CN110679186A - 波束成形的寻呼传输 - Google Patents

波束成形的寻呼传输 Download PDF

Info

Publication number
CN110679186A
CN110679186A CN201880027664.3A CN201880027664A CN110679186A CN 110679186 A CN110679186 A CN 110679186A CN 201880027664 A CN201880027664 A CN 201880027664A CN 110679186 A CN110679186 A CN 110679186A
Authority
CN
China
Prior art keywords
wtru
paging
signal
transmission
inquiry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880027664.3A
Other languages
English (en)
Other versions
CN110679186B (zh
Inventor
邓涛
伯诺瓦·佩尔蒂埃
保罗·马里内尔
J·帕特里克·土赫
吉斯伦·佩尔蒂埃
瑜伽士瓦尔·丁努
马蒂诺·M·弗雷达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InterDigital Patent Holdings Inc
Original Assignee
Idac Holdings
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idac Holdings filed Critical Idac Holdings
Publication of CN110679186A publication Critical patent/CN110679186A/zh
Application granted granted Critical
Publication of CN110679186B publication Critical patent/CN110679186B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • H04W68/025Indirect paging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种或多种用于波束成形寻呼的技术。传输/接收点(TRP)可以在具有与相同寻呼时机(PO)相关联的不同时间、频率资源集和/或序列配置的寻呼查询(PI)块中使用波束扫描来发送寻呼查询信号,例如,以将WTRU随机化和/或分布到不同的监视群组中。WTRU可以传送上行链路寻呼查询响应,其指示用于寻呼数据传输的下行链路波束的和/或WTRU ID。下行链路控制和/或数据信道传输可以由所述寻呼查询响应传输触发。寻呼下行链路控制信息可以在WTRU特定控制信道中传送,该信道可以包含由例如基于可以在寻呼查询响应传输中报告的WTRU ID的临时寻呼标识而掩码的CRC比特。WTRU寻呼过程可以基于寻呼查询信号和/或响应传输。

