CN110649336A - 一种具有完备均衡支路的电压均衡电路及控制方法 - Google Patents

一种具有完备均衡支路的电压均衡电路及控制方法 Download PDF

Info

Publication number
CN110649336A
CN110649336A CN201911009499.1A CN201911009499A CN110649336A CN 110649336 A CN110649336 A CN 110649336A CN 201911009499 A CN201911009499 A CN 201911009499A CN 110649336 A CN110649336 A CN 110649336A
Authority
CN
China
Prior art keywords
branch
equalizing
capacitor
circuit
equalization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911009499.1A
Other languages
English (en)
Other versions
CN110649336B (zh
Inventor
张小兵
周国华
冷敏瑞
田庆新
徐顺刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN201911009499.1A priority Critical patent/CN110649336B/zh
Publication of CN110649336A publication Critical patent/CN110649336A/zh
Application granted granted Critical
Publication of CN110649336B publication Critical patent/CN110649336B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4264Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing with capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0019Circuits for equalisation of charge between batteries using switched or multiplexed charge circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开了一种具有完备均衡支路的电压均衡电路及控制方法。均衡电路包括四个以上结构相同的开关单元,每个开关单元配置一个电池;开关单元包括两个MOS管,电池的正极连接到第一MOS管的漏极,第一MOS管的源极连接到第二MOS管的漏极,第二MOS管的源极连接到电池的负极;所有开关单元所配置的电池串联;任意两个开关单元的第一MOS管的源极之间均连接有一条均衡支路;每个开关单元的第一MOS管的源极还分别连接有一条均衡支路,这些均衡支路的另一端相互连接。本发明可实现电池组内所有电池间的能量传输,快速地均衡电池电压。在结构上具有对称性,均衡速度与电池电压的不均衡分布无关,且均衡速度不随电池数量的增加而变慢。

