and the raw gas (such as catalytic dry gas, coking dry gas, cracking gas, liquefied gas, etc.) of petroleum processing industry all contain a certain amount of H2S and organic sulfur (e.g. CS)2COS, RSH, R-S-R', etc.), must be cleaned prior to transport and processing.
N-methyldiethanolamine is a solvent widely used in desulfurization and decarburization processes and can be used for treating different H2The acidic gas with S concentration can simultaneously remove sulfide and CO2Also, H can be removed with high selectivity2S, organic sulfur, and the like. Has the advantages of low energy consumption, low circulation quantity, low operation cost and the like.
The technical route for producing the N-methyldiethanolamine comprises four technical routes: (1) catalytic hydrogenation of formaldehyde and cyanoethanol; (2) reacting formaldehyde with diethanol amine; (3) catalytic hydrogenation of formaldehyde and diethanolamine; (4) methylamine is reacted with ethylene oxide.
Among the four synthesis methods, the methylamine and ethylene oxide reaction method is most commonly used, and can be divided into kettle batch synthesis and tubular continuous synthesis according to the reaction process, the reaction pressure and temperature are usually higher, as described in patent CN101265195A, the reaction pressure is 5-7 MPa, and the temperature is controlled at 133-137 ℃.
Disclosure of Invention
The invention provides a method for preparing N-methyldiethanolamine by a micro-reaction synthesis technology.
The reaction principle of the N-methyldiethanolamine is as follows:
Figure DEST_PATH_IMAGE002
Figure DEST_PATH_IMAGE004
the main technical scheme of the method of the invention is as follows: the method for preparing the N-methyldiethanolamine by the micro-reaction synthesis is characterized by comprising a raw material premixing unit, a micro-reactor synthesis unit, a flash evaporation deamination and rectification purification unit.
Generally, the method comprises the steps of:
1) premixing raw materials: firstly, premixing raw materials of methylamine and deionized water to be used as a circulating solution required by a synthetic reaction;
2) synthesizing a micro-reactor: feeding the premixed circulating solution into a micro-reaction synthesizer, reacting with ethylene oxide fed into the micro-reaction synthesizer, controlling the reaction temperature through the feeding rate, and obtaining a mixture containing N-methyldiethanolamine after reaction;
3) flash evaporation and amine removal: sending the mixture containing the N-methyldiethanolamine obtained by the micro-reactor synthesis unit into a flash tank from a product collection tank for preliminary separation, and controlling the bottom temperature of the flash tank; methylamine steam coming out of the top of the flash tank is condensed and then sent into a raw material premixing unit for recycling;
4) rectification and purification: sending the N-methyldiethanolamine-containing concentrated solution from the bottom of the flash tank into a rectifying tower for rectification under reduced pressure and separation to obtain the N-methyldiethanolamine with the purity of over 98.5 percent.
Preferably, the content of methylamine in the mixed solution of the circulating reaction solution is within the range of 25-35%.
The synthesis pressure of the microreactor is within the range of 1.0-2.5 Mpa, the molar ratio of ethylene oxide to methylamine is within the range of 1.5 ~ 2.5.5, the reaction temperature is within the range of 40-65 ℃, and the retention time is 1-10 minutes.
The micro-reaction synthesizer is filled in a tubular continuous reactor in a modularized mode and sequentially comprises a first micro-structure mixer, a first micro-structure reactor, a second micro-structure mixer, a second micro-structure reactor and a product collecting tank.
The methylamine mixed circulating solution is connected with the feed inlet of the first microstructure mixer, and the ethylene oxide is respectively connected with the feed inlets of the first microstructure mixer and the second microstructure mixer.
The pressure of the flash tank is controlled within the range of 0.8-1.5 Mpa, and the bottom temperature of the flash tank is controlled within the range of 100-120 ℃.