Description

波束成形的寻呼传输
相关申请的交叉引用
本申请要求于2017年3月22日提交的美国临时专利申请号62/474,867的权益;以及2017年8月9日提交的美国临时专利申请号62/543,126,其全部内容在此引入作为参考,就像为了所有目的在此完整地阐述一样。
背景技术
移动通信继续发展。第五代可以称为5G。先前(旧有)代移动通信可以是例如***(4G)长期演进(LTE)。移动无线通信实施各种无线电接入技术(RAT),例如新无线电(NR)或5G灵活RAT。NR的用例可以包括例如极端移动宽带(eMBB)、超高可靠性和低延时通信(URLLC)以及大规模机器类型通信(mMTC)。
发明内容
公开了用于波束成形寻呼的***、方法和/或手段。TRP可以在寻呼查询(paginginquiry,PI)块中使用波束扫描来发射寻呼查询信号,该寻呼查询块具有与相同寻呼时机(PO)相关联的不同时间、频率资源集和/或序列配置,例如,以将WTRU随机化和/或分布到不同的监视群组中。WTRU可以传送指示用于寻呼数据传输的下行链路波束的上行链路寻呼查询响应和/或WTRU ID。下行链路控制或/数据信道传输可以由寻呼查询响应传输触发。寻呼下行链路控制信息(DCI)可以在WTRU特定的控制信道中被传送,该信道可以包含由例如基于可以在寻呼查询响应传输中被报告的WTRU ID的临时寻呼标识而掩码的CRC比特。WTRU寻呼过程可以基于寻呼查询信号和/或响应传输(例如,独立的或具有同步信号(SS)块的非独立传输)。错误处理可用于改进寻呼可靠性。
无线发射/接收单元(WTRU)可以与无线通信网络通信。该WTRU可以包括存储器。WTRU可以包括处理器。该处理器可以被配置为选择至少一个波束成形的同步信号块(SSB)。所述至少一个波束成形的SSB可以在寻呼时机(PO)发生之前由无线通信网络的节点提供。所述处理器可以被配置为基于所选择的至少一个SSB来选择公共寻呼查询(PI)信号。所述处理器可以被配置成选择一个或多个PI参数。所述处理器可以被配置成基于所选择的一个或多个PI参数来确定所述PO的第一部分。所述处理器可以被配置为在所述PO的所述第一部分期间监视所述公共PI信号。所述处理器可以被配置为确定所述公共PI信号指示寻呼传输将被定向到所述WTRU。所述处理器可以被配置为使用第一波束向所述无线通信网络的所述节点发送PI响应消息。该PI响应消息可以包括针对第二波束的指示和WTRU标识符(ID)。所述WTRU可以包括接收机。该接收机可以被配置成至少使用所述第二波束接收所述寻呼传输。
无线发射/接收单元(WTRU)可以与无线通信网络通信。所述WTRU可以包括存储器。所述WTRU可以包括处理器。该处理器可以被配置为选择与寻呼时机(PO)的出现相关联的至少一个波束成形的同步信号块(SSB)。所述至少一个波束成形的SSB可以由所述无线通信网络的节点提供。所述处理器可以被配置为基于所选择的至少一个SSB和/或WTRU标识符(ID)来确定寻呼查询(PI)信号配置。所述处理器可以被配置成根据所述PI信号配置来确定一个或多个PI信号定时参数。所述处理器可以被配置成基于所确定的一个或多个PI定时参数来确定所述PO的第一部分。所述处理器可以被配置成在所述PO的所述第一部分期间监视所述PI信号。所述处理器可以被配置成检测所述PI信号。所述处理器可以被配置为使用第一波束向所述无线通信网络的所述节点发送PI响应。该PI响应可以包括针对第二波束的指示和/或WTRU ID。所述WTRU可以包括接收机。该接收机可以被配置成使用所述第二波束接收寻呼传输。
无线发射/接收单元(WTRU)可以与无线通信网络通信。所述WTRU可以包括存储器。所述WTRU可以包括处理器。该处理器可被配置成选择可与寻呼时机(PO)的出现相关联的至少一个波束成形的同步信号块(SSB)。所述处理器可以被配置为基于所选择的至少一个SSB和/或WTRU标识符(ID)来确定寻呼查询(PI)信号配置。所述处理器可以被配置成在所述PO的第一部分期间监视PI信号。用于在所述PO期间监视所述PI信号的定时信息可以基于所述PI信号配置来确定。所述处理器可以被配置成检测所述PI信号。所述处理器可以被配置为使用第一波束发送PI响应。该PI响应可以包括针对第二波束的指示和/或所述WTRU ID。所述WTRU可以包括接收机。该接收机可以被配置成使用所述第二波束接收寻呼传输。
附图说明
图1A是示出其中可以实施一个或多个公开的设备、***和/或技术的示例通信***的***图。
图1B是示出了根据一个或多个设备、***和/或技术的可在图1A中所示的通信***内使用的示例无线发射/接收单元(WTRU)的***图。
图1C是示出了根据一个或多个设备、***和/或技术的可在图1A中所示的通信***内使用的示例无线电接入网络(RAN)和示例性核心网络(CN)的***图。
图1D是示出了根据一个或多个设备、***和/或技术的可在图1A中所示的通信***内使用的另一示例性RAN和另一示例CN的***图。
图2是使用4×4均匀线性阵列的WTRU发射波束3D方向图的示例。
图3是具有两个收发信机(TRX)和两个相位天线阵列的WTRU发射混合波束成形的示例。
图4是WTRU基于所配置的频率资源集和/或序列来监视寻呼时机(PO)中的寻呼查询(PI)块的示例。
图5是基于SS块和/或PI块的WTRU寻呼过程的示例。
图6是基于独立PI块的WTRU寻呼过程的示例。
图7是基于SS块和/或PI块的具有PI响应传输的WTRU寻呼过程的示例。
图8是基于独立PI块的WTRU寻呼过程的示例,其具有利用所分组的PI块的PI响应传输。
图9是基于独立PI块的WTRU寻呼过程的示例,其具有利用分布式PI块的PI响应传输。
图10是基于SS块的WTRU寻呼过程的示例。
具体实施方式
现在将参考各个附图来描述说明性设备、***和/或技术的详细描述。尽管此描述提供了可能的实现方式的详细示例,但应注意,这些详细信息旨在作为示例,而绝不限制本申请的范围。
图1A是示出了可以实施一个或多个所公开的设备、***和/或技术的示例通信***100的示图。该通信***100可以是为多个无线用户提供语音、数据、视频、消息传递、广播等内容的多址接入***。该通信***100可以通过共享包括无线带宽在内的***资源而使多个无线用户能够接入此类内容。举例来说,通信***100可以使用一种或多种信道接入方法,例如码分多址(CDMA)、时分多址(TDMA)、频分多址(FDMA)、正交FDMA(OFDMA)、单载波FDMA(SC-FDMA)、零尾唯一字DFT扩展OFDM(ZT UW DTS-s OFDM)、唯一字OFDM(UW-OFDM)、资源块过滤OFDM以及滤波器组多载波(FBMC)等等。
如图1A所示,通信***100可以包括无线发射/接收单元(WTRU)102a、102b、102c、102d、RAN 104/113、CN 106/115、公共交换电话网络(PSTN)108、因特网110以及其他网络112,然而应该了解,所公开的设备、***和/或技术设想了任意数量的WTRU、基站、网络和/或网络部件。每一个WTRU 102a、102b、102c、102d可以是被配置成在无线环境中工作和/或通信的任何类型的设备。举例来说,任一WTRU 102a、102b、102c、102d都可被称为“站”和/或“STA”,其可以被配置成发射和/或接收无线信号,并且可以包括用户设备(UE)、移动站、固定或移动订户单元、基于签约的单元、寻呼机、蜂窝电话、个人数字助理(PDA)、智能电话、膝上型计算机、上网本、个人计算机、无线传感器、热点或Mi-Fi设备、物联网(IoT)设备、手表或其他可穿戴设备、头戴显示器(HMD)、车辆、无人机、医疗设备和应用(例如远程手术)、工业设备和应用(例如机器人和/或在工业和/或自动处理链环境中工作的其他无线设备)、消费类电子设备、以及在商业和/或工业无线网络上工作的设备等等。WTRU 102a、102b、102c、102d中的任意者可被可交换地称为UE。
所述通信***100还可以包括基站114a和/或基站114b。每一个基站114a、114b可以是被配置成通过以无线方式与WTRU 102a、102b、102c、102d中的至少一个无线对接来促使其接入一个或多个通信网络(例如CN 106/115、因特网110、和/或其他网络112)的任何类型的设备。举例来说,基站114a、114b可以是基地收发信台(BTS)、节点B、e节点B、家庭节点B、家庭e节点B、gNB、NR节点B、站点控制器、接入点(AP)、以及无线路由器等等。虽然每一个基站114a、114b都被描述成了单个部件,然而应该了解。基站114a、114b可以包括任何数量的互连基站和/或网络部件。
基站114a可以是RAN 104/113的一部分,并且所述RAN还可以包括其他基站和/或网络部件(未显示),例如基站控制器(BSC)、无线电网络控制器(RNC)、中继节点等等。基站114a和/或基站114b可被配置成在名为小区(未显示)的一个或多个载波频率上发射和/或接收无线信号。这些频率可以处于授权频谱、无授权频谱或是授权与无授权频谱的组合之中。小区可以为相对固定或者有可能随时间变化的特定地理区域提供无线服务覆盖。小区可被进一步分成小区扇区。例如,与基站114a相关联的小区可被分为三个扇区。由此,在一个或多个设备、***和/或技术中,基站114a可以包括三个收发信机,也就是说,每一个收发信机都对应于小区的一个扇区。在一个或多个设备、***和/或技术中,基站114a可以使用多输入多输出(MIMO)技术,并且可以为小区的每一个扇区使用多个收发信机。举例来说,通过使用波束成形,可以在期望的空间方向上发射和/或接收信号。
基站114a、114b可以通过空中接口116来与WTRU 102a、102b、102c、102d中的一者或多者进行通信,其中所述空中接口可以是任何适当的无线通信链路(例如射频(RF)、微波、厘米波、微米波、红外线(IR)、紫外线(UV)、可见光等等)。空中接口116可以使用任何适当的无线电接入技术(RAT)来建立。
更具体地说,如上所述,通信***100可以是多址接入***,并且可以使用一种或多种信道接入方案,例如CDMA、TDMA、FDMA、OFDMA以及SC-FDMA等等。例如,RAN 104/113中的基站114a与WTRU 102a、102b、102c可以实施某种无线电技术,例如通用移动电信***(UMTS)陆地无线电接入(UTRA),其中所述技术可以使用宽带CDMA(WCDMA)来建立空中接口115/116。WCDMA可以包括如高速分组接入(HSPA)和/或演进型HSPA(HSPA+)之类的通信协议。HSPA可以包括高速下行链路(DL)分组接入(HSDPA)和/或高速UL分组接入(HSUPA)。
在一个或多个设备、***和/或技术中,基站114a和WTRU 102a、102b、102c可以实施某种无线电技术,例如演进型UMTS陆地无线电接入(E-UTRA),其中所述技术可以使用长期演进(LTE)和/或先进LTE(LTE-A)和/或先进LTAPro(LTE-APro)来建立空中接口116。
在一个或多个设备、***和/或技术中,基站114a和WTRU 102a、102b、102c可以实施某种无线电技术,例如NR无线电接入,其中所述无线电技术可以使用新型无线电(NR)来建立空中接口116。
在一个或多个设备、***和/或技术中,基站114a和WTRU 102a、102b、102c可以实施多种无线电接入技术。举例来说,基站114a和WTRU 102a、102b、102c可以共同实施LTE无线电接入和NR无线电接入(例如使用双连接(DC)原理)。由此,WTRU 102a、102b、102c使用的空中接口可以通过多种类型的无线电接入技术和/或向/从多种类型的基站(例如eNB和gNB)发送的传输来表征。
在其他设备、***和/或技术中,基站114a和WTRU 102a、102b、102c可以实施以下的无线电技术,例如IEEE 802.11(即无线高保真(WiFi))、IEEE 802.16(全球微波接入互操作性(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000EV-DO、临时标准2000(IS-2000)、临时标准95(IS-95)、临时标准856(IS-856)、全球移动通信***(GSM)、用于GSM演进的增强数据速率(EDGE)以及GSM EDGE(GERAN)等等。
图1A中的基站114b可以是无线路由器、家庭节点B、家庭e节点B或接入点,并且可以使用任何适当的RAT来促成局部区域中的无线连接,例如营业场所、住宅、车辆、校园、工业设施、空中走廊(例如供无人机使用)以及道路等等。在一个或多个设备、***和/或技术中,基站114b与WTRU 102c、102d可以通过实施IEEE 802.11之类的无线电技术来建立无线局域网(WLAN)。在一个或多个设备、***和/或技术中,基站114b与WTRU 102c、102d可以通过实施IEEE 802.15之类的无线电技术来建立无线个人局域网(WPAN)。在一个或多个设备、***和/或技术中,基站114b和WTRU 102c、102d可通过使用基于蜂窝的RAT(例如WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-APro、NR等等)来建立微微小区或毫微微小区。如图1A所示,基站114b可以直连到因特网110。由此,基站114b不需要经由CN 106/115来接入因特网110。
RAN 104/113可以与CN 106/115进行通信,其中所述CN可以是被配置成向一个或多个WTRU 102a、102b、102c、102d提供语音、数据、应用和/或借助网际协议语音(VoIP)服务的任何类型的网络。该数据可以具有不同的服务质量(QoS)需求,例如不同的吞吐量需求、延时需求、容错需求、可靠性需求、数据吞吐量需求、以及移动性需求等等。CN 106/115可以提供呼叫控制、记账服务、基于移动位置的服务、预付费呼叫、因特网连接、视频分发等等,和/或可以执行用户验证之类的高级安全功能。虽然在图1A中没有显示,然而应该了解,RAN104/113和/或CN 106/115可以直接或间接地和其他那些与RAN 104/113使用相同RAT或不同RAT的RAN进行通信。例如,除了与使用NR无线电技术的RAN 104/113相连之外,CN 106/115还可以与使用GSM、UMTS、CDMA2000、WiMAX、E-UTRA或WiFi无线电技术的别的RAN(未显示)通信。
CN 106/115还可以充当供WTRU 102a、102b、102c、102d接入PSTN 108、因特网110和/或其他网络112的网关。PSTN 108可以包括提供简易老式电话服务(POTS)的电路交换电话网络。因特网110可以包括使用了公共通信协议(例如TCP/IP网际协议族中的传输控制协议(TCP)、用户数据报协议(UDP)和/或网际协议(IP))的全球性互联计算机网络设备***。网络112可以包括由其他服务供应商拥有和/或运营的有线和/或无线通信网络。例如,网络112可以包括与一个或多个RAN相连的另一个CN,其中所述一个或多个RAN可以与RAN 104/113使用相同RAT或不同RAT。
通信***100中一些或所有WTRU 102a、102b、102c、102d可以包括多模能力(例如,WTRU 102a、102b、102c、102d可以包括在不同无线链路上与不同无线网络通信的多个收发信机)。例如,图1A所示的WTRU 102c可被配置成与可以使用基于蜂窝的无线电技术的基站114a通信,以及与可以使用IEEE 802无线电技术的基站114b通信。
图1B是示出了例示WTRU 102的***图示。如图1B所示,WTRU 102可以包括处理器118、收发信机120、发射/接收部件122、扬声器/麦克风124、键盘126、显示器/触摸板128、不可移除存储器130、可移除存储器132、电源134、全球定位***(GPS)芯片组136以及其他周边设备138。应该了解的是,在保持符合一个或多个设备、***和/或技术的同时,WTRU 102还可以包括前述部件的任何子组合。
处理器118可以是通用处理器、专用处理器、常规处理器、数字信号处理器(DSP)、多个微处理器、与DSP核心关联的一个或多个微处理器、控制器、微控制器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)电路、其他任何类型的集成电路(IC)以及状态机等等。处理器118可以执行信号编码、数据处理、功率控制、输入/输出处理、和/或其他任何能使WTRU102在无线环境中工作的功能。处理器118可以耦合至收发信机120,收发信机120可以耦合至发射/接收部件122。虽然图1B将处理器118和收发信机120描述成单独组件,然而应该了解,处理器118和收发信机120也可以集成在一个电子组件或芯片中。
发射/接收部件122可被配置成经由空中接口116来发射或接收去往或来自基站(例如基站114a)的信号。举个例子,在一个或多个设备、***和/或技术中,发射/接收部件122可以是被配置成发射和/或接收RF信号的天线。作为示例,在一个或多个设备、***和/或技术中,发射/接收部件122可以是被配置成发射和/或接收IR、UV或可见光信号的放射器/检测器。在一个或多个设备、***和/或技术中,发射/接收部件122可被配置成发射和/或接收RF和光信号。应该了解的是,发射/接收部件122可以被配置成发射和/或接收无线信号的任何组合。
虽然在图1B中将发射/接收部件122描述成是单个部件,但是WTRU 102可以包括任何数量的发射/接收部件122。更具体地说,WTRU 102可以使用MIMO技术。由此,在一个或多个设备、***和/或技术中,WTRU 102可以包括两个或多个通过空中接口116来发射和接收无线电信号的发射/接收部件122(例如多个天线)。
收发信机120可被配置成对发射/接收部件122所要传送的信号进行调制,以及对发射/接收部件122接收的信号进行解调。如上所述,WTRU 102可以具有多模能力。因此,收发信机120可以包括允许WTRU 102借助多种RAT(例如NR和IEEE 802.11)来进行通信的多个收发信机。
WTRU 102的处理器118可以耦合到扬声器/麦克风124、键盘126和/或显示器/触摸板128(例如液晶显示器(LCD)显示单元或有机发光二极管(OLED)显示单元),并且可以接收来自这些部件的用户输入数据。处理器118还可以向扬声器/麦克风124、键盘126和/或显示器/触摸板128输出用户数据。此外,处理器118可以从诸如不可移除存储器130和/或可移除存储器132之类的任何适当的存储器中存取信息,以及将信息存入这些存储器。不可移除存储器130可以包括随机存取存储器(RAM)、只读存储器(ROM)、硬盘或是其他任何类型的记忆存储设备。可移除存储器132可以包括订户标识模块(SIM)卡、记忆棒、安全数字(SD)记忆卡等等。在其他设备、***和/或技术中,处理器118可以从那些并非实际位于WTRU 102的存储器存取信息,以及将数据存入这些存储器,作为示例,此类存储器可以位于服务器或家庭计算机(未显示)。