Description

一种具有完备均衡支路的电压均衡电路及控制方法
技术领域
本发明涉及锂电池/超级电容电压均衡技术领域,尤其是一种具有完备均衡支路的电压均衡电路及控制方法。
背景技术
锂电池和超级电容常被作为储能元件用于纯电动汽车和新能源发电等场合。但是,因为单个锂电池/超级电容(为了便于说明,下文将锂电池和超级电容统称为电池)的电压通常很低,所以常需要将大量的电池单体串联使用,以满足负载的大电压需求。由于生产制造的原因,各电池单体的内阻、电压、自放电率等参数有差异,这种差异会造成电池在充放电时产生电压的不一致。电池间电压的不一致会浪费电池组的可用容量,加速电池的老化、缩短电池的使用寿命。为了解决电池单体的不一致性问题,需要在电池组中加入均衡电路。
现有的均衡电路主要包括能量耗散型和非能量耗散型。能量耗散型均衡电路是使用电阻等耗能元件将高压电池中的能量消耗,以实现电池组中电池电压的均衡。该方式成本低、体积小,但能量浪费严重。非耗散型均衡电路利用电容、电感等非耗能元件作为传能媒介,实现能量从高压电池到低压电池的传输。其中,以电容为传能媒介的均衡电路由于电路结构简单、控制简单而被广泛研究。单电容均衡电路是其中结构最简单的,但该均衡电路只能同时实现两个电池间的能量传输,均衡速度慢。传统的开关电容均衡电路,包括单层开关电容均衡电路、双层开关电容均衡电路以及链形开关均衡电路等,可以同时在多个电池间传输能量,但其均衡速度随电池的电压不均衡分布而变化,同时其均衡速度随着电池数量的增多而下降。
发明内容
本发明的目的是提供一种具有完备均衡支路的电压均衡电路及控制方法。
实现本发明目的的技术方案是:
一种具有完备均衡支路的电压均衡电路,包括四个以上结构相同的开关单元,每个开关单元配置一个电池;所述开关单元包括两个MOS管,电池的正极连接到第一MOS管的漏极,第一MOS管的源极连接到第二MOS管的漏极,第二MOS管的源极连接到电池的负极;所有开关单元所配置的电池串联;任意两个开关单元的第一MOS管的源极之间均连接有一条均衡支路;每个开关单元的第一MOS管的源极还分别连接有一条均衡支路,这些均衡支路的另一端相互连接。
进一步地,所述均衡支路为单电容支路。
进一步地,所述均衡支路为电容与电感串联支路。
进一步地,所述任意两个开关单元的第一MOS管的源极之间均连接有一条均衡支路,其均衡支路为单电容支路;所述每个开关单元的第一MOS管的源极还分别连接有一条均衡支路,这些均衡支路的另一端相互连接,其均衡支路为电容与电感串联支路。
进一步地,所述任意两个开关单元的第一MOS管的源极之间均连接有一条均衡支路,其均衡支路为电容与电感串联支路;所述每个开关单元的第一MOS管的源极还分别连接有一条均衡支路,这些均衡支路的另一端相互连接,其均衡支路为单电容支路。
均衡支路为单电容支路的电路,其控制方法为:令VGS1控制每个开关单元的第一MOS管,VGS2控制每个开关单元的第二MOS管;所述VGS1和VGS2为一对频率固定、占空比互补且带有死区时间的PWM信号。
均衡支路包括电容与电感串联支路,其控制方法为:令VGS1控制每个开关单元的第一MOS管,VGS2控制每个开关单元的第二MOS管;所述VGS1和VGS2为一对频率固定、占空比互补且带有死区时间的PWM信号,其频率为电容与电感串联支路的谐振频率。
本发明的有益效果是:本发明为任意两个电池提供了所有可能的直接和间接均衡路径,即均衡路径具有完备性。其中直接均衡路径由单条均衡支路组成,间接均衡路径由两条均衡支路串联组成。基于完备的均衡路径,本发明可实现电池组内所有电池间的能量传输,快速地均衡电池电压。同时本发明在结构上具有对称性,每个电池具有相同数量的均衡路径,且均衡路径的数量随着电池数量的增加而增加。因此本发明的均衡速度与电池电压的不均衡分布无关,且均衡速度不随电池数量的增加而变慢。
附图说明
图1为本发明均衡支路为单电容支路的电路结构图;