The pressure of the rectifying tower is in the range of-0.10-0.2 Mpa, the kettle bottom temperature of the rectifying tower is in the range of 168-185 ℃, and the tower top temperature of the rectifying tower is controlled in the range of 163-168 ℃.
The invention discloses a typical method for preparing N-methyldiethanolamine by micro-reaction synthesis, which comprises the following steps:
1) premixing raw materials: firstly, premixing raw materials of methylamine and deionized water, wherein the content of methylamine is 25-35% by mass, and the raw materials are used as a circulating solution for reaction;
2) sending the premixed circulating solution into a microreactor synthesis unit, adjusting the pressure to be within the range of 1.0-2.5 Mpa, introducing ethylene oxide to react, wherein the molar ratio of ethylene oxide to methylamine is within the range of 1.5 ~ 2.5.5, controlling the reaction temperature within the range of 40-65 ℃ through the feeding rate, and keeping the reaction time for 1-10 minutes to obtain a mixture containing N-methyldiethanolamine after the reaction, wherein the microreactor is filled in a tubular continuous reactor in a modularized manner and sequentially comprises a first microstructure mixer, a first microstructure reactor, a second microstructure mixer, a second microstructure reactor and a product collecting tank, the methylamine mixed circulating solution is connected with a feed inlet of the first microstructure mixer, and the ethylene oxide is respectively connected with feed inlets of the first and second microstructure mixers;
3) flash evaporation and amine removal: sending a mixture containing N-methyldiethanolamine obtained by the synthesis of the microreactor into a flash tank from a product collecting tank for preliminary separation, wherein the pressure of the flash tank is controlled within the range of 0.8-1.5 Mpa, and the temperature of the bottom of the flash tank is controlled within the range of 100-120 ℃; methylamine steam coming out of the top of the flash tank is condensed and then sent into a raw material premixing unit for recycling;
4) rectification and purification: sending the N-methyldiethanolamine-containing concentrated solution from the bottom of the flash tank into a rectifying tower for vacuum rectification separation to obtain the N-methyldiethanolamine with the purity of more than 98.5%, wherein the pressure of the rectifying tower is controlled within-0.10-0.2 Mpa, the temperature of the bottom of the rectifying tower is controlled within 168-185 ℃, and the temperature of the top of the rectifying tower is controlled within 163-168 ℃.
In the process, the pressure is controlled to be 1.0-2.5 MPa, the reaction temperature is controlled to be 40-65 ℃ by reasonably controlling the feeding of the ethylene oxide, and meanwhile, a heating device is arranged at the bottom of a flash evaporation tank, and flash evaporation and gas stripping are combined.
The method synthesizes the N-methyldiethanolamine in the continuous flow microreactor, accelerates the reaction speed, simplifies the process operation and improves the product yield by strengthening the reaction conditions of raw material mixing and synthesis.
Drawings
FIG. 1 is a schematic block flow diagram of a preparation method according to an embodiment of the present invention.
Detailed Description
The following examples were prepared as shown in FIG. 1.
Firstly, mixing methylamine and deionized water, wherein the content of methylamine in the mixed solution is 25-35%; feeding the mixed circulating solution into a reactor, adjusting the reaction pressure to 1.0-2.5 MPa through nitrogen, introducing ethylene oxide to react, wherein the ratio of ethylene oxide to methylamine is 1.5-2.5, and controlling the reaction temperature to 40-65 ℃ through reasonable flow control to obtain a mixture containing N-methyldiethanolamine; and (2) conveying the mixture containing the N-methyldiethanolamine into a flash tank with a heating device, controlling the pressure within 0.8-1.5 MPa, heating and controlling the temperature within 100-120 ℃, separating out methylamine in the mixed product by flash evaporation, and conveying the separated methylamine into a raw material preparation process for reuse through condensation and recovery. The flash tank contains a concentrate of a mixture of N-methyldiethanolamine at the bottom. And (3) sending the concentrated solution containing the mixture of the N-methyldiethanolamine obtained from the bottom of the flash evaporation tank into a rectifying tower for carrying out rectification under reduced pressure and separation to obtain the N-methyldiethanolamine, wherein the purity can reach more than 98.5%.