处理器118可以接收来自电源134的电力,并且可被配置分发和/或控制用于WTRU102中的其他组件的电力。电源134可以是为WTRU 102供电的任何适当设备。例如,电源134可以包括一个或多个干电池组(如镍镉(Ni-Cd)、镍锌(Ni-Zn)、镍氢(NiMH)、锂离子(Li-ion)等等)、太阳能电池以及燃料电池等等。
处理器118还可以耦合到GPS芯片组136,该芯片组可被配置成提供与WTRU 102的当前位置相关的位置信息(例如经度和纬度)。作为来自GPS芯片组136的信息的补充或替换,WTRU 102可以经由空中接口116接收来自基站(例如基站114a、114b)的位置信息,和/或根据从两个或更多个附近基站接收的信号定时来确定其位置。应该了解的是,在保持符合一个或多个设备、***和/或技术的同时,WTRU 102可以借助任何适当的定位方法来获取位置信息。
处理器118还可以耦合到其他周边设备138,其中所述周边设备可以包括提供附加特征、功能和/或有线或无线连接的一个或多个软件和/或硬件模块。例如,周边设备138可以包括加速度计、电子指南针、卫星收发信机、数码相机(用于照片和/或视频)、通用串行总线(USB)端口、振动设备、电视收发信机、免提耳机、
Figure BDA0002247884600000111
模块、调频(FM)无线电单元、数字音乐播放器、媒体播放器、视频游戏机模块、因特网浏览器、虚拟现实和/或增强现实(VR/AR)设备、以及活动***等等。周边设备138可以包括一个或多个传感器,所述传感器可以是以下的一个或多个:陀螺仪、加速度计、霍尔效应传感器、磁力计、方位传感器、邻近传感器、温度传感器、时间传感器、地理位置传感器、高度计、光传感器、触摸传感器、磁力计、气压计、手势传感器、生物测定传感器和/或湿度传感器。
WTRU 102可以包括全双工无线电设备,其中对于该无线电设备来说,一些或所有信号(例如与用于UL(例如对传输而言)和下行链路(例如对接收而言)的特定子帧相关联)的接收或传输可以是并发和/或同时的。全双工无线电设备可以包括借助于硬件(例如扼流线圈)或是凭借处理器(例如单独的处理器(未显示)或是凭借处理器118)的信号处理来减少和/或基本消除自干扰的干扰管理单元139。在一个或多个设备、***和/或技术中,WTRU102可以包括传送和接收一些或所有信号(例如与用于UL(例如对传输而言)或下行链路(例如对接收而言)的特定子帧相关联)的半双工无线电设备。
图1C是示出了根据一个或多个设备、***和/或技术的RAN 104和CN 106的***图示。如上所述,RAN 104可以在空中接口116上使用E-UTRA无线电技术来与WTRU 102a、102b、102c进行通信。所述RAN 104还可以与CN 106进行通信。
RAN 104可以包括e节点B 160a、160b、160c,然而应该了解,在保持符合一个或多个设备、***和/或技术的同时,RAN 104可以包括任何数量的e节点B。每一个e节点B 160a、160b、160c都可以包括在空中接口116上与WTRU 102a、102b、102c通信的一个或多个收发信机。在一个或多个设备、***和/或技术中,e节点B 160a、160b、160c可以实施MIMO技术。由此,举例来说,e节点B 160a可以使用多个天线来向WTRU 102a发射无线信号,和/或接收来自WTRU 102a的无线信号。
每一个e节点B 160a、160b、160c都可以关联于一个特定小区(未显示),并且可被配置成处理无线电资源管理决策、切换决策、UL和/或DL中的用户调度等等。如图1C所示,e节点B 160a、160b、160c彼此可以通过X2接口进行通信。
图1C所示的CN 106可以包括移动性管理实体(MME)162、服务网关(SGW)164以及分组数据网络(PDN)网关(或PGW)166。虽然前述的每一个部件都被描述成是CN 106的一部分,然而应该了解,这其中的任一部件都可以由CN运营商之外的实体拥有和/或运营。
MME 162可以经由S1接口连接到RAN 104中的每一个e节点B 162a、162b、162c,并且可以充当控制节点。例如,MME 142可以负责验证WTRU 102a、102b、102c的用户,执行承载激活/去激活处理,以及在WTRU 102a、102b、102c的初始附着过程中选择特定的服务网关等等。MME 162还可以提供一个用于在RAN 104与使用其他无线电技术(例如GSM和/或WCDMA)的其他RAN(未显示)之间进行切换的控制平面功能。
SGW 164可以经由S1接口连接到RAN 104中的每一个e节点B 160a、160b、160c。SGW164通常可以路由和转发去往/来自WTRU 102a、102b、102c的用户数据分组。并且,SGW 164还可以执行其他功能,例如在eNB间的切换过程中锚定用户平面,在DL数据可供WTRU 102a、102b、102c使用时触发寻呼处理,以及管理并存储WTRU 102a、102b、102c的上下文等等。
SGW 164可以连接到PGW 166,所述PGW可以为WTRU 102a、102b、102c提供分组交换网络(例如因特网110)接入,以便促成WTRU 102a、102b、102c与启用IP的设备之间的通信。
CN 106可以促成与其他网络的通信。例如,CN 106可以为WTRU 102a、102b、102c提供电路交换网络(例如PSTN 108)接入,以便促成WTRU 102a、102b、102c与传统的陆线通信设备之间的通信。例如,CN 106可以包括一个IP网关(例如IP多媒体子***(IMS)服务器)或与之进行通信,并且该IP网关可以充当CN 106与PSTN 108之间的接口。此外,CN 106可以为WTRU 102a、102b、102c提供针对其他网络112的接入,其中该网络可以包括其他服务供应商拥有和/或运营的其他有线和/或无线网络。
虽然在图1A-1D中将WTRU描述成了无线终端,然而应该想到的是,在一个或多个设备、***和/或技术中,此类终端与通信网络可以使用(例如临时或永久性)有线通信接口。
在一个或多个设备、***和/或技术中,所述其他网络112可以是WLAN。
采用基础架构基本服务集(BSS)模式的WLAN可以具有用于所述BSS的接入点(AP)以及与所述AP相关联的一个或多个站(STA)。所述AP可以接入和/或是对接到分布式***(DS)和/或是将业务量送入和/或送出BSS的别的类型的有线/无线网络。源于BSS外部且去往STA的业务量可以通过AP到达并被递送至STA。源自STA且去往BSS外部的目的地的业务量可被发送至AP,以便递送到相应的目的地。处于BSS内部的STA之间的业务量可以通过AP来发送,例如源STA可以向AP发送业务量并且AP可以将业务量递送至目的地STA。处于BSS内部的STA之间的业务量可被认为和/或称为点到点业务量。所述点到点业务量可以在源与目的地STA之间(例如在其间直接)用直接链路建立(DLS)来发送。在一个或多个设备、***和/或技术中,DLS可以使用802.11e DLS和/或802.11z通道化DLS(TDLS)。使用独立BSS(IBSS)模式的WLAN可不具有AP,并且处于所述IBSS内部或是使用所述IBSS的STA(例如所有STA)彼此可以直接通信。在这里,IBSS通信模式有时可被称为“自组织”通信模式。
在使用802.11ac基础设施工作模式或类似的工作模式时,AP可以在固定信道(例如主信道)上传送信标。所述主信道可以具有固定宽度(例如20MHz的带宽)或是借助信令动态设置的宽度。主信道可以是BSS的工作信道,并且可被STA用来与AP建立连接。在一个或多个设备、***和/或技术中,所实施的可以是具有冲突避免的载波感测多址接入(CSMA/CA)(例如在802.11***中)。对于CSMA/CA来说,包括AP在内的STA(例如每一个STA)可以感测主信道。如果特定STA感测到/检测到和/或确定主信道繁忙,那么所述特定STA可以回退。在指定的BSS中,在任何指定时间可有一个STA(例如只有一个站)进行传输。
高吞吐量(HT)STA可以使用宽度为40MHz的信道来进行通信(例如借助于将宽度为20MHz的主信道与宽度为20MHz的相邻或不相邻信道相结合来形成宽度为40MHz的信道)。
甚高吞吐量(VHT)STA可以支持宽度为20MHz、40MHz、80MHz和/或160MHz的信道。40MHz和/或80MHz信道可以通过组合连续的20MHz信道来形成。160MHz信道可以通过组合8个连续的20MHz信道或者通过组合两个不连续的80MHz信道(这种组合可被称为80+80配置)来形成。对于80+80配置来说,在信道编码之后,数据可被传递并经过一个分段解析器,所述分段解析器可以将数据非成两个流。在每一个流上可以单独执行反向快速傅里叶变换(IFFT)处理以及时域处理。所述流可被映射在两个80MHz信道上,并且数据可以由执行传输的STA来传送。在执行接收的STA的接收机上,用于80+80配置的上述操作可以是相反的,并且组合数据可被发送至介质接入控制(MAC)。
802.11af和802.11ah支持1GHz以下的工作模式。与802.11n和802.11ac相比,在802.11af和802.11ah中使用信道工作带宽和载波有所缩减。802.11af在TV白空间(TVWS)频谱中支持5MHz、10MHz和20MHz带宽,并且802.11ah支持使用非TVWS频谱的1MHz、2MHz、4MHz、8MHz和16MHz带宽。在一个或多个设备、***和/或技术中,802.11ah可以支持仪表类型控制/机器类型通信(例如宏覆盖区域中的MTC设备)。MTC可以具有某种能力,例如包含了支持(例如只支持)某些和/或有限带宽在内的受限能力。MTC设备可以包括电池,并且该电池的电池寿命高于阈值(例如用于保持很长的电池寿命)。
对于可以支持多个信道和信道带宽的WLAN***(例如,802.11n、802.11ac、802.11af以及802.11ah)来说,所述WLAN***包括一个可被指定成主信道的信道。所述主信道的带宽可以等于BSS中的所有STA所支持的最大公共工作带宽。主信道的带宽可以由某一个STA设置和/或限制,其中所述STA源自在支持最小带宽工作模式的BSS中工作的所有STA。在关于802.11ah的示例中,即使BSS中的AP和其他STA支持2MHz、4MHz、8MHz、16MHz和/或其他信道带宽工作模式,但对支持(例如只支持)1MHz模式的STA(例如MTC类型的设备)来说,主信道的宽度可以是1MHz。载波感测和/或网络分配矢量(NAV)设置可以取决于主信道的状态。如果主信道繁忙(例如因为STA(其只支持1MHz工作模式)对AP进行传输),那么即使大多数的频带保持空闲并且可供使用,也可以认为整个可用频带繁忙。
在美国,可供802.11ah使用的可用频带是902MHz到928MHz。在韩国,可用频带是917.5MHz到923.5MHz。在日本,可用频带是916.5MHz到927.5MHz。依照国家码,可用于802.11ah的总带宽是6MHz到26MHz。
图1D是示出了根据一个或多个设备、***和/或技术的RAN 113和CN 115的***图示。如上所述,RAN 113可以在空中接口116上使用NR无线电技术来与WTRU 102a、102b、102c进行通信。RAN 113还可以与CN 115进行通信。
RAN 113可以包括gNB 180a、180b、180c,但是应该了解,在保持符合一个或多个设备、***和/或技术的同时,RAN 113可以包括任何数量的gNB。每一个gNB 180a、180b、180c都可以包括一个或多个收发信机,以便通过空中接口116来与WTRU 102a、102b、102c通信。在一个或多个设备、***和/或技术中,gNB 180a、180b、180c可以实施MIMO技术。例如,gNB180a、180b可以使用波束成形处理来向和/或从gNB 180a、180b、180c发射和/或接收信号。由此,举例来说,gNB 180a可以使用多个天线来向WTRU 102a发射无线信号,和/或接收来自WTRU 102a的无线信号。在一个或多个设备、***和/或技术中,gNB 180a、180b、180c可以实施载波聚合技术。例如,gNB 180a可以向WTRU 102a传送多个分量载波(未显示)。这些分量载波的一个子集可以处于无授权频谱上,而剩余分量载波则可以处于授权频谱上。在一个或多个设备、***和/或技术中,gNB 180a、180b、180c可以实施协作多点(CoMP)技术。例如,WTRU 102a可以接收来自gNB 180a和gNB 180b(和/或gNB 180c)的协作传输。
WTRU 102a、102b、102c可以使用与可扩缩数字配置相关联的传输来与gNB 180a、180b、180c进行通信。例如,对于不同的传输、不同的小区和/或不同的无线传输频谱部分来说,OFDM符号间隔和/或OFDM子载波间隔可以是不同的。WTRU 102a、102b、102c可以使用具有不同或可扩缩长度的子帧或传输时间间隔(TTI)(例如包含了不同数量的OFDM符号和/或持续变化的绝对时间长度)来与gNB 180a、180b、180c进行通信。
gNB 180a、180b、180c可被配置成与采用独立配置和/或非独立配置的WTRU 102a、102b、102c进行通信。在独立配置中,WTRU 102a、102b、102c可以在不接入其他RAN(例如e节点B 160a、160b、160c)的情况下与gNB 180a、180b、180c进行通信。在独立配置中,WTRU102a、102b、102c可以使用gNB 180a、180b、180c中的一者或多者作为移动锚点。在独立配置中,WTRU 102a、102b、102c可以使用无授权频带中的信号来与gNB 180a、180b、180c进行通信。在非独立配置中,WTRU 102a、102b、102c会在与别的RAN(例如e节点B 160a、160b、160c)进行通信/相连的同时与gNB 180a、180b、180c进行通信/相连。举例来说,WTRU 102a、102b、102c可以通过实施DC原理而以基本同时的方式与一个或多个gNB 180a、180b、180c以及一个或多个e节点B 160a、160b、160c进行通信。在非独立配置中,e节点B 160a、160b、160c可以充当WTRU 102a、102b、102c的移动锚点,并且gNB 180a、180b、180c可以提供附加的覆盖和/或吞吐量,以便为WTRU 102a、102b、102c提供服务。
每一个gNB 180a、180b、180c都可以关联于特定小区(未显示),并且可以被配置成处理无线电资源管理决策、切换决策、UL和/或DL中的用户调度、支持网络切片、实施双连接性、实施NR与E-UTRA之间的互通处理、路由去往用户平面功能(UPF)184a、184b的用户平面数据、以及路由去往接入和移动性管理功能(AMF)182a、182b的控制平面信息等等。如图1D所示,gNB 180a、180b、180c彼此可以通过Xn接口通信。
图1D所示的CN 115可以包括至少一个AMF 182a、182b,至少一个UPF184a、184b,至少一个会话管理功能(SMF)183a、183b,并且有可能包括数据网络(DN)185a、185b。虽然每一个前述部件都被描述了CN 115的一部分,但是应该了解,这其中的任一部件都可以被CN运营商之外的其他实体拥有和/或运营。
AMF 182a、182b可以经由N2接口连接到RAN 113中的一者或多者gNB 180a、180b、180c,并且可以充当控制节点。例如,AMF 182a、182b可以负责验证WTRU 102a、102b、102c的用户,支持网络切片(例如处理具有不同需求的不同PDU会话),选择特定的SMF 183a、183b,管理注册区域,终止NAS信令,以及移动性管理等等。AMF 182a、1823b可以使用网络切片处理,以便基于WTRU 102a、102b、102c使用的服务类型来定制为WTRU 102a、102b、102c提供的CN支持。举例来说,针对不同的使用情况,可以建立不同的网络切片,所述使用情况例如为依赖于超可靠低延时(URLLC)接入的服务、依赖于增强型大规模移动宽带(eMBB)接入的服务、和/或用于机器类型通信(MTC)接入的服务等等。AMF 162可以提供用于在RAN 113与使用其他无线电技术(例如LTE、LTE-A、LTE-APro和/或诸如WiFi之类的非3GPP接入技术)的其他RAN(未显示)之间切换的控制平面功能。
SMF 183a、183b可以经由N11接口连接到CN 115中的AMF 182a、182b。SMF 183a、183b还可以经由N4接口连接到CN 115中的UPF 184a、184b。SMF 183a、183b可以选择和控制UPF 184a、184b,并且可以通过UPF 184a、184b来配置业务量路由。SMF 183a、183b可以执行其他功能,例如管理和分配WTRU IP地址,管理PDU会话,控制策略实施和QoS,以及提供下行链路数据通知等等。PDU会话类型可以是基于IP的,不基于IP的,以及基于以太网的等等。
UPF 184a、184b可以经由N3接口连接到RAN 113中的一者或多者gNB180a、180b、180c,这样可以为WTRU 102a、102b、102c提供对分组交换网络(例如因特网110)的接入,以便促成WTRU 102a、102b、102c与启用IP的设备之间的通信,UPF 184、184b可以执行其他功能,例如路由和转发分组、实施用户平面策略、支持多宿主PDU会话、处理用户平面QoS、缓冲下行链路分组、以及提供移动性锚定处理等等。
CN 115可以促成与其他网络的通信。例如,CN 115可以包括或者可以与充当CN115与PSTN 108之间的接口的IP网关(例如IP多媒体子***(IMS)服务器)进行通信。此外,CN 115可以为WTRU 102a、102b、102c提供针对其他网络112的接入,这其中可以包括其他服务供应商拥有和/或运营的其他有线和/或无线网络。在一个或多个设备、***和/或技术中,WTRU 102a、102b、102c可以经由对接到UPF 184a、184b的N3接口以及介于UPF 184a、184b与DN 185a、185b之间的N6接口并通过UPF 184a、184b连接到本地数据网络(DN)185a、185b。
有鉴于图1A-1D以及关于图1A-1D的相应描述,在这里对照以下的一项或多项描述的一个或多个或所有功能可以由一个或多个仿真设备(未显示)来执行:WTRU 102a-d、基站114a-b、e节点B 160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF 182a-b、UPF 184a-b、SMF 183a-b、DN 185a-b和/或这里描述的其他任何设备(一个或多个)。这些仿真设备可以是被配置成模拟这里一个或多个或所有功能的一个或多个设备。举例来说,这些仿真设备可用于测试其他设备和/或模拟网络和/或WTRU功能。