图2为实施例1的电路结构图;
图3a为实施例1的工作状态I;
图3b为实施例1的工作状态Ⅱ;
图4为实施例1在电压不均衡情况1下电容C2,1的电压、电流仿真波形;
图5a为实施例1在电压不均衡情况1下电池电压的仿真波形;
图5b为实施例1在电压不均衡情况2下电池电压的仿真波形;
图5c为实施例1在电压不均衡情况3下电池电压的仿真波形;
图6为实施例2的电路结构图;
图7为实施例2电容C2,1的电压、电流仿真波形;
图8为实施例2电池电压的仿真波形。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步详细的描述。
一种具有完备均衡支路的电压均衡电路,包括依次串联的电池B1,B2,…,Bn,其中n为大于等于4的正整数;还包括n组MOS管和n(n+1)/2条均衡支路。
依次串联的电池B1,B2,…,Bn,可以为锂电池(模块)或超级电容(模块)。
均衡支路可以为单电容支路,也可以为电容与电感串联支路,或者其它结构的均衡支路。
图1所示为均衡支路为单电容支路的具有完备均衡支路的电压均衡电路的电路结构图。
如图1所示,与电池Bi并联的第i组MOS管,包括两个MOS管Si1和Si2。第一个MOS管Si1和第二个MOS管Si2串联后再和电池Bi并联;具体连接方式为:第一个MOS管Si1的漏极与电池Bi的正极相连,第二个MOS管Si2的源极与电池Bi的负极相连;第一个MOS管Si1的源极与第二个MOS管Si2的漏极相连,其连接点为均衡支路连接点bi;每个电池Bi对应一个均衡支路连接点bi;其中,i=1,2,…,n。
n(n+1)/2条单电容支路可以分为两种类型:
第一种:每条单电容支路连接任意两个电池对应的均衡支路连接点;共n(n-1)/2条。详细的连接方式为:电容Cj,k(j=2,3,…,n;k=1,2,…,n-1;j>k)所构成均衡支路的一端连接电池Bj对应的均衡支路连接点bj,另一端连接电池Bk对应的均衡支路连接点bk;该均衡支路为电池Bj和Bk间的单支路均衡路径;
第二种:每条单电容支路的一端连接一个电池对应的均衡支路连接点,另一端连接辅助连接点b0;共n条;详细的连接方式为:电容C0,i(i=1,2,…,n)所构成均衡支路的一端连接电池Bi对应的均衡支路连接点bi,另一端连接到辅助连接点b0;其中,电容C0,j(j=2,3,…,n)所构成的均衡支路和电容C0,k(k=1,2,…,n-1;j>k)所构成的均衡支路相连,构成电池Bj和Bk间包含两条均衡支路的均衡路径;
每个电池对应的均衡支路连接点都与n条均衡支路相连。
均衡支路为电容与电感串联支路的具有完备均衡支路的电压均衡电路,其结构与均衡支路为单电容支路的结构相似,可以构成多种电路。第一,上述结构中所有单电容支路替换为电容与电感串联支路;第二,上述第一种类型的单电容支路替换为电容与电感串联支路,其它仍为单电容支路;第三,上述第二种类型的单电容支路替换为电容与电感串联支路,其它仍为单电容支路。均衡支路为电容与电感串联支路时,通过电容与电感的谐振,可以增加电池与电容间的电压差,从而增大均衡电流、提高均衡速度;同时,通过调节均衡电路的开关频率接近电容与电感串联支路的谐振频率,可以减小MOS管通断瞬间流过的电流,降低电路损耗、提高均衡效率。进一步地,当所有均衡支路均为电容与电感串联支路时,可以实现电路中所有MOS管的零电流开关,显著提高电路的均衡效率。
上述具有完备均衡支路的电压均衡电路的控制方法:用一对频率固定、占空比互补且带有死区时间的PWM信号VGS1和VGS2控制所述n组MOS管,其中:VGS1控制每组MOS管中的第一个MOS管Si1,VGS2控制每组MOS管中的第二个MOS管Si2
在上述控制方法中,当均衡支路为单电容支路时,控制信号的开关频率没有明确限制,可以根据需要设置;而当均衡支路为电容与电感串联支路时,为了保证电路的均衡性能,控制信号的开关频率需要设置为电容与电感串联支路的谐振频率或与谐振频率相近的频率。