Example 1
The technological parameters are as follows: synthesis reaction, pressure: 1.0 MPa; temperature: -65 ℃;
b. flash evaporation deamination, pressure: 1.0 MPa; temperature: -120 ℃ of temperature;
c. rectification and purification, pressure: -0.1 MPa; the temperature of the kettle bottom: the temperature of the tower top is 185 ℃ below zero and 163 ℃ below zero.
Material flow rate: methylamine at 1.54kg/hr, ethylene oxide at 4.65kg/hr, deionized water at 3.60kg/hr, and reflux at 4.35 kg/hr.
The product quality is as follows: N-Methyldiethanolamine (MDEA) with the purity of 99.1 percent.
Example 2
The technological parameters are as follows: synthesis reaction, pressure: 1.5 MPa; temperature: -65 ℃;
b. flash evaporation deamination, pressure: 1.2 MPa; temperature: 120 ℃;
c. rectification and purification, pressure: -0.1 MPa; the temperature of the kettle bottom: the temperature of the tower top is 185 ℃ below zero and 163 ℃ below zero.
Material flow rate: methylamine at 1.54kg/hr, ethylene oxide at 4.65kg/hr, deionized water at 3.60kg/hr, and reflux at 4.35 kg/hr.
The product quality is as follows: N-Methyldiethanolamine (MDEA) with the purity of 99.3 percent.
Example 3
The technological parameters are as follows: synthesis reaction, pressure: -2.0 MPa; temperature: -65 ℃;
b. flash evaporation deamination, pressure: 1.2 MPa; temperature: -120 ℃ of temperature;
c. rectification and purification, pressure: -0.1 MPa; the temperature of the kettle bottom: the temperature of the tower top is 185 ℃ below zero and 163 ℃ below zero.
Material flow rate: methylamine at 1.54kg/hr, ethylene oxide at 4.65kg/hr, deionized water at 3.60kg/hr, and reflux at 4.35 kg/hr.
The product quality is as follows: N-Methyldiethanolamine (MDEA) with the purity of 99.5 percent.
Example 4
The technological parameters are as follows: synthesis reaction, pressure: -2.5 MPa; temperature: -65 ℃;
b. flash evaporation deamination, pressure: -1.2 MPa; temperature: -120 ℃ of temperature;
c. rectification and purification, pressure: -0.1 MPa; the temperature of the kettle bottom: the temperature of the tower top is 185 ℃ below zero and 163 ℃ below zero.
Material flow rate: methylamine at 1.54kg/hr, ethylene oxide at 4.65kg/hr, deionized water at 3.60kg/hr, and reflux at 4.35 kg/hr.
The product quality is as follows: N-Methyldiethanolamine (MDEA) with the purity of 99.5 percent.
Example 5
The technological parameters are as follows: synthesis reaction, pressure: -2.5 MPa; temperature: -65 ℃;
b. flash evaporation deamination, pressure: -1.2 MPa; temperature: -120 ℃ of temperature;
c. rectification and purification, pressure: -0.1 MPa; the temperature of the kettle bottom: the temperature of the tower top is 185 ℃ below zero and 168 ℃ below zero.
Material flow rate: methylamine at 1.54kg/hr, ethylene oxide at 4.65kg/hr, deionized water at 3.60kg/hr, and reflux at 4.35 kg/hr.
The product quality is as follows: N-Methyldiethanolamine (MDEA) with the purity of 99.5 percent.
Example 6
The technological parameters are as follows: synthesis reaction, pressure: -2.0 MPa; temperature: -65 ℃;
b. flash evaporation deamination, pressure: -1.2 MPa; temperature: -120 ℃ of temperature;
c. rectification and purification, pressure: -0.1 MPa; the temperature of the kettle bottom: the temperature of the tower top is 185 ℃ below zero and 168 ℃ below zero.
Material flow rate: 31kg/hr of methylamine, 87.4kg/hr of ethylene oxide, 72.3kg/hr of deionized water and 85.8kg/h of reflux.
The product quality is as follows: N-Methyldiethanolamine (MDEA) with the purity of 99.5 percent.
Example 7
The technological parameters are as follows: synthesis reaction, pressure: -2.5 MPa; temperature: -65 ℃;
b. flash evaporation deamination, pressure: -1.2 MPa; temperature: -120 ℃ of temperature;
c. rectification and purification, pressure: -0.1 MPa; the temperature of the kettle bottom: the temperature of the tower top is 185 ℃ below zero and 168 ℃ below zero.
Material flow rate: 31kg/hr of methylamine, 87.4kg/hr of ethylene oxide, 72.3kg/hr of deionized water and 85.8kg/h of reflux.
The product quality is as follows: N-Methyldiethanolamine (MDEA) with the purity of 99.6 percent.