仿真设备可被设计成在实验室环境和/或运营商网络环境中实施关于其他设备的一项或多项测试。例如,所述一个或多个仿真设备可以在被完全或部分作为有线和/或无线通信网络一部分实施和/或部署的同时执行一个或多个或所有功能,以便测试通信网络内部的其他设备。所述一个或多个仿真设备可以在被临时作为有线和/或无线通信网络的一部分实施/部署的同时执行一个或多个或所有功能。所述仿真设备可以直接耦合到别的设备以执行测试,和/或可以使用空中无线通信来执行测试。
所述一个或多个仿真设备可以在未被作为有线和/或无线通信网络一部分实施/部署的同时执行包括所有功能在内的一个或多个功能。例如,所述仿真设备可以在测试实验室和/或未被部署(例如测试)的有线和/或无线通信网络的测试场景中使用,以便实施关于一个或多个组件的测试。所述一个或多个仿真设备可以是测试设备。所述仿真设备可以使用直接的RF耦合和/或借助了RF电路(作为示例,该电路可以包括一个或多个天线)的无线通信来发射和/或接收数据。
WTRU可以被配置为使用一种或多种基于波束的无线电接入技术接入5G(例如NR)5G***。可以利用在高频(例如,在cmW和/或mmW频率)可用的大带宽来为诸如5G的蜂窝通信***提供高数据速率。
高频传播特性可能不利于无线通信,例如在室外环境中的无线通信。较高频率传输可能经历较高的自由空间路径损耗。与6GHz以下频率相比,降雨、大气气体(例如氧气)和/或树叶可进一步衰减高频传输。穿透和/或衍射衰减在mmW频率下可能变得更严重。
传播特性可能导致显著的非视线(NLOS)传播路径损耗。例如,mmW频率的NLOS路径损耗可能比视线(LOS)路径损耗高出20dB以上,这可能严重限制mmW传输的覆盖。例如,借助于波束成形技术,可以实现令人满意的蜂窝覆盖。波束成形增益可以为蜂窝控制信令提供覆盖和/或可以提高链路容量以在LOS条件下实现更高的数据吞吐量。
蜂窝***(例如,5G NR***)的信道传播特性和/或高数据吞吐量要求可能导致一些特定的实施方式。
例如,***(例如,5G NR***)可以在(例如,一个或多个或全部)物理层信号和/或信道上使用波束成形,所述物理层信号和/或信道可以包括用于广播和/或公共控制的那些信号和/或信道。***可以实现具有用于一个或多个、大多数或所有物理层信号和/或信道的波束成形的波束成形接入链路。物理层信号和/或信道可以应用不同的波束成形技术(例如,数字、模拟和/或混合波束成形)和/或可以具有特定的波束成形配置。
***可以使用基于波束和/或以波束为中心的过程。与传统的蜂窝***相比,波束成形可以在角域中提供额外的自由度。***可以考虑波束成形和/或基于波束的特征,这些特征可以是一个或多个物理层信号和/或信道或每个物理层信号和/或信道所特有的。***可以将对应的控制和/或操纵结合到一个或多个***过程(例如,上行链路传输、小区搜索、随机接入、控制信道解码)中。
波束成形技术可以包括数字、模拟和/或混合波束成形。
(例如,一个或多个、或每个)数字波束成形天线元件可以具有专用RF链,其可以包括RF处理和/或ADC/DAC。由(例如,一个或多个、或每个)天线元件处理的信号可以在相位和/或幅度上被(例如,独立地)控制,例如,以优化信道容量。例如,RF链的数量可以等于天线元件的数量。尽管在成本、复杂度和/或能耗方面可能存在折衷,数字波束成形可以提供非常高的性能。
模拟波束成形可对可构成相位天线阵列(PAA)的多个天线元件应用RF链。(例如,一个或多个、或每个)天线元件可以具有移相器,该移相器可以用于设置用于对PAA的天线方向图进行波束成形和/或操纵的仅相位权重。例如,所应用的RF链的数量可以显著低于天线元件的数量。所述RF链的数量可以与PAA的数量相同或比PAA的数量少。例如,多个PAA可连接到单个RF链。(例如,一个或多个、或每个)PAA可具有特定方位角和/或仰角覆盖的天线方向图。RF链可以一次切换到一个PAA。具有多个PAA的单个RF链可提供宽的覆盖范围,例如,这可通过在不同的时刻在不同的方向使用一个波束实现。
图2是使用4×4均匀线性阵列的WTRU发射波束3D方向图的示例。
混合波束成形可以组合数字预编码和模拟波束成形。模拟波束成形可以在连接到(例如,一个)RF链的PAA的天线元件上执行。数字预编码可以应用于(例如,一个或多个、或每个)RF链和/或其相关联的PAA的基带信号。混合波束成形的配置可以包括多个数据流、多个RF链、多个PAA和/或多个天线元件。连接到RF链的PAA可由天线端口表示,该天线端口可(例如,唯一地)由该天线端口特定的波束成形参考信号标识。
图3是具有两个收发信机(TRX)和两个相位天线阵列的WTRU发射混合波束成形的示例。
NR***实施可能受到例如数字波束成形技术的高实施成本和/或能耗的影响。例如,5G NR波束成形可以基于混合波束成形。每5G NR节点的TRX的数量可显著低于天线元件的数量。模拟波束成形可以对L1/L2/L3***过程具有显著影响,和/或可以导致新的(例如,新的和/或迄今未实施的)过程行为和/或序列。波束成形传输可以向eNB提供高度的灵活性,以便在时域和/或空间域中定制传输,例如,以便减少信号开销和/或能量消耗。
LTE通信***可以利用物理层(PHY)过程来进行寻呼信号传输和/或接收。网络可以使用寻呼过程来请求建立到WTRU的NAS信令连接。例如,处于空闲模式的WTRU可以接收下行链路数据。移动性管理实体(MME)可以向其当前跟踪区域中的一个或多个(例如,所有)eNB发送寻呼消息。该eNB可以通过无线电接口寻呼WTRU。WTRU可以(例如,在接收到寻呼消息时)执行服务请求过程,这可以导致转换到ECM-连接状态。WTRU可以(例如,也)在连接模式期间接收寻呼传输,该寻呼传输可以用于***信息(SI)更新。
下行链路寻呼数据(例如,在LTE PHY寻呼传输过程中)可以在动态调度的PDSCH中传输。可以用P-RNTI对相关联的PDCCH进行加扰,该P-RNTI对于多个(例如,所有)WTRU是公共的。WTRU可以在寻呼帧(PF)内的寻呼时机(PO)期间监视和/或接收寻呼传输。(例如,一个或多个)PO可以是子帧,其可以包含PDCCH(该PDCCH可以具有用P-RNTI加扰的CRC,例如,以便寻址寻呼消息),和/或可以在SFN和/或子帧索引方面被定义。
处于空闲模式的WTRU可以例如每DRX周期监视一个(或多个)PO。例如,可以基于可以在***信息(SI)消息中提供的WTRU ID(IMSI)和/或DRX参数(DRX周期)来确定用于监视的PF和/或PO。可以为每个无线电帧定义PO的最大数量(例如,四个)。PO可以(例如,仅)在子帧0、4、5和/或9中被发送。
LTE PHY层寻呼传输过程可以包括例如以下特征中的一个或多个:可以包含在PF和/或PO内的寻呼传输;监视可被携带在整个***带宽上公共搜索空间中的PDCCH中的寻呼DCI,例如使用P-RNTI解扰来监视;和/或解码PDSCH中的寻呼数据,例如基于在PDCCH中接收的寻呼DCI来解码。
NR可以支持用于在多波束操作中的寻呼传输的波束扫描。在一个或多个或每个扫描波束中重用和/或重复LTE PHY层寻呼传输过程可以导致以下一个或多个:下行链路传输开销;WTRU接收机处理;和/或依赖于NR SS块。
例如,在下行链路传输开销中,NR寻呼波束扫描可以涉及(例如,要求)重复PDCCH和/或PDSCH传输,以用于在(例如,一个或多个、或全部)下行链路波束中寻呼(例如,单个)WTRU。最终的下行链路传输开销可以包括所需的附加时间资源分配(例如,符号、时隙、TTI和/或子帧)、频率资源分配(例如,子载波、PRB和/或PRB块)和/或用于在一个或多个或每个波束中进行重复的发射功率。下行链路传输开销可以取决于例如被配置用于波束扫描的波束的数量、在一个或多个或每个波束中被支持用于寻呼的WTRU的数量、一个或多个或每个WTRU的寻呼传输的比特数量、基于数字配置的一个或多个或每个符号所支持的比特数量、在一个或多个或每个符号处的频率资源分配等等。
例如,在WTRU接收机处理中,LTE寻呼可以基于例如使用P-RNTI的LTE PDCCH公共搜索空间(CCS)解码,和/或PDCCH CCS跨越整个***带宽。NR可以具有明显更大的***带宽。在整个***带宽上的NR WTRU寻呼操作可能由于例如宽带ADC的使用而导致高的WTRU电池消耗。WTRU可以限制例如在DRX期间用于寻呼接收的处理带宽。LTE WTRU可以在CSS中执行例如多达12次盲解码尝试以解码寻呼PDCCH。可以简化用于寻呼接收的NR WTRU接收机处理。
例如,根据NR SS块,LTE WTRU可以获得PSS/SSS上的定时和/或频率参考。WTRU可以使用例如作为DMRS的CRS来解码PDCCH以用于寻呼传输。相同的过程可以意味着NR WTRU寻呼接收可以取决于NR SS块。
NR可以实现当可能没有数据要传送和/或可以维持网络可用性时提供具有不连续传输的足够粒度的网络的能力。
NR可以实现提供运营商灵活性的能力,以根据例如负载、服务和/或区域来适配基站的睡眠持续时间。
NR SS块传输可以是稀疏的和/或可以(例如,由此)在WTRU能够接入寻呼信道之前增加该WTRU与NR SS块的同步时间。这种依赖性可以减少DRX期间的WTRU睡眠时间和/或可以增加WTRU电池消耗。
可以确保存在波束成形时寻呼功能的可靠性。
术语“波束”可以用于指以下中的一个或多个:一组预编码权重或同相权重,其可以被应用于WTRU中和/或网络设备(例如TRP)中的天线元件以用于接收和/或传输;天线和/或辐射方向图,其可以由预编码和/或同相权重的应用而产生;可以与天线方向图相关联的一组属性,诸如增益、方向性、波束宽度、在方位角和/或仰角方面的波束方向(例如,相对于参考平面)和/或峰值与旁瓣比;至少一个天线端口,其可以与波束相关联;至少一个参考信号,其可以在向天线单元施加一组预编码权重的同时被发射;至少一个序列,其可用于产生参考信号;和/或天线元件的相关数量和/或配置(例如,均匀线性阵列和/或均匀矩形阵列)。
网络节点(例如,gNB)可以利用一种或多种波束扫描技术来发送一个或多个下行链路寻呼查询(PI)传输。TRP可以例如在传输寻呼控制和/或数据之前,例如在寻呼时机期间使用波束扫描来发送下行链路寻呼查询信号。寻呼查询信号可以特定于(例如,一个或多个、或每个)下行链路发射波束而被发送。波束特定的PI信号可以构成寻呼查询(PI)块(例如,如图4中的示例所示)。
图4是WTRU基于所配置的频率资源集和/或序列来监视PO中的PI块的示例。
WTRU可以被配置为接收寻呼查询信号。当WTRU可以驻留在小区上时,WTRU可以被配置成具有最大时间,在该最大时间期间,WTRU可以(例如,应当)成功地接收寻呼消息。时间可以由定时器来跟踪和/或实现,该定时器可以例如在重选到可以支持寻呼过程的新小区时被启动。定时器可以例如在接收到寻呼消息时(例如,与寻呼消息是否可以是针对相关WTRU无关)被重新启动。WTRU可以在定时器期满时确定寻呼查询过程可能是(例如,是)不成功的。例如,当WTRU确定寻呼过程可能不成功时,WTRU可以执行一个或多个动作(例如,错误处理动作)。
寻呼查询信号例如可以由具有良好的自相关和互相关属性的序列组成。例如,序列可以基于ZC序列、Gold序列等。WTRU可以例如通过在预配置的时间和/或频率资源分配处与预配置的寻呼查询序列进行相关来检测寻呼查询信号。
例如,WTRU可以使用未调度的PHY信道(例如,主要和/或次要广播信道、公共群组控制信道和/或下行链路控制信道)接收寻呼查询信号。WTRU可以例如通过使用预定义的时间和/或频率资源配置、调制和编码方案和/或加扰配置来对寻呼查询进行解码。
寻呼查询信号可以基于特定波形和/或调制,例如开/关键控。WTRU可以例如通过能量检测方案在预先配置的时间和/或频率资源分配处接收寻呼查询。
寻呼查询信号可以提供定时和/或频率参考。WTRU可以根据寻呼查询信号的接收来确定定时和/或频率参考。寻呼查询信号(例如,在独立寻呼查询传输中)可以启用(例如,独立的)WTRU下行链路定时和/或频率同步,而不需要与下行链路***传输(例如,下行链路同步信号和/或相关联的参考信号(例如,SS块))同步。WTRU可以(例如,在该配置中)例如基于寻呼查询信号同步来解码后续的寻呼传输。独立寻呼查询传输可以例如通过将寻呼过程从***同步块接收中分离来改善WTRU电池消耗,这可以避免将WTRU处理浪费在检测和/或同步于稀疏配置的***同步和/或参考信号。
寻呼查询信号(例如,在非独立寻呼查询传输中)可以与***同步信号和/或***广播信道中的一个或多个相关联。其配置可以在***广播信道中传输。WTRU可以从***广播信道确定至少***同步信号和/或其配置。非独立寻呼查询信号可以与***同步信号和/或其相关信号(例如,SS块)进行频率和/或时间复用。例如,所述复用可被执行为以下一者或多者:寻呼查询信道与SS块频率复用、和/或寻呼查询信道与SS块时间复用(和/或时间和/或频率复用的组合)。
例如,在与SS块频率复用的寻呼查询信道中,下行链路控制信道(例如,携带所述寻呼查询的PDCCH和/或另一未调度的PHY下行链路控制信道)可以被映射到用于PSS和/或SSS的一个或多个符号。在频域中,所述寻呼查询信道可以被映射到PSS/SSS频率资源分配的边缘和PBCH频率资源分配的边缘之间的子载波和/或频率资源块。PBCH频率资源分配可以大于PSS/SSS频率资源分配。
复用可以确保寻呼查询信道频率资源分配可以(例如,可以总是)在***最小带宽内。可用的寻呼时机(PO)的数量可以由SS块传输窗口配置和/或SS突发集周期性来限制。因此,网络可能具有有限的灵活性来基于寻呼负荷配置所述PO。
例如,在与SS块时间复用的寻呼查询信道中,下行链路控制信道(例如,携带所述寻呼查询的PDCCH和/或未调度的PHY下行链路控制信道)可以被映射到与SS块不同的符号位置。用于所述寻呼查询信道和/或所述SS块的符号位置可以在相同或不同的时隙、相同或不同的子帧、相同或不同的帧等中,这取决于所述寻呼指示传输和/或SS块中的一者或多者的波束扫描配置。
WTRU可以基于WTRU ID、DRX周期和/或与所述SS块的预配置关联中的一个或多个来导出PI信道的资源配置(例如,时间/频率/码/空间资源分配)。所述时间复用可以允许用于寻呼查询传输的独立波束扫描配置。所述时间复用可以基于SS块突发集配置来启用PO配置。
所述时间复用可以(例如,还可以)允许WTRU执行接收波束扫描和/或识别下行链路波束(例如,具有最佳接收质量的下行链路波束),以在PO开始之前进行寻呼查询监视和/或接收。例如,WTRU可以基于PO之前接收到的SS块来识别下行链路波束,和/或应用关联(例如,预先配置的关联、从接收到的SS块的PBCH中获取的关联等)来定位和/或解码在PO期间携带所述寻呼查询传输的PDCCH和/或未调度的PHY下行链路控制信道。通过使用这种方法,可以减少(例如,显著地)WTRU在PO期间搜索和/或获取下行链路波束的时间段。
下行链路控制信道(例如,携带所述寻呼查询的PDCCH和/或未调度PHY下行链路控制信道)之间的关联可以包括以下一个或多个:SS块和寻呼查询信道之间的空间QCL关系,例如,所述SS块和寻呼查询传输可以是(例如,总是)空间QCL的(例如,波束特定关联);SS块和分配给PI信道的符号之间的定时关系,例如符号/时隙/子帧的数量;SS块和PI波束扫描之间的关系,例如一个的周期是另一个的周期的整数倍;关于PI信道的频率资源分配的指示,例如CORSET和/或频率资源块配置;关于PI信道的持续时间的指示,例如,符号的数量;和/或关于用于PI检测和/或解码的序列的指示,例如用于寻呼查询解码的寻呼查询序列和/或DMRS序列。该关联可以被预先配置和/或被包括在***广播信道(例如,PBCH)中。
寻呼查询的信息内容可以包括例如关于即将到来的寻呼传输的指示符、一个或多个群组标识和/或所述寻呼传输的资源配置。例如,寻呼查询信号可以向WTRU提供关于在其中可以接收PI信号的相同波束内的即将到来的寻呼传输的指示。在(例如,另一)示例中,寻呼查询信号可以指示即将到来的***信息更新。
WTRU可以(例如仅)尝试接收寻呼传输,例如当由寻呼查询信号指示时进行尝试。寻呼传输的WTRU接收可以涉及下行链路控制信道解码和/或下行链路数据信道解码。寻呼查询信号接收可以基于例如序列和/或能量检测和/或小有效载荷接收,与基于PDCCH和/或PDSCH解码的LTE寻呼接收相比,其可以使用少得多的WTRU接收机处理和/或电池消耗。
寻呼查询信号可以指示是否可以请求上行链路寻呼查询响应传输。寻呼查询信号可以(例如,进一步)指示用于传输寻呼查询响应传输的时间/频率资源。例如,寻呼查询信号可以包括下行链路控制信息,其可以(例如,显式地)指示寻呼数据传输的时间和/或频率资源配置和/或调度信息。
WTRU可以计算/确定/识别该WTRU属于/是其成员的寻呼群组。此一呼叫群组可被WTRU使用以决定该WTRU的行为以响应呼叫查询响应的接收。例如,WTRU可以被配置为如果包含在所述寻呼查询中的ID对应于该WTRU的寻呼群组,则对寻呼查询做出响应。接收寻呼查询信号和/或可能不属于在寻呼查询中编码的任何一个群组ID的WTRU可以被允许继续DRX操作,例如,直到其下一个DRX周期和/或下一个配置的寻呼查询信号的出现。
WTRU可以使用其WTRU ID的部分来确定所述寻呼群组。例如,WTRU可以确定所述寻呼群组是所述WTRU ID的M个最高有效位。M的值可以进一步由网络在***信息中配置。WTRU还可以通过网络信令(例如,广播和/或专用信令)而被被显式地配置到一群组。
WTRU可以被提供用于接收寻呼查询信号的配置。寻呼查询信号配置可以包括例如时间资源分配(例如,在符号、微时隙、子帧的数量等方面)、频率资源集(例如,在子载波索引、PRB索引、频率资源集索引、控制资源集索引等方面)、序列和/或信号结构。配置可以基于算术函数,例如使用例如WTRU ID(例如,IMSI)、DRX周期持续时间、WTRU服务类型、子帧编号、子帧索引和/或PO位置的散列函数。
例如,WTRU和/或TRP可以使用函数来确定寻呼查询信号配置。不同的函数可以用于寻呼查询频率资源集和/或序列。例如,PO=F(WTRU ID,DRX等)、PItime=F1(WTRU ID,DRX等)、PIfrequency=F2(WTRU ID,DRX等)和/或PIsequence=F3(DRX,WTRU ID)。函数F()、F1()、F2()和/或F3()例如可以基于不同的模运算和/或输入参数,诸如被配置用于寻呼查询信号传输的PO内的符号、微时隙和/或时隙的数量、频率资源集的数量和/或寻呼查询序列的总数。用于PI的传输的信号结构(例如,子载波间隔)可以被确定为PI频率资源的函数。WTRU可以使用期望的、默认的和/或基线支持的信号结构作为函数F1、F2和/或F3的输入。配置参数集可以例如在***广播信息中被用信号通知。TRP和WTRU可以获得相同的PO/POtime/POfrequency/POsequence值。例如,F1()可以基于WTRU ID的最高有效位(MSB)的数量,该MSB可以是用于PO函数的MSB的一部分。
***广播信息可(例如,也)被用于开启/关闭由WTRU进行的寻呼查询接收和/或寻呼查询响应传输。
函数F、F1、F2和/或F3可以彼此独立。例如,PItime可以与PO相关。例如,可以基于PO来确定PItime,例如,通过使用以PO开头作为参考的相对定时偏移来确定。时间偏移可以为符号、微时隙、子帧等的数量这方面。在另一个例子中,所述PItime可以等于(例如,完全等于或基本等于)WTRU的PO确定。
用于PO、PItime、PIfrequency和/或PIsequence确定的单独的函数可随机化和/或分布化可监视寻呼查询信号的WTRU。具有相同PO的WTRU可在PO内的不同时间(例如,PItime)和/或在不同频率资源集(例如,PIfrequency)监视寻呼查询信号。具有相同PO、PItime和/或PIfrequency的WTRU可使用不同序列(例如,PIsequence)。图4显示具有一个或多个或所有配置有相同PO的WTRU的示例。它们可以(例如,进一步)被分组为例如使用不同的频率资源集和/或序列在不同的符号位置处监视寻呼查询信号。在4000,eNB可以基于PO和/或相关联的频率资源集和/或序列在一个或多个波束或每个波束中发送一个或多个PI块。在4002,可能例如基于所配置的一个或多个PO和/或相关联的频率资源集和/或序列,一个或多个或所有WTRU可以在每个波束的一个或多个PI块中进行监视。在4004,一个或多个WTRU可以处于具有例如相同PO的DL相同波束中/在该具有例如相同PO的DL相同波束中进行监视。在4006,一个或多个WTRU可以处于具有相同PO和/或相同PI块配置的相同波束中/在该具有相同PO和/或相同PI块配置的相同波束中进行监视。在4008,存在PO/PI图示的示例,但是考虑了一个或多个PI块位置,例如在PO内和/或外的PI块位置。
例如,PItime的配置可以取决于NR***结构参数,例如每微时隙/时隙/子帧的符号数量、寻呼查询信号的数字配置、TRP支持的波束数量等。例如,寻呼查询信号传输可以在PO之前,且相对于PO的开始具有预先配置的定时偏移。例如,寻呼查询信号传输可以在PO的开始和/或在PO的任何部分中以相对于PO的开始的预先配置的定时偏移来被发送。例如,可以根据寻呼查询信号传输的使用(例如,需要)来动态地指示定时偏移。可请求WTRU传送寻呼查询响应。例如,可以指示较长的定时偏移,以允许WTRU处理上行链路传输。
寻呼查询频率资源集的数量可取决于NR***带宽、控制资源集数量、指派用于寻呼传输的PRB的数量、寻呼/跟踪区域中的WTRU的数量等。寻呼查询序列配置的数量可以例如取决于相关联的频率资源集的大小、序列类型和/或性能特性(例如,给定设计的序列长度,可以容纳多少个零相互相关序列)。
在一个或多个示例(例如,LTE)寻呼过程中,可以具有相同PO的(例如,一个或多个或全部)WTRU可以例如使用P-RNTI对PDCCH进行解码,和/或可以例如当在PO中仅有一个WTRU要被寻呼时检测寻呼DCI。其它WTRU可以(例如,在这种情况下)解码随后PDSCH中的寻呼记录,例如,以发现它们不是用于寻呼的,这可能会浪费其它WTRU的处理。基于PO、PItime、PIfrequency和/或PIsequence的WTRU随机化和/或分布化可避免类似的浪费。一组WTRU可(例如,不太可能)被配置有关于PO、PItime、PIfrequency和/或PIsequence的相同组合和/或可位于相同波束中。波束特定的寻呼查询信号配置可以减少可以在没有寻呼消息的情况下检测寻呼查询信号的WTRU的数量。
寻呼查询信号可以被显式地和/或隐式地与在相同波束内发送的寻呼控制和/或数据信道相关联(例如,如图5中的示例所示)。关联可以包括例如定时关系、频率资源映射和/或DMRS确定中的一个或多个。例如,WTRU 5001和WTRU 5002在5006处示出了关联可以包括例如定时关系、频率资源映射和/或DMRS确定中的一个或多个。
图5是基于SS块和/或PI块的WTRU寻呼过程的示例。
定时关系可以包括例如从寻呼查询传输持续时间的结束以及寻呼控制和/或数据信道的开始的符号、微时隙、时隙的数量的预定义偏移。寻呼查询信号可以在与相关联的寻呼控制和/或数据传输相同的波束内。
频率资源映射可以包括例如在映射和/或查找表方面的预定义关系,WTRU可以使用该预定义关系来确定相关联的寻呼控制和/或数据传输的频率资源分配。例如,寻呼查询频率资源集可以与可以携带寻呼控制信息的下行链路控制信道资源集相同。例如,相关联的寻呼数据传输可以是未调度的和/或可以使用与寻呼查询信号的频率资源集相同的频率资源集。
DMRS确定可以包括例如在映射和/或查找表方面的预定义关系,WTRU可以使用该预定义关系来确定用于相关联的寻呼控制和/或数据传输的DMRS。例如,寻呼查询序列可以用作用于相关联的寻呼控制和/或数据传输的DMRS。
TRP可以例如使用波束扫描(例如,如图8中的示例所示)来(例如,连续地)发送寻呼查询信号。寻呼查询信号(例如,在该配置中)可以位于所分组的PI块中。WTRU可以尝试例如使用波束扫描(例如,如图8中的示例所示)来接收所述寻呼查询信号。例如,WTRU可以尝试在PI块中传送的一组下行链路波束中的一个或多个或者每个波束中接收寻呼查询信号。所述PI块可以包括连续的时间资源单元,例如符号和/或微时隙。WTRU可以在***广播信息中接收关于该PI块的这种配置(例如,其指示所述连续时间资源单元的数量和/或位置)。所述WTRU可以基于所接收的寻呼查询信号属性中的一个或多个属性来接收和/或确定用于所分组的PI块的所述配置,所述属性例如为寻呼查询信号序列类型(例如,寻呼查询信号类型可以隐式地指示连续时间单元的数量)。
例如,TRP可以一次在一个波束中发送寻呼查询信号(例如,如图9中的示例所示)。这会增加PO的持续时间和/或可能导致额外的WTRU唤醒时间。与第一一个或多个波束相关联的寻呼查询响应传输可指示寻呼群组中的(例如,一个或多个、或所有)WTRU可位于这些波束中。TRP(例如,在这种情况下)可以不在其它配置的波束中发送寻呼查询信号,和/或可以减少传输开销。WTRU可以尝试在PI块中传送的一组下行链路波束的一个或多个(例如,一个或多个、或每个)波束中接收寻呼查询信号。该组下行链路波束可以包括不相交的和/或不连续的时间资源单元,例如符号和/或微时隙。例如,该非连续时间资源可以位于相对于彼此以预先配置的时间间隔的位置。所述时间间隔可以是均匀的或不均匀的。WTRU可以基于所接收的寻呼查询信号属性中的一个或多个属性来接收和/或确定用于所分组的PI块(例如,非连续PI块)的所述配置,所述属性例如为寻呼查询信号序列类型(例如,寻呼查询信号类型可以隐式地指示非连续时间单元的配置/样式)。
例如,TRP可以例如在使用较大的波束宽度的波束和/或波束子集上使用波束扫描来发送寻呼查询信号。TRP(例如,在接收到寻呼查询响应时)可以在更精细的波束子集中重传PI,例如,这可通过增加波束粒度和/或通过减小波束宽度进行。WTRU可以使用重传,例如,以实现波束获取和/或波束精细化和/或改善将来来自TRP的传输。
例如,TRP(例如,在接收到寻呼查询响应时)可以在更精细的波束的子集中和/或在具有较窄波束宽度(例如,比原始PI信号更窄)的波束的子集中发送与寻呼消息相关联的PDCCH。这可能不会优化寻呼信道开销,但是可以减少延时和/或使得能够同时进行波束获取。
WTRU可以使用一种或多种技术来传送一个或多个上行链路寻呼查询响应传输。WTRU可以被配置(例如,在***信息广播和/或较高层配置中)以传送上行链路寻呼查询响应,该上行链路寻呼查询响应可以例如通过在寻呼时机期间接收寻呼查询而被触发。例如,WTRU可以接收关于是否在SS块中传送的物理广播信道中传送寻呼查询响应的指示。网络可以基于多个***配置参数来确定上行链路寻呼查询传输的需要,所述***配置参数诸如为以下中的一者或多者:部署场景、TRP支持的波束数量、TRP支持的天线阵列数量、寻呼/跟踪区域中的WTRU数量、小区中的当前UL与(vs)DL资源使用、波束覆盖中的业务量和/或用户分布等。
WTRU可以接收关于该WTRU是否可以(例如必须)执行上行链路寻呼查询响应传输的指示(例如,该指示在寻呼查询信号中被显式地和/或隐式地携带)。寻呼查询信号可以基于例如ZC基本序列的群组的数量。例如,所述群组的(例如,一个)序列可以(例如,仅)用于寻呼查询传输而不触发所述响应传输。在另一示例中,寻呼查询信号可以(例如,显式地)携带二进制信息以指示对响应传输的请求。
寻呼查询响应传输配置可以基于与寻呼查询信号的关联。WTRU例如可以使用PRACH前导码传输用于寻呼查询响应传输。例如,可以在***信息广播和/或较高层信令中用信号通知前导码配置。
配置可以基于与接收到的寻呼查询信号的显式和/或隐式关联。该关联可以用于确定例如以下各项中的一个或多个:发射定时、频率资源映射、前导序列确定、加扰序列选择、数字配置选择、波束成形配置和/或UL TX功率确定。
发射定时可以包括例如在寻呼查询传输持续时间的结束与寻呼查询响应传输的开始之间的符号、微时隙、时隙的数量的相对预定义偏移。定时可以是相对于PO的开始。定时可以是特定于可在其中接收寻呼查询信号的下行链路波束。
频率资源映射可以包括例如在波束特定映射和/或查找表方面的预定义关系,WTRU可以使用该预定义关系来例如基于接收到的寻呼查询信号的频率资源集来确定上行链路寻呼查询响应传输的频率资源分配。例如,响应传输频率资源可以基于例如寻呼查询信号频率资源集和/或预定义的偏移,诸如FDD双工距离。例如,响应传输可以被配置有固定频率资源分配,例如,在上行链路频带的中心的固定频率资源分配。
前导序列确定可以包括例如在波束特定映射和/或查找表方面的预定义关系,WTRU可以使用该预定义关系来基于接收寻呼查询信号序列确定前导序列。例如,前导序列索引可以基于寻呼查询序列索引和/或预定义的偏移。例如,前导序列索引可以是与寻呼查询信号相联系的参数(例如,序列索引)和/或WTRU ID的函数。这可以使WTRU能够向网络标识其自身和/或可以使网络能够确定在这样的波束上是否需要将来的步骤。例如,TRP可能不在波束上继续进行寻呼消息的传输,例如,这可发生在当PI可能不是所述WTRU所针对的对象的时候。
加扰序列选择可以包括例如利用序列(例如,基于接收的寻呼查询信号序列)对所确定的前导序列进行加扰。例如,WTRU可以使用预定义的映射/表/公式来例如基于寻呼查询信号序列索引导出加扰序列索引。
数字配置选择可以包括例如使用接收到的寻呼查询信号的数字配置的响应传输。WTRU可以使用预定义的固定数字配置。
例如,在一个或多个波束成形配置中,可以在与在可以其中接收到所述寻呼查询信号的TRP DL发射波束相对应的WTRU UL发射波束中例如以较高功率发射寻呼查询响应传输。对应可以基于例如寻呼查询信号的到达角度(AoA)和寻呼查询响应信号的离开角度(AoD)之间的空间匹配。寻呼响应传输消息可以根据在可以其中接收到所述寻呼查询信号的TRP DL发射波束而被波束扫描。
UL TX功率确定可以包括例如在映射和/或查找表方面的预定义关系,WTRU可以使用该预定义关系来确定用于传输寻呼查询响应传输的UL功率。例如,寻呼查询响应传输可以以一功率被发送,该功率可以是接收寻呼查询的接收信号质量的函数。
例如,WTRU可以传送预定义的寻呼查询响应序列,例如,预定义的寻呼查询响应序列可以与接收到的寻呼查询序列和/或预定义的寻呼查询响应信号内容相同,该内容例如为对于相同下行链路波束内的WTRU和/或基于其服务类型、WTRU能力、DRX周期等而被配置在相同群组内的WTRU而言公共的标识。下行链路发射波束内的WTRU(例如,在接收到寻呼查询信号时)可以在寻呼查询响应中发射相同的序列和/或信号。这种组合传输可以增加所述响应的TRP接收和/或相关联的寻呼控制和/或数据信道的传输的可能性。
例如,WTRU可以将最低配置的上行链路传输应用于寻呼查询响应传输。最低配置可以涉及例如通过使用窄带和/或单频调传输的最小WTRU RF和/或基带处理。TRP可以估计与(例如,一个或多个、或每个)寻呼查询响应相关联的接收的上行链路能量,和/或可以确定哪个下行链路波束可以用于随后的寻呼控制或/数据传输。
例如,WTRU可以传送在***信息中配置的预定义寻呼查询响应序列。WTRU可以在专用于针对随机接入和/或***信息请求传输的PRACH传输的资源中传送这样的序列。
WTRU可以(例如,显式地和/或隐式地)在寻呼查询响应传输中提供信息。信息可以包括例如可以在其中接收寻呼查询信号的下行链路波束的标识,诸如寻呼查询序列索引、波束参考信号索引、下行链路波束ID、WTRU ID和/或其指示(例如S-TMSI)等。例如,WTRU可以传送索引,该索引可以表示其在寻呼查询信号内被寻呼的WTRU群组内的位置。例如,寻呼查询信号可以(例如,隐式地和/或显式地)编码群组ID和/或该群组中的WTRU的数量。WTRU可以例如使用关于其WTRU ID、DRX周期等的函数(例如基于所述群组中WTRU的数量而对WTRU ID应用模运算)来确定其在群组中的位置。WTRU可以例如与寻呼查询响应信号一起传送其在群组中的位置。
例如,WTRU可以被配置成具有一组专用前导序列,该组专用前导序列被保留用于基于无争用PRACH传输的寻呼查询响应传输。当接收到寻呼查询时,WTRU可以基于其WTRUID(例如IMSI和/或服务架构演进(SAE)-临时移动用户标识(S-TMSI))从所述群组中选择前导序列。该WTRU选择可以应用算术和/或逻辑函数F()(例如HASH和/或模函数),其中所述WTRU ID作为输入。WTRU可以使用到F()的其他输入,例如与PO、PItime、PIfrequency和/或PIsequence相关联的所接收寻呼查询信号的参数。WTRU可以使用与所述寻呼群组有关的参数作为输入来导出所述前导序列。包括多个输入(例如,WTRU ID和/或寻呼查询信号参数)可以帮助尝试以确保一个或多个或每个所选前导码和/或尝试的相对唯一性,以避免和/或限制争用。
WTRU对这种专用前导码传输的选择可以使得网络在没有显式配置的情况下知道用于寻呼查询传输的前导码。网络可确保没有其它WTRU可被配置有在即将到来的寻呼查询响应传输中所预期的前导码。
网络可知道多个WTRU是否可使用相同的前导码用于寻呼查询响应,例如,在即将到来的寻呼查询响应传输中是否存在争用。网络可知道被寻呼的WTRU的WTRU ID和/或它们的寻呼配置参数。网络可以导出所预期的前导码(例如,以关于WTRU描述的方式导出),使得网络可以使用关于所导出的一个或多个前导码的知识来避免将导致选择相同前导码的寻呼情况。
如果网络预期了争用和/或在前导码争用的情况下继续,则该网络可以在MSG2传输中发送具有WTRU ID的寻呼记录。当不期望争用时,网络可以在MSG2传输中发送上行链路调度信息。WTRU可以(例如,无论何种情况下)以WTRU特定的方式来监视和/或接收MSG2传输,例如通过基于WTRU ID和/或所接收的寻呼查询传输参数而使用临时RNTI和/或使用WTRU特定的搜索空间来进行监视和/或接收。
所述群组中的位置可以由WTRU通过选择前导码而用信号通知和/或用于PRACH的传输。例如,所述WTRU可以被配置有一组前导码和/或一个或多个资源,其可以用于寻呼查询响应。一或多个或每一所述前导码可对应于与特定寻呼查询相关联的WTRU群组中的位置。例如在接收到寻呼查询和/或确定其是该寻呼查询所指示的寻呼群组的一部分时,WTRU可以确定在该群组内的其自身WTRU位置(例如,通过使用对其WTRU ID、DRX周期等的模运算),和/或传送与其位置相关联的前导码作为所述寻呼查询响应信号。WTRU可以接收(例如,响应于PRACH传输)与其前导码传输相关联的许可和/或定时对准,以允许其在接收到寻呼数据之后(例如,紧接在接收到寻呼数据之后)执行连接建立(例如,MSG3传输)。
WTRU可以在可用于其他PRACH传输目的(例如,初始接入、***信息请求)的一组PRACH资源上以PRACH传输的形式传送寻呼查询响应。
WTRU可以在寻呼查询的传输之后在由网络分配的一组资源上传送寻呼查询响应。可以通过与所述查询信号(例如,如这里所述)相关联来确定这样的资源的时间/频率位置。
WTRU可以传送多个寻呼查询响应,例如,与多个DL发射波束相联系的寻呼查询响应。这可以实现不同波束上的负载平衡。WTRU可以(例如成功地)在多个DL发射波束中接收寻呼查询和/或可以向TRP指示其可以在任何DL发射波束上被服务。WTRU可以(例如,在这种情况下)指示其可能正在传送一组寻呼查询响应(例如,在一个或多个或每个波束上的寻呼查询响应中隐式地指示)。例如,可以使用WTRU ID作为寻呼查询响应的函数来实现指示。
WTRU可以被配置为确定和/或设置与寻呼查询响应传输(例如,消息)相关联的功率水平。WTRU可以例如基于可以(例如,在***信息广播中)被预先配置的接收寻呼查询信号强度和/或寻呼查询信号发射功率来估计波束特定的下行链路路径损耗。路径损耗可以特定于寻呼查询信号频率资源。可以应用一组偏移参数(例如,除所述路径损耗之外),例如,以设置寻呼查询响应传输的功率。一组偏移参数可以考虑对在TRP接收的预期寻呼查询响应的调整,其可以取决于所选择的频率资源和/或内容的传输格式。
例如,WTRU可以将预定义的固定功率应用于传输(例如,最大功率)。
例如,WTRU可以执行寻呼查询响应传输的后续传输的功率斜变。例如,WTRU可以增加传输功率,这可发生在例如当其接收到随后的寻呼查询时,该寻呼查询可以被特定和/或配置的时间段隔开。例如,WTRU可以将其传输功率增加预定的量,这可发生在例如当该WTRU接收到与先前的寻呼查询接收间隔小于或等于x个帧/子帧/时隙/等的寻呼查询时。WTRU可以(例如,否则)以最小和/或标称配置的功率传送其寻呼查询响应。例如,WTRU可以增加寻呼查询响应的功率,这可发生在例如当WTRU在配置的时间量内在相同的DL发射波束上接收到多个寻呼查询时,例如在传送寻呼查询响应之后没有成功地接收到寻呼消息(控制和/或数据)时。例如,WTRU可以在DL发射波束上接收第一寻呼查询消息。WTRU可以用寻呼查询响应来响应。WTRU可以在可配置的时间段内在相同的DL发射波束上接收第二寻呼查询信号,例如,没有接收到与其寻呼查询响应相联系的寻呼消息(控制和/或数据)。WTRU可以(例如,在这种情况下)增加寻呼查询响应的功率。
WTRU可以被配置为执行寻呼查询响应重传。WTRU可以被配置有在响应传输的结束和请求寻呼控制和/或数据传输的监视的结束之间的监视窗口。例如,当在监视窗口期间没有接收到寻呼传输时,WTRU可以应用寻呼查询响应的重传。WTRU可以(例如,也)被配置有监视窗口的最大数量,其可以是PO持续时间所特定的。WTRU可以以预先配置的步长增加响应重传的功率。例如,WTRU可以被配置有定时器,以指定可以使用寻呼查询响应重传的持续时间。定时器值可以基于例如所配置的重传间隔和/或PO持续时间。WTRU可以被配置有寻呼查询响应重传(一个或多个)的最大数量。配置可以被包括在寻呼查询信号的配置中(例如,作为***信息的一部分)。例如,当WTRU在与寻呼查询响应传输相关联的监视窗口内可能没有接收到寻呼消息时,WTRU可以确定寻呼查询过程可能不成功。寻呼消息可能包括或不包括对相关WTRU的寻呼。WTRU可以根据寻呼消息的接收确定其在当前小区中保持可达。例如,当WTRU确定寻呼过程可能是(例如是)不成功的时候,WTRU可以执行一个或多个错误处理动作。
WTRU可以将在预定义时间窗口内不存在MSG2接收用作为触发以发起所述寻呼查询响应的重传。预定义的时间窗口可被配置,和/或它可以与用于在其它PRACH传输(例如,初始接入、SI请求)期间接收MSG2的窗口相同。
可以同时进行多个寻呼查询响应传输。例如,当WTRU可以位于多个下行链路波束之间时,WTRU可以在不同的下行链路波束中接收多个寻呼查询信号。WTRU可以在与可以接收寻呼查询信号的下行链路波束相对应的多个上行链路波束中同时传送寻呼查询响应。同时多个传输可以取决于WTRU可被配备的收发信机的数量。例如,WTRU可以例如通过在(例如一个或多个或全部)上行链路波束中传送寻呼查询响应来使用上行链路波束扫描,这可发生在例如当在TRP中可能不存在波束对应时。例如,WTRU可以在多于一个上行链路波束上传送寻呼查询响应,例如在与以最大功率接收的寻呼查询的波束相对应的波束上传送寻呼查询响应。例如,当在与(例如,任何)寻呼查询响应传输相关联的监视窗口内没有接收到至少一个寻呼消息时(例如,在执行了针对有关过程的多个传输之后),WTRU可以确定过程可能不成功。例如,当WTRU确定寻呼过程可能不成功时,WTRU可以执行一个或多个错误处理动作。
在寻呼查询响应和寻呼控制和/或数据传输之间可以存在关联。WTRU可以例如基于上行链路响应传输和寻呼传输之间的关联来监视寻呼控制和/或数据传输。
例如,在一个或多个定时关系中,可以在上行链路响应传输的结束和下行链路寻呼传输的开始之间预定义固定的定时偏移。偏移可以是符号、微时隙、时隙等的数量这方面的偏移。
例如,在一个或多个波束成形配置中,WTRU可以监视上行链路寻呼查询传输中指示的下行链路波束中的寻呼传输。
例如,可以基于可以在寻呼查询响应中传送的WTRU ID来加扰寻呼控制信道CRC和/或数据比特。携带寻呼DCI的下行链路控制信道可以包括CRC比特,该CRC比特可以通过可以基于例如可以在寻呼查询响应传输中传送的WTRU ID的序列而被加扰/掩码。例如,TRP和/或WTRU可以应用(例如,预定义的)函数,例如以生成具有与下行链路控制信道CRC比特相同长度的加扰序列。例如,当处于RRC空闲模式的WTRU接收到寻呼查询信号和/或传送相应的响应信号时,该WTRU可能不具有WTRU特定的无线电网络临时标识(RNTI)。基于WTRU ID的加扰序列可以是临时寻呼标识,其可以实现WTRU特定的寻呼控制和/或数据信道传输。
TRP可以使用临时寻呼标识,例如以对可能打算用于WTRU寻呼数据调度信息的下行链路WTRU特定控制信道的CRC比特进行掩码。
WTRU可以被配置为使用一个或多个WTRU特定的控制信道搜索空间(例如,用于寻呼)。WTRU可以在WTRU特定下行链路控制信道搜索空间中监视寻呼DCI。WTRU可以尝试使用临时寻呼标识来解码寻呼DCI。在起始控制信道元素(CCE)索引和/或符号索引方面的控制信道搜索空间的位置可以基于例如以下各项中的一个或多个来确定:可以基于WTRU ID的临时寻呼标识、WTRU ID和/或子帧索引(例如,PItime和/或PO的索引);与寻呼查询信号频率资源集的关联(例如,在子载波、PRB和/或PRB块的数量中的一个或多个方面相对于寻呼查询信号频率资源集的开始的频率偏移等);和/或用于寻呼DCI解码的预配置控制信道空间。
对于可接收寻呼查询信号和/或可在无寻呼消息的情况下传送响应的WTRU,可减少WTRU处理。WTRU可以例如通过对下行链路控制信道CRC进行解扰来确定其是否具有寻呼消息。WTRU可以在对控制信道进行CRC校验之后对寻呼数据信道进行解码(例如,仅对寻呼数据信道进行解码)。
例如,可以例如使用临时寻呼标识来加扰寻呼数据信道。数据信道加扰可以是数据的比特级加扰和/或CRC比特加扰。
在传输寻呼查询响应之后,WTRU可以接收寻呼数据。WTRU可以发起对寻呼消息的监视。这种消息可以用P-RNTI和/或专用RNTI加扰。该专用RNTI可以是所述WTRU特定的,例如C-RNTI和/或类似的。所述专用RNTI可以与所述寻呼查询本身相联系。例如,可以在寻呼查询消息中发送的一个或多个或每个值和/或ID可以与专用RNTI相关联。这种关联可以由配置(例如,在***信息中)来进行和/或通过预定义的计算公式而为所述WTRU所知。
WTRU可以通过PRACH传送寻呼查询响应和/或可以监视RA-RNTI以接收MSG2。所述WTRU可以接收寻呼数据(例如,寻呼记录列表),其可作为MSG2的有效载荷的一部分。所述寻呼数据可以包括一组WTRU ID,例如LTE寻呼记录。其WTRU ID被包含在所述寻呼数据中的WTRU可以继续RACH过程(例如,在MSG2许可中传输RRC连接请求消息)。传送了所述寻呼查询响应消息但在时间窗口中没有接收到MSG2(如这里所述,考虑可能的重传)和/或接收到不包含其自己的WTRU ID的MSG2的WTRU可以中止所述RACH过程。
WTRU可以接收包含RAPID(随机接入前导码ID)的MSG2,该RAPID指示所述寻呼查询响应的成功接收。所述WTRU可以在来自所述网络的单独传输中接收寻呼数据(例如在寻呼时机中发送的传统寻呼消息中接收寻呼数据),和/或在与寻呼查询响应传输的特定偏移处接收寻呼数据,如这里所述。例如,WTRU可以在寻呼帧内被配置有至少两个寻呼时机。在接收到在第一配置的寻呼时机中到来的寻呼查询之后,例如,如果WTRU确定要传送对该寻呼查询的响应,则WTRU可以传送PRACH(如这里所述)。在包括成功接收MSG2的情况(其中RAPID包含所传送的前导码)的场景中,所述WTRU可以(例如,还可以)监视第二寻呼时机以接收寻呼数据。所述WTRU可以使用如这里所述的P-RNTI和/或专用RNTI来监视所述第二寻呼时机(和/或后续寻呼时机)。
WTRU可以在接收到寻呼数据之后进行连接建立。WTRU可以在寻呼查询响应之后接收寻呼数据和/或可以在接收到这样的数据之后通过传输MSG3来发起RRC连接建立。WTRU可以利用以下资源中的一个或多个来传输MSG3:连同所述寻呼消息和/或对寻呼查询响应的响应(例如,与MSG2中的RAPID相关联),WTRU可以被提供许可;WTRU可以通过PDCCH上的DCI消息接收许可(这种DCI消息的接收可以与寻呼消息/寻呼信息的接收具有定义的时间关系);WTRU可以利用预配置的许可和/或基于争用的(免许可)资源来传送所述RRC连接请求;和/或WTRU可以(例如在接收到寻呼数据之后)使用由WTRU发起的单独的RACH过程来请求这种许可。
例如,除了用于MSG3的传输的许可之外,WTRU可以在MSG2中接收寻呼信息。WTRU可以在与单个随机接入前导码ID相关联的MSG2中接收多个许可。一个或多个、或每个许可可以与寻呼消息和/或寻呼记录中的WTRU ID之一相关联。WTRU可以使用MSG2中的第N个许可来传送MSG3,其中N对应于所述WTRU ID在所述寻呼记录中的位置。例如,可以在MSG2中提供(例如,单个)许可,和/或WTRU可以(例如,可以总是)使用该许可来传送MSG3。
WTRU可以被配置为实施一个或多个寻呼过程(例如,利用PI块实施)。PI块可以是例如非独立的和/或独立的。WTRU可以在寻呼时机(PO)之前唤醒和/或扫描接收机波束,例如,以与同步信号(SS)块同步。WTRU可以例如基于预定义的规则来选择一个或多个下行链路波束用于寻呼查询信号接收。例如,WTRU可以使用一个或多个下行链路波束,在该一个或多个下行链路波束中,例如最佳(例如,在接收功率方面)SS块可被接收和/或SS块接收水平可以高于预定义的阈值。WTRU可以使用SS块用于WTRU寻呼过程的(例如,一个或多个、或每个)下行链路波束的定时和/或频率参考。
图5是基于SS块和/或PI块的WTRU寻呼过程的示例。WTRU可以(例如,如图5中的示例所示)(例如,基于寻呼查询信号配置)在所选下行链路波束中的寻呼时机(PO)的开始处监视寻呼查询信号。WTRU可以接收寻呼查询信号。WTRU可以例如基于寻呼查询信号与寻呼控制和/或数据信道之间的关联来接收寻呼控制和/或数据传输。在PO期间,寻呼查询信号和/或寻呼信道可以在(例如,一个或多个、或全部)下行链路波束中被发送。寻呼控制信道可以包含寻呼DCI,WTRU可以使用该寻呼DCI来解码寻呼数据信道。寻呼查询信号和/或寻呼数据传输可以在(例如,一个或多个或全部)下行链路波束中被重复。在5014处,图5中所说明的示例可应用于SS块而不是所述PI块,或除PI块之外还应用于SS块/等同地应用于SS块。
图6是基于独立PI块的WTRU寻呼过程的示例。例如,寻呼查询信号可以是独立的(例如,如图6中的示例所示)和/或可以提供(例如,独立的)定时和/或频率同步。WTRU可以例如在PO开始时(例如,基于寻呼查询信号配置)扫描接收机波束和/或监视寻呼查询信号。WTRU可以在一个或多个下行链路波束中接收寻呼查询信号,和/或可以选择一个或多个下行链路波束中的一个,用于进一步的寻呼控制和/或数据接收。下行链路波束选择可以基于预定义的规则。例如,WTRU可以使用一个或多个下行链路波束,在该一个或多个下行链路波束中,例如最佳寻呼查询信号(例如,在接收功率方面)可被接收和/或寻呼查询信号接收水平可以高于预定义的阈值。WTRU可以监视和/或接收寻呼控制和/或数据信道(例如,如关于非独立PI块所讨论的)。WTRU可以在寻呼时机期间使用来自寻呼查询信号的定时和/或频率作为下行链路参考。在6006,WTRU 6002及WTRU 6004示出了寻呼传输DL与寻呼查询块之间的关联。
例如,可以在寻呼时机内发送的SS块可以用于指示寻呼查询是否可能存在于DL发射波束内。例如,PO中的SS块可以具有两组参数(例如,SS序列)。一组((例如,一组或多组,或每组))参数可以用于指示寻呼查询是否可能存在于DL发射波束内。
例如,非周期性SS可以被发送,例如,这可能发生在在寻呼时机中发送寻呼查询时。非周期性SS可与寻呼查询结合使用,例如,以实现波束获取。非周期性SS的存在可以被用作寻呼查询。
图7是基于SS块和/或PI块的具有PI响应传输的WTRU寻呼过程的示例。WTRU寻呼过程(例如,非独立和/或独立寻呼过程)可以包括所述WTRU接收一个或多个PI块和/或所述WTRU传送PI响应传输。WTRU可以在预选下行链路波束中接收寻呼查询信号,例如,如关于具有PI块的WTRU寻呼过程所描述的。例如(例如,图7所示),WTRU可以例如基于网络配置和/或关于寻呼查询信号的指示来传送上行链路寻呼查询响应。寻呼查询响应可以基于例如PRACH前导码传输和/或最低配置的上行链路传输。传输可以(例如,至少)携带下行链路波束指示和/或WTRU ID。WTRU可以在可以由寻呼查询响应传输指示指示的下行链路波束内监视后续寻呼传输。WTRU可以应用寻呼查询响应重传过程(例如,如这里所述)。寻呼控制和/或数据信道可以在(例如,由寻呼查询响应传输指示的)下行链路波束中被发送和/或可以使用例如WTRU ID在寻呼控制信道CRC比特、寻呼数据比特和/或寻呼数据CRC比特上应用加扰。寻呼传输可以不在一个或多个或所有下行链路波束中被携带(例如,如图7中的示例所示)。
在图7中,WTRU 7002和WTRU 7004在7006示出了寻呼查询(PI)和PI响应传输UL之间的关联。WTRU 7002和WTRU 7004在7008示出了寻呼查询(PI)和PI响应传输UL之间的关联。WTRU 7002和WTRU 7004在7010示出了寻呼传输DL和PI响应传输UL之间的关联。WTRU7002和WTRU 7004在7012示出了寻呼传输DL和响应传输UL之间的关联。在7014,图7中所示的示例可以应用于SS块,而不是PI块,或者除了PI块之外还应用于SS块/等同地应用于SS块,或者与PI块协作地应用于SS块。
例如,无线发射/接收单元(WTRU)可以与无线通信网络通信。所述WTRU可以选择与寻呼时机(PO)的出现相关联的至少一个波束成形同步信号块(SSB)。所述至少一个波束成形的SSB由所述无线通信网络的节点提供。所述WTRU可以基于所选择的至少一个SSB和/或WTRU标识符(ID)来确定寻呼查询(PI)信号配置。所述WTRU可以从所述PI信号配置确定一个或多个PI信号定时参数。所述WTRU可以基于所确定的一个或多个PI定时参数来确定所述PO的第一部分。所述WTRU可以在所述PO的所述第一部分期间监视所述PI信号。所述WTRU可以检测所述PI信号。所述WTRU可以使用第一波束向所述无线通信网络的节点发送PI响应。该PI响应可以包括用于第二波束的指示和/或所述WTRU ID。所述WTRU可以使用所述第二波束接收寻呼传输。
例如,所述WTRU可以确定寻呼传输在第二波束之外的其他波束中是不可接收的。所述WTRU可以在确定公共PI信号指示寻呼传输将被定向到该WTRU时确定所述PI响应(例如消息)可以被发送。
所述WTRU可以确定用于所述第二波束的所述指示是以下中的至少一个:隐式的或显式的。所述WTRU可以确定用于所述第二波束的所述指示指示所述第二波束可以用于到所述WTRU的寻呼传输。
所述PO的所述第一部分可以是时间部分。所述WTRU可以确定所述公共PI信号指示所述寻呼传输将在所述PO的所述第一部分之后的部分中被定向到该WTRU。基于所述公共PI信号确定一个或多个传输资源可以是隐式确定。
在此描述的一种或多种技术可以允许网络基于接收到的寻呼查询响应,(例如仅)在潜在被寻呼的WTRU可达的资源(例如一个或多个波束)上而不是例如所有可能的资源上传送寻呼传输。换言之,这里描述的一种或多种技术可以允许一个或多个WTRU基于接收到的寻呼查询响应,(例如仅)在潜在被寻呼的WTRU可达的资源(例如一个或多个波束)上而不是例如所有可能的资源上接收寻呼传输。
例如,基于群组PI块(例如,如图8中的示例所示)和/或基于分布式PI块(例如,如图9中的示例所示),PI块可以是独立的。WTRU可以使用(例如,从所选择的下行链路波束的寻呼查询信号获得的)定时和/或频率参考作为例如寻呼时机期间的下行链路参考定时,以用于上行链路寻呼查询响应传输和/或寻呼控制和/或数据传输的接收。
图8是基于独立PI块的WTRU寻呼过程的示例,其具有利用所分组的PI块的PI响应传输。
在图8中,WTRU 8002和WTRU 8004在8006中示出了寻呼查询(PI)和PI响应传输UL之间的关联。WTRU 8002和WTRU 8004在8008处示出了寻呼查询(PI)和PI响应传输UL之间的关联。WTRU 8002和WTRU 8004在8010处示出了寻呼传输DL和PI响应传输UL之间的关联。WTRU 8002和WTRU 8004在8012处示出了寻呼传输DL和PI响应传输UL之间的关联。
图9是基于独立PI块的WTRU寻呼过程的示例,其具有利用分布式PI块的PI响应传输。
在图9中,WTRU 9002在9006处示出了寻呼查询(PI)和PI响应传输UL之间的关联。WTRU 9002在9008处示出了寻呼传输DL与PI响应传输UL之间的关联。WTRU 9004在9010处示出了寻呼查询(PI)和PI响应传输UL之间的关联。WTRU 9004在9012处示出了寻呼传输DL与PI响应传输UL之间的关联。
寻呼数据传输可以由寻呼DCI来调度,该寻呼DCI可被携带在下行链路控制信道中和/或可以是未调度的。WTRU可以使用盲格式检测并利用预定义的一组传输格式(例如,调制和编码方案)来接收未调度的下行链路寻呼数据信道。WTRU可以例如基于与寻呼查询信号的关联来确定寻呼数据信道的频率资源分配。例如,WTRU可以例如基于可以在寻呼查询信号传输上估计的下行链路路径损耗和/或可以在路径损耗和数据信道传输格式之间的预定义的映射和/或查找表来确定传输格式。
图10是基于SS块的WTRU寻呼过程的示例。例如,WTRU可以接收寻呼控制和/或数据信道而无需寻呼查询信号(例如,如图10中的WTRU 10002和/或WTRU 10004所示)。WTRU可以在预先配置的寻呼时机之前唤醒和/或可以选择下行链路波束用于寻呼接收(例如,基于如这里描述的SS块)。WTRU可以对下行链路控制信道中的寻呼DCI进行解码,该下行链路控制信道可以与所选择的下行链路波束中的SS块相关联。WTRU可以使用P-RNTI来监视下行链路控制信道公共搜索空间中的寻呼DCI。WTRU可以例如基于接收到的寻呼DCI来对寻呼数据信道进行解码。
WTRU特定的临时寻呼标识可以例如基于WTRU ID(例如IMSI和/或S-TMSI)来计算。可包含寻呼DCI的下行链路控制信道可包括CRC比特,其可例如由WTRU特定的临时寻呼标识加扰/掩码。WTRU可以在下行链路控制信道WTRU特定的搜索空间中监视寻呼DCI。用于寻呼的WTRU特定搜索空间可以是例如在此所描述的搜索空间。WTRU特定的寻呼传输可以在来自跟踪区域中的(例如,一个或多个、或全部)TRP的(例如,一个或多个、或全部)波束中被重复。
WTRU和/或网络节点(例如gNB)可以被配置为实施用于WTRU寻呼过程的一个或多个错误处理过程。WTRU可以确定寻呼过程可能不成功。WTRU可以基于被配置用于监视与所传送的寻呼查询信号相关联的网络下行链路传输的定时器和/或最大重传计数器设置来确定寻呼过程可能不成功。例如,用于寻呼查询传输的基于PRACH的网络传输可以应用为随机接入过程配置的最大重传和/或重新尝试的次数。在另一示例中,WTRU可以使用特定于该WTRU可运行的DRX周期而配置的定时器和/或最大寻呼查询响应重传/重试配置。WTRU可以(例如进一步)确定其可能在相关小区中不再接收寻呼。WTRU可以执行例如以下中的一个或多个:小区重选;和/或网络接入启动,例如,以执行路由区域更新和/或跟踪区域更新。这可发生在例如当WTRU可能重选与WTRU确定寻呼过程不成功的小区相同的小区时。例如,WTRU可以返回到非活动状态和/或可以在正在进行的DRX周期中配置的下一个开启(ON)时段中监视寻呼查询信号。
已经公开了用于波束成形寻呼的***、方法和手段。TRP可以在寻呼查询(PI)块中使用波束扫描来发送寻呼查询信号,该寻呼查询块具有与相同寻呼时机(PO)相关联的不同时间、频率资源集和/或序列配置,例如,以将WTRU随机化和/或分布到不同的监视群组中。WTRU可以传送指示用于寻呼数据传输的下行链路波束的上行链路寻呼查询响应和/或WTRUID。下行链路控制和/或数据信道传输可以由寻呼查询响应传输触发。寻呼下行链路控制信息(DCI)可以在WTRU特定的控制信道中被传送,该信道可以包含由例如基于可以在寻呼查询响应传输中被报告的WTRU ID的临时寻呼标识而掩码的CRC比特。WTRU寻呼过程可以基于(例如,独立的或具有同步信号(SS)块的非独立的)寻呼查询信号和/或响应传输。错误处理可用于改进寻呼可靠性。
这里描述的过程和/或手段可以以任何组合应用,可以应用于其它无线技术和/或其它服务。
WTRU可以指物理设备的标识,和/或指用户的标识,例如订阅相关标识,例如MSISDN、SIP URI等。WTRU可以指基于应用的标识,例如,可以是针对每个应用使用的用户名。
上述过程可以在结合在计算机可读介质中的计算机程序、软件和/或固件中实现,以由计算机和/或处理器执行。计算机可读媒体的示例包括但不限于电子信号(通过有线和/或无线连接传输)和/或计算机可读存储媒体。计算机可读存储媒体的示例包括但不限于只读存储器(ROM)、随机存取存储器(RAM)、寄存器、缓冲存储器、半导体存储器设备、磁媒体(例如但不限于内部硬盘和可移除磁盘)、磁光媒体和/或光学媒体(例如CD-ROM盘和/或数字通用盘(DVD))。与软件相关联的处理器可用于实施用于WTRU、终端、基站、RNC和/或任何主计算机的射频收发信机。

Claims (15)

1.一种与无线通信网络通信的无线发射/接收单元(WTRU),包括:
存储器;
处理器,该处理器至少被配置为:
选择与寻呼时机(PO)的出现相关联的至少一个波束成形的同步信号块(SSB);
基于所选择的至少一个SSB和WTRU标识符(ID),确定寻呼查询(PI)信号配置;
在所述PO的第一部分期间监视PI信号,其中用于在所述PO期间监视所述PI信号的定时信息基于所述PI信号配置而被确定;
检测所述PI信号;以及
使用第一波束发送PI响应,该PI响应包括针对第二波束的指示和所述WTRU ID;接收机,该接收机至少被配置为:
使用所述第二波束接收寻呼传输。
2.根据权利要求1所述的WTRU,其中所述处理器还被配置为基于所述PI信号来确定一个或多个传输资源,所述一个或多个传输资源正被用于所述第一波束的传输。
3.根据权利要求1所述的WTRU,其中所述处理器还被配置为确定以下中的一个或多个:来自所述PI信号配置的用于所述PI信号的频率资源分配、或来自所述PI信号配置的用于所述PI信号的序列索引,与所述PO的所述第一部分相关联的所述定时信息包括定时偏移。
4.根据权利要求1所述的WTRU,其中所述处理器还被配置为确定所述寻呼传输在所述第二波束之外的其他波束中是不可接收的。
5.根据权利要求1所述的WTRU,其中所述处理器还被配置为使得在确定所述PI信号指示寻呼传输将被定向到所述WTRU时发送所述PI响应。
6.根据权利要求1所述的WTRU,其中所述至少一个波束成形的SSB是从所述无线通信网络的节点接收的。
7.根据权利要求1所述的WTRU,其中所述处理器还被配置为使得针对所述第二波束的所述指示指示所述第二波束将被用于到所述WTRU的所述寻呼传输。
8.根据权利要求1所述的WTRU,其中用于在所述PO期间监视所述PI信号的所述定时信息基于以下至少一个:所述WTRU ID、DRX周期持续时间、WTRU服务类型、子帧编号、子帧索引或PO位置。
9.根据权利要求1所述的WTRU,其中所述PI信号是在所述PO的所述第一部分中被接收的,且所述寻呼传输是在所述PO的稍后部分中被接收的。
10.根据权利要求1所述的WTRU,其中所述处理器还被配置为使得基于所述PI信号对所述一个或多个传输资源的所述确定是隐式确定。
11.根据权利要求1所述的WTRU,其中所述处理器还被配置为基于所述PI信号的序列配置的一个或多个元素来确定所述PI信号指示寻呼传输将被定向到所述WTRU。
12.根据权利要求11所述的WTRU,其中所述PI信号的所述序列配置的所述一个或多个元素包括以下一个或多个:所述WTRU ID、不连续接收(DRX)周期或PO索引。
13.根据权利要求1所述的WTRU,其中所述第一波束为上行链路(UL)资源,且所述第二波束为下行链路(DL)资源。
14.根据权利要求1所述的WTRU,其中所述PI信号指示所述寻呼传输将被定向到所述WTRU。
15.根据权利要求1所述的WTRU,其中所述PO是多个无线发射/接收单元(WTRU)所公共的。
CN201880027664.3A 2017-03-22 2018-03-20 波束成形的寻呼传输 Active CN110679186B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201762474867P 2017-03-22 2017-03-22
US62/474,867 2017-03-22
US201762543126P 2017-08-09 2017-08-09
US62/543,126 2017-08-09
PCT/US2018/023363 WO2018175442A1 (en) 2017-03-22 2018-03-20 Beamformed paging transmission