实施例1
以4电池、均衡支路为单电容支路的均衡电路为实施例1,其电路结构图如图2所示。根据PWM信号VGS1和VGS2,均衡电路有两个工作状态,工作状态I和Ⅱ,分别如图3a和3b所示。当电池电压VB4>VB3>VB2>VB1时,均衡电路的工作状态如下:
工作状态I:PWM信号VGS1为高电平,MOS管S11、S21、S31、S41导通,电池B4、B3、B2向所有电容充电,电容电压升高;
工作状态Ⅱ:PWM信号VGS2为高电平,MOS管S12、S22、S32、S42导通,电容向电池B3、B2、B1充电,电容电压降低。
图4为实施例1在电压不均衡情况1下电容C2,1的电压、电流仿真波形;图5a、图5b、图5c分别为三种不同电压不均衡情况下的电池电压仿真波形。电路的仿真参数:电容为100μF,每个均衡单元设置20mΩ的电阻作为电路寄生电阻;用1F的电容代替电池;开关频率为50kHz,死区时间为1%。电压不均衡情况1:VB1=3.0V、VB2=3.2V、VB3=3.4V、VB4=3.6V;电压不均衡情况2:VB1=3.6V、VB2=3.4V、VB3=3.2V、VB4=3.0V;电压不均衡情况3:VB1=3.0V、VB2=3.4V、VB3=3.6V、VB4=3.2V。
由图4可知,当VGS1为高电平时,流过电容C2,1的电流方向为正,能量从电池B2向电容C2,1传输,电容电压逐渐升高;当VGS2为高电平时,流过电容C2,1的电流方向为负,能量从电容C2,1向电池B1传输,电容电压逐渐降低。
由图5a、图5b、图5c可知,在不同的电池电压不均衡分布情况下,电池间电压差均衡到4.3mV所需的时间都为0.2s,均衡速度一致,而且电池电压的变化趋势相似,表明本发明的均衡速度不受电池电压不均衡分布的影响。
实施例2
以4电池、均衡支路为电容与电感串联支路的均衡电路为实施例2,其电路结构图如图6所示。均衡电路的两个工作状态与均衡支路为单电容支路的情况相似,MOS管的导通顺序参照实施例1。
图7为实施例2电容C2,1的电压、电流仿真波形;图8为实施例2电池电压的仿真波形。电路的仿真参数:电容为20μF,电感为4.7μH,每个谐振开关电容单元设置30mΩ的电阻作为电路寄生电阻;用1F的电容代替电池;开关频率为16.3kHz,死区时间为1%。电池的初始电压为:VB1=3.0V、VB2=3.2V、VB3=3.4V、VB4=3.6V。
如图7所示,当VGS1为高电平时,流过电容C2,1的电流从零上升到最大值再下降到零,能量从电池B2向电容C2,1传输,电容C2,1的电压逐渐升高;当VGS2为高电平时,流过电容C2,1的电流从零下降到最小值再上升到零,能量从电容C2,1向电池B1传输,均衡电容C2,1的电压逐渐降低。同时,可以看到流过电容的电流在状态切换瞬间都接近零,说明此时流过MOS管的电流也为零,即实现了MOS管的零电流开关。
如图8所示,均衡支路为电容与电感串联支路时,均衡电路也可以实现电池的电压均衡。电池间电压差均衡到4.2mV所需的时间为0.147s。与图7的结果相比较,可以知道均衡支路为电容与电感串联支路时,均衡电路的均衡速度快于均衡支路为单电容支路的情况。在均衡效果相近的情况下,均衡支路为电容与电感串联支路的均衡电路所用的电容及开关频率都相对较小,但是增加了与电容同样数量的电感。
综上,本发明所提出的具有完备均衡支路的电压均衡电路及控制方法,在任意两个电池间有多条均衡路径,可以同时实现所有电池间的能量传输,缩短了均衡步骤;且每个电池对应的均衡路径随着电池数量的增加而增加。同时,本发明在结构上具有对称性,不考虑电池组的内部连接时,每个电池在均衡电路内的连接方式是完全相同的,因此本发明的均衡速度与电池电压的不均衡分布无关,解决了传统开关电容均衡电路均衡速度随电池数量的增加而下降的问题。