Claims (9)

1. A method for preparing N-methyldiethanolamine by micro-reaction synthesis is characterized by comprising a raw material premixing unit, a micro-reactor synthesis unit, a flash evaporation deamination and rectification purification unit.
2. The method according to claim 1, characterized by comprising the steps of:
1) premixing raw materials: firstly, premixing raw materials of methylamine and deionized water to be used as a circulating solution required by a synthetic reaction;
2) synthesizing a micro-reactor: feeding the premixed circulating solution into a micro-reaction synthesizer, reacting with ethylene oxide fed into the micro-reaction synthesizer, controlling the reaction temperature through the feeding rate, and obtaining a mixture containing N-methyldiethanolamine after reaction;
3) flash evaporation and amine removal: sending the mixture containing the N-methyldiethanolamine obtained by the micro-reactor synthesis unit into a flash tank from a product collection tank for preliminary separation, and controlling the bottom temperature of the flash tank; methylamine steam coming out of the top of the flash tank is condensed and then sent into a raw material premixing unit for recycling;
4) rectification and purification: sending the N-methyldiethanolamine-containing concentrated solution from the bottom of the flash tank into a rectifying tower for rectification under reduced pressure and separation to obtain the N-methyldiethanolamine with the purity of over 98.5 percent.
3. The method according to claim 2, wherein the mixed solution for circulating the reaction solution has a methylamine content in the range of 25 to 35%.
4. The method of claim 2, wherein the microreactor has a synthesis pressure of 1.0 to 2.5MPa, a molar ratio of ethylene oxide to methylamine of 1.5 ~ 2.5.5, a reaction temperature of 40 to 65 ℃, and a residence time of 1 to 10 minutes.
5. The method of claim 2, wherein the micro-reaction synthesizer is modularly loaded in a tubular continuous reactor comprising, in order, a first micro-structure mixer, a first micro-structure reactor, a second micro-structure mixer, a second micro-structure reactor, and a product collection tank.
6. The method of claim 2 or 5, wherein the methylamine mixed circulating solution is connected to the feed inlet of the first micro-mixer and ethylene oxide is connected to the feed inlets of the first and second micro-mixers, respectively.
7. The method according to claim 2, wherein the pressure of the flash tank is controlled within the range of 0.8 to 1.5MPa, and the temperature of the bottom of the flash tank is controlled within the range of 100 to 120 ℃.
8. The method as claimed in claim 2, wherein the pressure of the rectifying tower is in the range of-0.10 to 0.2MPa, the bottom temperature of the rectifying tower is in the range of 168 to 185 ℃, and the top temperature of the rectifying tower is controlled in the range of 163 to 168 ℃.
9. The process of claim 1, 2 or 7, wherein the flash drum has heating means at the bottom of the flash drum, and the flash drum is combined with the stripping.
CN201810739129.2A 2018-07-06 2018-07-06 Method for preparing N-methyldiethanolamine by micro-reaction synthesis Pending CN110683962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810739129.2A CN110683962A (en) 2018-07-06 2018-07-06 Method for preparing N-methyldiethanolamine by micro-reaction synthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810739129.2A CN110683962A (en) 2018-07-06 2018-07-06 Method for preparing N-methyldiethanolamine by micro-reaction synthesis

Publications (1)

Publication Number Publication Date
CN110683962A true CN110683962A (en) 2020-01-14

Family

ID=69107027

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810739129.2A Pending CN110683962A (en) 2018-07-06 2018-07-06 Method for preparing N-methyldiethanolamine by micro-reaction synthesis

Country Status (1)

Country Link
CN (1) CN110683962A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101100433A (en) * 2007-07-25 2008-01-09 辽宁华丰化工(集团)有限公司 Method for producing pure triethanolamine containing micro-water
WO2011056929A1 (en) * 2009-11-04 2011-05-12 Massachusetts Institute Of Technology Continuous flow synthesis of amino alcohols using microreactors
CN102557960A (en) * 2010-12-28 2012-07-11 苏州飞翔新材料研究院有限公司 Method for producing alkyl alcohol amine
CN103664650A (en) * 2012-09-10 2014-03-26 中国石油化工股份有限公司 Method of preparing N-methyldiethanolamine at normal temperature
CN107759482A (en) * 2017-11-21 2018-03-06 四川之江高新材料股份有限公司 DMAE and DMAEE integrated preparation method in micro-pipe reactor
CN107805206A (en) * 2017-11-21 2018-03-16 四川之江高新材料股份有限公司 The method that the coupling of micro-pipe reactive distillation is continuously synthesizing to monoethanolamine and its derivative

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101100433A (en) * 2007-07-25 2008-01-09 辽宁华丰化工(集团)有限公司 Method for producing pure triethanolamine containing micro-water
WO2011056929A1 (en) * 2009-11-04 2011-05-12 Massachusetts Institute Of Technology Continuous flow synthesis of amino alcohols using microreactors
CN102557960A (en) * 2010-12-28 2012-07-11 苏州飞翔新材料研究院有限公司 Method for producing alkyl alcohol amine
CN103664650A (en) * 2012-09-10 2014-03-26 中国石油化工股份有限公司 Method of preparing N-methyldiethanolamine at normal temperature
CN107759482A (en) * 2017-11-21 2018-03-06 四川之江高新材料股份有限公司 DMAE and DMAEE integrated preparation method in micro-pipe reactor
CN107805206A (en) * 2017-11-21 2018-03-16 四川之江高新材料股份有限公司 The method that the coupling of micro-pipe reactive distillation is continuously synthesizing to monoethanolamine and its derivative

Similar Documents

Publication Publication Date Title
KR101704902B1 (en) A preparation method of butadiene using oxidative dehydrogenation
EP2177501B3 (en) Method and plant for the production of ethanol amines
CN1142820C (en) Reaction of mixture solution
CN105837394B (en) A kind of method of purification of high-purity 1,2,3-trimethylbenzene
CN1609082A (en) Process for preparing isobutene from tertiary butanol
EP2380869A1 (en) Method to recover organic tertiary amines from waste sulfuric acid
JPS6125025B2 (en)
JP6250662B2 (en) Process for producing nitrobenzene by adiabatic nitration.
CN107001225B (en) Recovery of acetic acid from wood acetylation
TW201811670A (en) Oligosilane production method
CN104961630B (en) Preparation method of 2, 5-dichlorophenol
CN107641084A (en) A kind of method for producing nitroparaffins co-production ketoxime
CN110683962A (en) Method for preparing N-methyldiethanolamine by micro-reaction synthesis
CN105189412B (en) Process and plant for producing olefins from oxygenates
CN106608832B (en) The process of liquid ammonia process for caustic soda purification and Ammonia Process co-producing ethanol amine
CN113461544B (en) Method for treating mixed liquid containing acetonitrile, triethylamine and water
CN100447132C (en) Method for the continuous production of n-methyl-2-pyrrolidone (NMP)
CN110229074A (en) A kind of preparation method of N- benzyloxycarbonyl group -2- amino -1- propyl alcohol
CN103664650A (en) Method of preparing N-methyldiethanolamine at normal temperature
CN213680472U (en) Tetrahydrofuran dehydration refining plant
JP2022546460A (en) Method for producing methacrolein from formaldehyde and propionaldehyde, and apparatus for producing the same
CN114051494A (en) Method for recovering unreacted ethylene in an ethylene oligomerization process
CN110862296A (en) Method for separating reaction product in chloromethane production process
KR20210040409A (en) Method for purifying isobutene from C4 stream and system for treatment thereof
CN115589781B (en) Method for preparing isopropanol

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200114

RJ01 Rejection of invention patent application after publication