Publications (2)

Publication Number Publication Date
CN110679186A true CN110679186A (zh) 2020-01-10
CN110679186B CN110679186B (zh) 2022-11-08

Family

ID=61911721

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880027664.3A Active CN110679186B (zh) 2017-03-22 2018-03-20 波束成形的寻呼传输

Country Status (4)

Country Link
US (2) US11184877B2 (zh)
EP (1) EP3603241B1 (zh)
CN (1) CN110679186B (zh)
WO (1) WO2018175442A1 (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7033603B2 (ja) * 2017-02-02 2022-03-10 コンヴィーダ ワイヤレス, エルエルシー スイープされる下りリンクビームでページングブロックを伝送するための装置
JP7083841B2 (ja) * 2017-03-24 2022-06-13 オッポ広東移動通信有限公司 情報伝送方法、端末装置とネットワーク装置
US10779259B2 (en) 2017-04-03 2020-09-15 Qualcomm Incorporated Quasi co-location of antenna ports used to transmit paging message and synchronization signals
CN108923896B (zh) 2017-04-19 2021-03-26 上海朗帛通信技术有限公司 一种被用于寻呼的用户设备、基站中的方法和装置
EP3873146A1 (en) * 2017-05-03 2021-09-01 IDAC Holdings, Inc. Method and apparatus for paging procedures in new radio (nr)
CN109391906B (zh) * 2017-08-11 2022-01-28 华为技术有限公司 一种数据传输方法、装置、***、网络设备及用户设备
US11177867B2 (en) * 2017-09-04 2021-11-16 Beijing Xiaomi Mobile Software Co., Ltd. Beam reporting and adjusting method and apparatus, user equipment, and base station
CN108476420B (zh) * 2017-09-08 2021-08-10 北京小米移动软件有限公司 寻呼配置方法及装置、寻呼消息接收方法及装置和基站
KR102013694B1 (ko) * 2017-09-22 2019-08-23 에스케이텔레콤 주식회사 기지국장치 및 그 장치의 페이징 수행 방법, 단말장치 및 그 장치의 페이징 지원 방법
CN111885713B (zh) * 2017-10-05 2022-08-26 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110011714B (zh) * 2018-01-05 2021-06-15 维沃移动通信有限公司 信号接收方法、发送方法、用户设备和网络设备
WO2019138297A1 (en) 2018-01-12 2019-07-18 Lenovo (Singapore) Pte. Ltd. Acquiring system information
KR20190127193A (ko) * 2018-05-03 2019-11-13 삼성전자주식회사 무선통신 시스템에서 그룹캐스트를 위한 동기화 방법 및 장치
US11742926B2 (en) * 2018-06-22 2023-08-29 Nec Corporation Beam management
US11224088B2 (en) * 2018-07-02 2022-01-11 Qualcomm Incorporated Beam sweeping during an on-period of a DRX cycle
US10841898B2 (en) * 2018-07-18 2020-11-17 Acer Incorporated Method of receiving paging messages for UE and UE using the same
US10986510B2 (en) 2018-09-25 2021-04-20 Apple Inc. Electronic devices having sensor-augmented wireless link management
US10764864B2 (en) * 2018-09-26 2020-09-01 Charter Communcations Operating, LLC Paging related methods and apparatus
US10694495B2 (en) * 2018-09-26 2020-06-23 Charter Communications Operation, LLC Paging related methods and apparatus
KR102663752B1 (ko) * 2018-11-01 2024-05-10 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 페이징 경우에서의 다수의 송신 기회들의 핸들링
WO2020124372A1 (en) * 2018-12-18 2020-06-25 Intel Corporation Techniques of paging occasion burst handling
US11844024B2 (en) * 2019-01-07 2023-12-12 Intel Corporation Techniques of user equipment receiver power switching
WO2020143002A1 (en) * 2019-01-10 2020-07-16 Nokia Shanghai Bell Co., Ltd. Method, device and computer readable medium for paging in new radio systems
US10820344B2 (en) * 2019-01-18 2020-10-27 T-Mobile Usa, Inc. Preamble signature selection for contention based random access in mobile communication
US20220070783A1 (en) * 2019-04-25 2022-03-03 Mediatek Inc. Nr paging early indicator
CN112689329A (zh) * 2019-10-17 2021-04-20 北京三星通信技术研究有限公司 波束配置方法及装置、电子设备及计算机存储介质
US11425670B2 (en) * 2021-01-07 2022-08-23 Qualcomm Incorporated Synchronization signal block monitoring occasion design for non-terrestrial communications
US11910314B2 (en) * 2021-05-14 2024-02-20 Qualcomm Incorporated Sensor aided beam management
CN115882920A (zh) * 2021-10-09 2023-03-31 中兴通讯股份有限公司 波束确定方法、设备和存储介质
US20240023061A1 (en) * 2022-07-13 2024-01-18 Qualcomm Incorporated Paging early indication responses

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140128109A1 (en) * 2012-11-05 2014-05-08 Samsung Electronics Co., Ltd Apparatus and method for paging in communication systems with large number of antennas
CN105392197A (zh) * 2014-08-28 2016-03-09 苹果公司 用于链路预算有限的用户装置的寻呼机制
CN106358277A (zh) * 2015-07-17 2017-01-25 苹果公司 第n次寻呼尝试之后增大功率

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8520698B2 (en) 2007-09-04 2013-08-27 Qualcomm Incorporated Paging user devices in a wireless access network
KR102674427B1 (ko) * 2016-02-26 2024-06-13 삼성전자 주식회사 빔포밍이 적용된 시스템에서의 랜덤 액세스를 수행하는 장치 및 방법
US10680699B2 (en) * 2016-07-20 2020-06-09 Lg Electronics Inc. Method and apparatus for calculating beamforming based paging occasion in wireless communication system
US10505773B2 (en) * 2017-01-17 2019-12-10 Qualcomm Incorporated Association between synchronization signal beams and reference signal beams
US10194410B2 (en) * 2017-02-16 2019-01-29 Qualcomm Incorporated Synchronization signal blocks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140128109A1 (en) * 2012-11-05 2014-05-08 Samsung Electronics Co., Ltd Apparatus and method for paging in communication systems with large number of antennas
CN105392197A (zh) * 2014-08-28 2016-03-09 苹果公司 用于链路预算有限的用户装置的寻呼机制
CN106358277A (zh) * 2015-07-17 2017-01-25 苹果公司 第n次寻呼尝试之后增大功率

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAOMI等: "Considerations on paging design,R1-1703230", 《3GPP TSG RAN WG1 MEETING #88》 *

Also Published As

Publication number Publication date
EP3603241A1 (en) 2020-02-05
US11716704B2 (en) 2023-08-01
US20220061025A1 (en) 2022-02-24
WO2018175442A1 (en) 2018-09-27
WO2018175442A8 (en) 2018-11-01
US11184877B2 (en) 2021-11-23
EP3603241B1 (en) 2024-02-14
US20200092846A1 (en) 2020-03-19
CN110679186B (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
CN110679186B (zh) 波束成形的寻呼传输
CN115087100B (zh) 用于新无线电(nr)中的寻呼过程的方法和设备
CN111406436B (zh) 新无线电/新无线电-未许可中的初始接入和信道接入
KR102401700B1 (ko) 빔포밍 시스템의 새로운 무선 랜 액세스
CN113875297B (zh) 针对nr中的空闲/未激活模式定位的方法、装置和***
CN109952719B (zh) 用于波束成形的***信息传输的方法和***
US20200053781A1 (en) Ss block methods and procedures for nr-u
CN111727658A (zh) 非地面网络中的随机接入
WO2019143937A1 (en) Synchronization signal and paging for new radio-unlicensed (nr-u) band communications
CN110603773A (zh) Nr内基于波束的pdcch传输
CN110249555B (zh) 新无线电内的同步信号突发、信号设计及***帧获取
WO2019099661A1 (en) Enhanced paging monitoring in 5g
CN113728715A (zh) 用于两步RACH中的msg-A传输的方法和装置
CN111989888A (zh) 用于noma的缓解冲突及降低复杂度的方法和装置
WO2020033795A1 (en) V2x synchronization
US20210100002A1 (en) Scheduling and transmission for noma
CN110431796B (zh) 主动干扰管理
WO2018204351A1 (en) Synchronization signal multiplexing and mappings in nr
CN115280687A (zh) 针对多发射接收点(trp)***中的上行链路传输的面板选择
CN118251859A (zh) 用于获取在未许可带中运行的5g新无线电网络(nr u)中由于先听后说(lbt)故障而遗漏的ssb的***和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230418

Address after: Delaware

Patentee after: INTERDIGITAL PATENT HOLDINGS, Inc.

Address before: Wilmington, Delaware, USA

Patentee before: IDAC HOLDINGS, Inc.

TR01 Transfer of patent right