Claims (7)

1.一种具有完备均衡支路的电压均衡电路,其特征在于,包括四个以上结构相同的开关单元,每个开关单元配置一个电池;所述开关单元包括两个MOS管,电池的正极连接到第一MOS管的漏极,第一MOS管的源极连接到第二MOS管的漏极,第二MOS管的源极连接到电池的负极;所有开关单元所配置的电池串联;
任意两个开关单元的第一MOS管的源极之间均连接有一条均衡支路;
每个开关单元的第一MOS管的源极还分别连接有一条均衡支路,这些均衡支路的另一端相互连接。
2.如权利要求1所述的一种具有完备均衡支路的电压均衡电路,其特征在于,所述均衡支路为单电容支路。
3.如权利要求1所述的一种具有完备均衡支路的电压均衡电路,其特征在于,所述均衡支路为电容与电感串联支路。
4.如权利要求1所述的一种具有完备均衡支路的电压均衡电路,其特征在于,所述任意两个开关单元的第一MOS管的源极之间均连接有一条均衡支路,其均衡支路为单电容支路;所述每个开关单元的第一MOS管的源极还分别连接有一条均衡支路,这些均衡支路的另一端相互连接,其均衡支路为电容与电感串联支路。
5.如权利要求1所述的一种具有完备均衡支路的电压均衡电路,其特征在于,所述任意两个开关单元的第一MOS管的源极之间均连接有一条均衡支路,其均衡支路为电容与电感串联支路;所述每个开关单元的第一MOS管的源极还分别连接有一条均衡支路,这些均衡支路的另一端相互连接,其均衡支路为单电容支路。
6.如权利要求2所述的一种具有完备均衡支路的电压均衡电路的控制方法,其特征在于,令VGS1控制每个开关单元的第一MOS管,VGS2控制每个开关单元的第二MOS管;所述VGS1和VGS2为一对频率固定、占空比互补且带有死区时间的PWM信号。
7.如权利要求3-5任意一项所述的一种具有完备均衡支路的电压均衡电路的控制方法,其特征在于,令VGS1控制每个开关单元的第一MOS管,VGS2控制每个开关单元的第二MOS管;所述VGS1和VGS2为一对频率固定、占空比互补且带有死区时间的PWM信号,其频率为电容与电感串联支路的谐振频率。
CN201911009499.1A 2019-10-23 2019-10-23 一种具有完备均衡支路的电压均衡电路及控制方法 Active CN110649336B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911009499.1A CN110649336B (zh) 2019-10-23 2019-10-23 一种具有完备均衡支路的电压均衡电路及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911009499.1A CN110649336B (zh) 2019-10-23 2019-10-23 一种具有完备均衡支路的电压均衡电路及控制方法

Publications (2)

Publication Number Publication Date
CN110649336A true CN110649336A (zh) 2020-01-03
CN110649336B CN110649336B (zh) 2024-03-08

Family

ID=68994512

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911009499.1A Active CN110649336B (zh) 2019-10-23 2019-10-23 一种具有完备均衡支路的电压均衡电路及控制方法

Country Status (1)

Country Link
CN (1) CN110649336B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220216703A1 (en) * 2019-05-24 2022-07-07 Panasonic Intellectual Property Management Co., Ltd. Energy transfer circuit and power storage system
CN116488294A (zh) * 2023-04-26 2023-07-25 四川吉利学院 一种电池均衡电路***及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103956801A (zh) * 2014-05-22 2014-07-30 山东大学 一种基于LC谐振变换的Pack to Cell均衡电路及实现方法
CN104184197A (zh) * 2014-09-12 2014-12-03 上海海事大学 超级电容电压均衡电路及其均衡电容参数识别方法
US20170310128A1 (en) * 2014-10-08 2017-10-26 The Hong Kong Polytechnic University Voltage balancing circuit
CN107482263A (zh) * 2017-08-08 2017-12-15 山东大学 基于Delta结构开关电容的串联电池组均衡器及其实现方法
CN109617161A (zh) * 2018-12-14 2019-04-12 西南交通大学 一种准谐振交错开关电容电池均衡电路及其控制方法
CN109921485A (zh) * 2019-03-13 2019-06-21 西南交通大学 一种集中-分散并联型开关电容均衡电路及其控制方法
CN210403957U (zh) * 2019-10-23 2020-04-24 西南交通大学 一种具有完备均衡支路的电压均衡电路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103956801A (zh) * 2014-05-22 2014-07-30 山东大学 一种基于LC谐振变换的Pack to Cell均衡电路及实现方法
CN104184197A (zh) * 2014-09-12 2014-12-03 上海海事大学 超级电容电压均衡电路及其均衡电容参数识别方法
US20170310128A1 (en) * 2014-10-08 2017-10-26 The Hong Kong Polytechnic University Voltage balancing circuit
CN107482263A (zh) * 2017-08-08 2017-12-15 山东大学 基于Delta结构开关电容的串联电池组均衡器及其实现方法
CN109617161A (zh) * 2018-12-14 2019-04-12 西南交通大学 一种准谐振交错开关电容电池均衡电路及其控制方法
CN109921485A (zh) * 2019-03-13 2019-06-21 西南交通大学 一种集中-分散并联型开关电容均衡电路及其控制方法
CN210403957U (zh) * 2019-10-23 2020-04-24 西南交通大学 一种具有完备均衡支路的电压均衡电路

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YUNLONG SHANG 等: "A switched-coupling-capacitor equalizer for series-connected battery strings", 《 2017 IEEE APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION (APEC)》, 30 March 2017 (2017-03-30), pages 1425 - 1429, XP033098411, DOI: 10.1109/APEC.2017.7930884 *
徐顺刚 等: "动力电池均衡充电控制策略研究", 《电机与控制学报》, vol. 16, no. 2, 15 February 2012 (2012-02-15), pages 62 - 65 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220216703A1 (en) * 2019-05-24 2022-07-07 Panasonic Intellectual Property Management Co., Ltd. Energy transfer circuit and power storage system
CN116488294A (zh) * 2023-04-26 2023-07-25 四川吉利学院 一种电池均衡电路***及其控制方法

Also Published As

Publication number Publication date
CN110649336B (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
CN101764421B (zh) 一种用于电动汽车电池组的均衡设备
CN106532852B (zh) 基于lc串联储能的电池组均衡电路
CN106787021A (zh) 一种基于多绕组变压器的电池组均衡器模块化***及方法
CN105140998B (zh) 基于电感储能的串联电池组双向无损均衡电路
CN107134599B (zh) 一种串联电池组的电压均衡电路及其工作方法
CN106712211A (zh) 一种基于多输入变换的双层主动均衡电路及实现方法
CN109672246B (zh) 基于Buck_Boost单元的反激式多路均衡电路及其控制方法
CN102593893A (zh) 一种实现电池组均衡放电的***
CN112202218B (zh) 基于双极性t型双谐振开关电容变换器的均衡电路及控制方法
CN107482263A (zh) 基于Delta结构开关电容的串联电池组均衡器及其实现方法
CN104578288A (zh) 一种双层桥臂串联蓄电池组高效均衡器拓扑电路及其控制方法
CN104868532A (zh) 一种基于Cuk斩波电路双向桥臂的串联蓄电池组双向能量均衡器及其控制方法
CN109617161B (zh) 一种准谐振交错开关电容电池均衡电路及其控制方法
CN110649336A (zh) 一种具有完备均衡支路的电压均衡电路及控制方法
CN113746174B (zh) 一种单电感单电容串联电池组自适应主动均衡方法
CN109787324B (zh) 一种基于单体-单体型均衡单元的分层均衡电路及控制方法
CN210403957U (zh) 一种具有完备均衡支路的电压均衡电路
CN110667437B (zh) 一种基于开关电容和lc谐振单元的均衡电路及控制方法
CN110635538B (zh) 一种均衡电压差可控的谐振均衡电路及控制方法
CN109921485B (zh) 一种集中-分散并联型开关电容均衡电路及其控制方法
CN206517117U (zh) 一种基于多绕组变压器的电池组均衡器模块化***
CN210912093U (zh) 一种基于开关电容和lc谐振单元的均衡电路
CN112542871B (zh) 一种串联电池组混合式均衡电路及其控制方法和装置
CN209593028U (zh) 一种基于单体-单体型均衡单元的分层均衡电路
CN216904379U (zh) 一种基于开关电容和Buck-Boost单元的自动电压均衡电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant