CN110630226A - Isolated gas lift drainage method - Google Patents

Isolated gas lift drainage method Download PDF

Info

Publication number
CN110630226A
CN110630226A CN201910872159.5A CN201910872159A CN110630226A CN 110630226 A CN110630226 A CN 110630226A CN 201910872159 A CN201910872159 A CN 201910872159A CN 110630226 A CN110630226 A CN 110630226A
Authority
CN
China
Prior art keywords
gas lift
isolated gas
punching
shell cylinder
packer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910872159.5A
Other languages
Chinese (zh)
Other versions
CN110630226B (en
Inventor
王威林
马辉运
叶长青
于洋
唐寒冰
谭昊
覃芳
谭宏兵
唐思洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Shengnuo Oil And Gas Engineering Technology Service Co ltd
Petrochina Co Ltd
Original Assignee
Sichuan Shengnuodi Gas Engineering Technology Service Co Ltd
Engineering Technology Research Institute of Petrochina Southwest Oil and Gasfield Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Shengnuodi Gas Engineering Technology Service Co Ltd, Engineering Technology Research Institute of Petrochina Southwest Oil and Gasfield Co filed Critical Sichuan Shengnuodi Gas Engineering Technology Service Co Ltd
Priority to CN201910872159.5A priority Critical patent/CN110630226B/en
Publication of CN110630226A publication Critical patent/CN110630226A/en
Application granted granted Critical
Publication of CN110630226B publication Critical patent/CN110630226B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B23/00Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells
    • E21B23/06Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for setting packers
    • E21B23/065Apparatus for displacing, setting, locking, releasing or removing tools, packers or the like in boreholes or wells for setting packers setting tool actuated by explosion or gas generating means
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/122Multiple string packers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • E21B43/116Gun or shaped-charge perforators
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • E21B43/116Gun or shaped-charge perforators
    • E21B43/1185Ignition systems
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/122Gas lift

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Air Bags (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

The invention relates to an isolated gas lift drainage method, which comprises the following steps of S1 assembling and installing a pipe string: sequentially connecting a first starting device, a punching gun (400), a second starting device and an isolated gas lift packer (100); s2 downhole punching: the installation pipe string is lowered to a designated position from a production well pipe, and a first starting device controls a punching gun (400) to punch a hole on the production well pipe; setting on S3: lifting the installation pipe string, moving the isolated gas lift packer (100) up to a punching position, and controlling the isolated gas lift packer (100) to be set through a second starting device; s4 releasing and lifting: releasing after setting, and recovering the first starting device, the punching gun (400) and the second starting device to complete installation; s5, gas and liquid are added, and high-pressure gas is added to discharge accumulated liquid. According to the invention, the installation can be completed only by once putting in the installation pipe string, sequentially punching and setting, and then pulling out the rest installation pipe string, so that the process steps are simple, and the installation position is more accurately controlled.

Description

Isolated gas lift drainage method
Technical Field
The invention relates to the technical field of drainage and gas production processes, in particular to an isolated gas lift drainage method.
Background
In the process of developing oil and gas, oil and gas in an underground production layer are usually exploited by using a gas well, however, when the gas well is developed to the middle and later stages, liquid accumulation is easy to occur in a shaft of the gas well and a stratum near the bottom of the gas well, when the liquid accumulation is too much or the produced water is too serious, the pressure of the liquid accumulation offsets the pressure of the gas well, the exploitation of the oil and gas can be blocked, at the moment, the gas well needs to be drained, and the normal production of the gas well is recovered.
The existing drainage gas production process is divided into a mechanical process and a physical and chemical process, wherein the mechanical process also comprises a pipe column drainage gas production process, a gas lift drainage gas production process, an electric submersible pump drainage gas production process and a machine pumping drainage gas production process; the physical and chemical process is mostly a foam drainage gas production process. For example, the gas lift drainage gas production process injects high-pressure natural gas into a gas well which stops spraying from the ground through a gas lift pipe column, and lifts liquid in a shaft by using the energy of the gas, so that accumulated liquid at the bottom of the well is lifted to the ground, the purpose of drainage gas production is achieved, and the gas well is recovered to normal production.
However, in some old wells, the working cylinder is not arranged, so that the gas lift valve cannot be lowered, and the cost for pulling out the pipe string and lowering the gas lift valve again is very high. A new solution is to make a gas injection hole on the production well pipe, then put an isolation gas lift packer to plug the upper and lower ends of the gas injection hole, and inject gas from the annulus, and artificially lift well fluid to reduce the pressure at the bottom of the production well pipe. However, the technology that can be realized at present is that a punching gun is firstly punched, then the punching gun is taken out, and then an isolated gas lift packer is put in for setting installation. The mounting process has two main problems: firstly, multiple downhole operations are needed, the process is complex, and the cost is high; secondly, go into the well again each time and all can produce the error in the distance, influence the accuracy of isolated gas lift packer and gas injection hole position, increased the risk of installation failure.
Disclosure of Invention
The invention aims to overcome the defects of the prior art and provides an isolated gas lift drainage method and an installation method thereof, which can conveniently and quickly punch holes and install isolated gas lift packers in place, and improve the accuracy of the positions of the isolated gas lift packers and gas injection holes to the maximum extent.
The purpose of the invention is realized by the following technical scheme: an isolated gas lift drainage method comprises the following steps of removing accumulated liquid in a well through an isolated gas lift drainage gas production pipe string, reducing the pressure of the accumulated liquid and recovering the production of a gas well, wherein the isolated gas lift drainage gas production pipe string comprises an isolated gas lift packer, a setting tool, a starting device and a punching gun:
s1, assembling and installing a pipe string, and sequentially connecting a first starting device, a punching gun, a second starting device and an isolated gas lift packer, wherein the second starting device is connected with the isolated gas lift packer through a releasing structure;
s2, performing downhole punching, wherein the punching gun is positioned above the isolated gas lift packer, the mounting pipe string is lowered to a specified position from the production well pipe, and the punching gun is controlled by a first starting device to perform punching on the production well pipe;
s3, lifting up to set, lifting up the installation pipe string, moving the isolated gas lift packer up to the punching position, and controlling the isolated gas lift packer to set through a second starting device;
and S4, lifting the releasing hand, realizing releasing hand after setting, and recovering the first starting device, the punching gun and the second starting device to finish installation.
In a preferred embodiment, in step S2, the two punched holes have a phase angle of 180 ° and an axial distance of 13 holes/m.
S5, injecting high-pressure gas into the installation pipe string, enabling the high-pressure gas to enter an annular space sealed by the isolation type gas lift packer, pressurizing accumulated liquid through the high-pressure gas, and discharging the accumulated liquid in the sub-micron isolation type gas lift packer outwards
In a preferred embodiment, the first actuating device and the second actuating device both use cable-controlled safety ignition heads.
As another preferred embodiment, the first actuating device adopts a cable-controlled safety ignition head; the second starting device adopts a time delay detonating device, and the time delay detonating device is connected with the punching gun.
As a preferred embodiment, the installation pipe string comprises an isolated gas lift packer, a setting tool, a delayed initiation device, a punching gun and a safety ignition head;
the isolated gas lift packer comprises a central pipe, and at least two sealing rubber cylinders are sleeved on the outer side of the central pipe; the side wall of the central tube is provided with a channel for communicating the inner side and the outer side of the central tube, the channel is positioned between two adjacent sealing rubber cylinders, the channel is provided with a one-way valve, and the one-way valve is arranged to allow fluid to flow out of the central tube into the central tube;
the lower end of the setting tool is detachably connected with the upper end of the isolated gas lift packer through a releasing structure;
the lower end of the delay detonating device is connected with the upper end of the setting tool;
the lower end of the punching gun is connected with the upper end of the delayed initiation device;
the lower end of the safety ignition head is connected with the upper end of the punching gun.
As a preferred embodiment, the safety ignition head comprises a shell cylinder a, wherein a spring contact is mounted at the upper end of the shell cylinder a, and the spring contact is connected with the shell cylinder a in an insulated manner; the lower end of the shell cylinder a is provided with an ignition detonator, and two poles of the ignition detonator are respectively connected with the spring contact and the shell cylinder a; the shell cylinder a is made of conductive materials.
In a preferred embodiment, the punching gun comprises a housing cylinder b, wherein the upper end of the housing cylinder b is connected with the lower end of the housing cylinder a; the middle part of the outer shell cylinder b is provided with a punching bullet; the two ends of the outer shell cylinder b are respectively provided with a booster, the two booster are connected through a detonating cord, and the booster at the upper end is connected with a detonating detonator; the punching bomb is connected with the detonating cord.
In a preferred embodiment, the emission end of the piercing bullet is perpendicular to the wall of the outer casing b, and the outer casing b is provided with a piercing hole wall matched with the piercing bullet.
In a preferred embodiment, there are two punch bullets, two of which have a phase angle of 180 °, and which are spaced apart in the axial direction of the housing cylinder b.
In a preferred embodiment, the delayed initiation device comprises a housing cylinder c, and the upper end of the housing cylinder c is connected with the lower end of the housing cylinder b; the upper end of the outer shell cylinder c is provided with a clapboard detonating device connected with a booster tube at the lower end of the outer shell cylinder b, and the lower end of the outer shell cylinder c is provided with a booster tube; and a combustion transmission device is arranged in the outer shell cylinder c, and the clapboard detonating device is connected with the booster tube at the lower end of the outer shell cylinder c through the combustion transmission device.
In a preferred embodiment, the combustion transfer device includes a base cylinder, a gap is formed between the base cylinder and the outer casing cylinder c, a fuse is spirally wound on the surface of the base cylinder, one end of the fuse is connected to the partition board detonating device, and the other end of the fuse is connected to a booster tube at the lower end of the outer casing cylinder c.
In a preferred embodiment, a plurality of firing lines are disposed on the surface of the base cylinder, and the firing lines are disposed parallel to each other.
As a preferred embodiment, the setting tool comprises a housing cylinder d and an adapter, wherein the upper end of the housing cylinder d is connected with the lower end of the housing cylinder c; the upper end of the outer shell cylinder d is provided with a partition plate detonating device connected with a booster tube at the lower end of the outer shell cylinder c, the partition plate detonating device is connected with a combustion chamber in which initiating explosive devices are stored, the combustion chamber is connected with an upper piston, the upper piston is connected with a lower piston through a hydraulic cavity, the lower piston is connected with a transfer plate, the side wall of the outer shell cylinder d is provided with an axial through groove, and the transfer plate extends out of the through groove; the transmission plate is connected with a setting shell of the isolation type gas lift packer through a shell of the adapter, a shell cylinder d is connected with a central tube of the isolation type gas lift packer through a mandrel of the adapter, and the releasing structure is arranged on the mandrel of the adapter.
As a preferred embodiment, the hydraulic chamber is provided with a damping channel.
The invention has the following advantages:
by adopting the installation method provided by the invention, the installation can be finished only by once putting in the installation pipe string, sequentially punching and setting, and then pulling out the rest installation pipe string, so that the process steps are simple, and the installation position is more accurately controlled.
The hole and the setting are respectively controlled by adopting one cable, and the interval time of two steps of punching and setting can be artificially controlled, so that the operation time of lifting the isolated gas lift packer to the setting position is not limited, and the exclusion and adjustment can be carried out in sufficient time even if obstruction occurs in the process.
The adoption of the delayed initiation device to trigger the setting can provide certain buffering time after punching and before setting, and the installation position of the isolated gas lift packer can be conveniently adjusted. Therefore, after the pipe string is lowered to a preset position, three operation steps are only needed to be implemented on the well: firstly, igniting by using a cable; then, lifting the pipe string after punching; finally, after the setting is released, the rest pipe strings are pulled out; the whole operation is very simple, and the installation precision is high.
Drawings
FIG. 1 is a schematic flow diagram of the present invention;
FIG. 2 is a schematic structural view of an embodiment of an installation string of the present invention;
FIG. 3 is a schematic structural view of an embodiment of an isolated gas lift packer of the present invention;
fig. 4 is a schematic structural view of an embodiment of the safety ignition head of the present invention;
FIG. 5 is a schematic diagram of a construction of an embodiment of a punch gun of the present invention;
FIG. 6 is a schematic structural diagram of an embodiment of the delayed initiation device of the present invention;
FIG. 7 is a schematic structural view of an embodiment of the setting tool of the present invention;
FIG. 8 is a schematic view of an installation structure of an embodiment of the adapter of the present invention;
FIG. 9 is an enlarged view of section A of FIG. 3;
in the figure: 100-isolated gas lift packer; 101-a central tube; 102-sealing rubber cylinder; 103-a one-way valve; 104-slips; 105-a push-up cylinder; 106-middle push cylinder; 107-through slots; 108-lower pushing cylinder; 109-a valve body; 110-a return spring; 111-a sealing plug; 112-a first channel; 113-a second channel; 200-setting tool; 201-housing cylinder d; 202-a combustion chamber; 203-hydraulic chamber; 204-lower piston; 205-transfer plate; 206-through slots; 207-an adapter; 208-a housing; 209-mandrel; 210-a damping channel; 300-a delayed detonating device; 301-housing barrel c; 302-a diaphragm detonating device; 303-combustion transfer means; 304-a base cylinder; 305-a firing line; 400-a punch gun; 401-housing barrel b; 402-punching a bullet; 403-booster; 404-detonating cord; 405-punching a hole wall; 500-safety ignition head; 501-outer shell barrel a; 502-spring contacts; 503-detonating the detonator.
Detailed Description
The invention will be further described with reference to the accompanying drawings, but the scope of the invention is not limited to the following.
As shown in fig. 1 and fig. 2, in the isolated gas lift drainage method, accumulated liquid in a well is drained through an isolated gas lift drainage gas production pipe string to reduce the pressure of the accumulated liquid and recover the production of the gas well, wherein the isolated gas lift drainage gas production pipe string comprises an isolated gas lift packer, a setting tool, a starting device and a punching gun, and the method comprises the following steps:
s1, assembling and installing the pipe string; firstly, a first starting device, a punching gun 400, a second starting device and an isolated gas lift packer 100 are sequentially connected, and the second starting device is connected with the isolated gas lift packer 100 through a releasing structure; the first starting device is used for starting the punching gun 400 to punch holes, and the second starting device is used for starting the setting and releasing of the isolated gas lift packer 100;
s2, punching a well; when the well is lowered, one end of the isolated gas lift packer 100 is firstly inserted, the punching gun 400 is positioned above the isolated gas lift packer 100, and the installation pipe string is inserted to a specified position from a production well pipe, wherein the position is an initial position of gas lift drainage, namely accumulated water in the pipe above the position can be lifted out, so that the position is always below the level of the accumulated water; controlling a punching gun 400 to punch a production well pipe through a first starting device; the formed punched hole communicates the production gas pipe with an annular space, and the annular space is an annular space between the production gas pipe and the well wall;
s3, lifting up and setting; because the punching gun 400 is positioned above the isolated gas lift packer 100, a pipe string needs to be lifted and installed after punching, the isolated gas lift packer 100 is moved upwards to a punching position, and particularly, two sealing rubber cylinders 102 of the isolated gas lift packer 100 need to be respectively arranged at the upper end and the lower end of the punching position, and because the distance between the punching position of the punching gun 400 and the two sealing rubber cylinders 102 is determined when the pipe string is assembled and installed, the installation position can be determined only by directly lifting the distance when the pipe string is lifted without additional detection, so that the construction is convenient and efficient; then the isolated gas lift packer 100 is controlled to be set through a second starting device;
s4, lifting up the release; after setting, the thrust of the second starting device on the isolated gas lift packer 100 is continuously increased, so that a releasing structure is triggered to release, and the first starting device, the punching gun and the second starting device which are still connected together are recovered after the second starting device is separated from the isolated gas lift packer 100 to complete installation;
s5, injecting high-pressure gas into the installation pipe string, enabling the high-pressure gas to enter an annular space closed by the isolation type gas lift packer 100, pressurizing accumulated liquid through the high-pressure gas, and discharging the accumulated liquid in the sub-micron isolation type gas lift packer 100 outwards.
The thrust of second starting drive to isolation formula gas lift packer 100 continues the increase after setting, and then triggers the structure of giving up and realize giving up, retrieves first starting drive, the rifle and the second starting drive that still link together after second starting drive separates with isolation formula gas lift packer 100 and accomplishes the installation.
In order to ensure the success rate of punching, when the punching gun 400 is used for punching, two holes can be punched simultaneously, and two punching bullets need to be installed in the punching gun 400 correspondingly. In order to reduce the influence between the two punching bullets as much as possible, the phase angle of the two punching bullets is set to be 180 degrees, and the axial distance is set to be 13 holes/meter. Accordingly, the spacing between the two packing elements 102 of the isolated gas lift packer 100 must be greater than 77mm, although 77mm is merely a theoretical value for convenience of installation operation, and the spacing between the two packing elements 102 is preferably between 1000mm and 1500 mm.
In a preferred embodiment, the first actuating device and the second actuating device each employ a cable-controlled safety ignition head. When the pipe string is assembled and installed, two control cables need to be connected, the first control cable is connected with the first starting device, and the second control cable is connected with the second starting device; when the installation is carried out, after the installation pipe string is lowered to a designated position, the punching gun 400 is controlled to punch holes through the first control cable, then the installation pipe string is lifted to a required position, and the isolated gas lift packer 100 is controlled to be set through the second control cable. This way, the time interval between the two steps of punching and setting can be manually controlled, so the operation time of lifting the isolated gas lift packer 100 to the setting position is not limited, and even if obstruction occurs in the process, the time is sufficient for exclusion and adjustment.
As another preferred embodiment, the first actuating device employs a cable-controlled safety firing head 500; the second starting device is a delayed initiation device 300, and the delayed initiation device 300 is connected with the punching gun 400. The perforating gun 400 transfers combustion to the delayed initiation means 300 while performing the perforation, thereby providing an operating time for raising the string by delaying initiation of the isolated gas lift packer 100. The mode makes the whole installation process smoother, the possibility that the second control cable is damaged in the punching process in the previous embodiment can be avoided, and the reliability of the installation of the whole device is improved.
Specifically, as shown in fig. 2 and 3, the isolated gas lift packer installation string disclosed in this embodiment includes an isolated gas lift packer 100, where the isolated gas lift packer 100 includes a central tube 101, and at least two sealing rubber sleeves 102 are sleeved on an outer side of the central tube 101; the side wall of the central tube 101 is provided with a channel for communicating the inner side and the outer side of the central tube, the channel is positioned between two adjacent sealing rubber cylinders, the channel is provided with a one-way valve 103, and the one-way valve 103 is arranged to allow fluid to flow out of the central tube into the central tube; the packer also comprises a setting tool 200, wherein the lower end of the setting tool 200 is detachably connected with the upper end of the isolated gas lift packer 100 through a releasing structure; the setting tool further comprises a delayed detonation device 300, wherein the lower end of the delayed detonation device 300 is connected with the upper end of the setting tool 200; the device further comprises a punching gun 400, wherein the lower end of the punching gun 400 is connected with the upper end of the delayed initiation device 300; the safety ignition device further comprises a safety ignition head 500, and the lower end of the safety ignition head 500 is connected with the upper end of the punching gun 400.
When the isolated gas lift packer 100 is installed in actual construction, the connected pipe string is lowered through a cable to a predetermined position below the surface of the accumulated water in the well, which is an implementation position for gas lift drainage, and water above the position can be drained. After reaching the predetermined position, the safety igniter 500 is ignited by the cable, so as to cause the punching gun 400 to punch a hole in the wall of the gas well. Then, the cable hoisting pipe string is utilized to enable two sealing rubber cylinders of the isolated gas lift packer 100 to be respectively positioned above and below the punched hole; the delayed initiation device 300 continues to deliver combustion during this operation, giving the riser string sufficient time. And then after the combustion path of the delayed initiation device 300 is finished, finally transmitting the combustion to the setting tool 200, wherein the initiating explosive device in the setting tool 200 explodes to push the isolated gas lift packer 100 to realize setting, and after the setting is finished, the pressure of the setting tool 200 continuously increases to drive the releasing structure to separate from the set isolated gas lift packer 100. The remaining strings are then retrieved using the cable and the isolated gas lift packer 100 can be installed in a particular location.
The two sealing rubber cylinders of the isolated gas lift packer 100 seal the perforation to form an annular space, and the annular space is communicated with the inside of the central tube through a channel formed in the side wall of the central tube. The one-way valve disposed at the passage allows fluid to enter the central tube only from the annular space, but does not allow fluid in the central tube to enter the annular space. Gas is injected from the annular space, enters the annular space from the perforation and then enters the central tube, and then liquid above the channel is discharged in a gas lift mode, so that the gas well is recovered to the pressure capable of continuing production. During production, the check valve can avoid fluid leakage, and then guarantee the normal clear of production. When the liquid level of the accumulated water in the continuous production zone rises to influence normal production, the liquid can be discharged in a gas lift mode, and the continuous production zone is very convenient.
The safety ignition head 500 may adopt the existing ignition head structure, all of which are within the scope of the present invention, as an improved solution: as shown in fig. 4, the safety ignition head 500 comprises a housing cylinder a501, wherein a spring contact 502 is mounted at the upper end of the housing cylinder a501, and the spring contact 502 is connected with the housing cylinder a501 in an insulated manner; the lower end of the shell cylinder a501 is provided with an ignition detonator 503, and two poles of the ignition detonator 503 are respectively connected with the spring contact 502 and the shell cylinder a 501; the housing cylinder a501 is made of conductive material. When installed, the spring contact 502 is electrically connected to the hot wire of the cable and the housing barrel a501 is electrically connected to the neutral wire of the cable. In ground operation, an electric signal is given through the cable so as to control the detonation detonator 503 to explode, generate high temperature and high pressure and transmit the high temperature and high pressure to the punching gun 400 connected below.
The punch gun 400 may adopt the existing structure of the punch gun, and is within the scope of the present invention as an improved solution: as shown in fig. 5, the punch gun 40 includes a housing cylinder b401, an upper end of the housing cylinder b401 being connected to a lower end of the housing cylinder a 501; the middle part of the shell cylinder b401 is provided with a punching bullet 402; the two ends of the shell barrel b401 are respectively provided with a booster 403, the two booster 403 are connected through a detonating cord 404, and the booster 403 at the upper end is connected with a detonating detonator 503; the punch projectile 402 is connected to a detonating cord 404. When the detonating primer 503 of the safety firing head 500 is exploded, the booster 403 at the upper end of the housing tube b401 is ignited, and then the booster 403 transmits combustion to the detonating cord 404, the detonating cord 404 is rapidly burned, and the combustion is instantaneously transmitted to the piercing shell 402 and the booster 403 at the lower end. Almost at the same time of punching the hole by the punching bomb 402, the booster 403 transmits the blast shock wave to the delayed initiation device 300 below, thereby avoiding the transmission of burning and explosion by flooding water after the shell barrel b401 is damaged by the punching bomb 402.
As shown in fig. 5, a punch gun 400 is a preferred embodiment, in order to make the operation of the punch bomb 402 more stable and accurate, the emission end of the punch bomb 402 is perpendicular to the wall of the housing tube b401, the housing tube b401 is provided with a punch wall 405 adapted to the punch bomb 402, and the punch size is larger than 8 mm.
As shown in fig. 5, in order to ensure the success rate of punching and the smoothness of punching, the punching gun 400 is a preferred embodiment, and there are two punching bullets 402, the phase angle of the two punching bullets 402 is set to be 180 °, the two punching bullets 402 are spaced in the axial direction of the housing barrel b401, and the specific arrangement hole density is 13 holes/meter. Of course, when installing the isolated gas lift packer 100, both of the perforations need to be located between the two packing elements.
The delayed initiation device 300 may adopt an existing delayed initiation device, all of which are within the scope of the present invention, as an improved solution: as shown in fig. 6, the delayed initiation device 300 comprises an outer casing c301, wherein the upper end of the outer casing c301 is connected with the lower end of an outer casing b 401; the upper end of the outer shell cylinder c301 is provided with a clapboard detonating device 302 connected with a booster 403 at the lower end of the outer shell cylinder b401, and the lower end of the outer shell cylinder c301 is provided with the booster 403; the combustion transmission device 303 is installed in the outer casing c301, and the partition plate detonator 302 is connected with the booster 403 at the lower end of the outer casing c301 through the combustion transmission device 303. The booster tube 403 at the lower end of the housing barrel b401 transmits the explosion shock wave to the partition plate detonating device 302 of the delay detonating device 300, the partition plate detonating device 302 can select a bridge plug partition plate igniter, the partition plate detonating device 302 continuously transmits the combustion to the combustion transmitting device 303, meanwhile, the sealing performance between the delay detonating device 300 and the punching gun 400 is kept, and water entering the punching gun 400 can be prevented from invading the delay detonating device 300. The combustion transfer device 303 adopts a slow combustion transfer mode to provide sufficient operation time for lifting the tube string, and the specific requirement is 10 minutes, and the front-back error does not exceed 1 minute.
The combustion transfer device 303 may be an existing combustion transfer device, and is within the scope of the present invention as an improved solution: as shown in fig. 6, the combustion transfer device 303 includes a base cylinder 304, a gap is formed between the base cylinder 304 and the outer casing cylinder c301, a fuse 305 is spirally wound on the surface of the base cylinder 304, one end of the fuse 305 is connected to the partition plate initiator 302, and the other end of the fuse 305 is connected to a squib 403 at the lower end of the outer casing cylinder c 301. The spirally wound wick 305 can effectively extend the length of the wick 305 while ensuring stable combustion thereof, thereby controlling the transfer time thereof more precisely.
As shown in fig. 6, in order to increase the operational reliability of the combustion transmission device 303, as a preferred embodiment, a plurality of ignition wires 305 are provided on the surface of a base cylinder 304, the ignition wires 305 are provided in parallel with each other, and the plurality of ignition wires 305 are provided in parallel with each other, whereby the failure rate of the entire combustion transmission device 303 can be significantly reduced.
The setting tool 200 may adopt an existing setting tool, all within the scope of the present invention, as an improved solution: as shown in fig. 7 and 8, the setting tool 200 comprises a housing cylinder d201 and an adapter 207, wherein the upper end of the housing cylinder d201 is connected with the lower end of the housing cylinder c 301; the upper end of the housing cylinder d201 is provided with a clapboard detonating device 302 connected with a booster 403 at the lower end of the housing cylinder c301, similarly, the clapboard detonating device 302 can be a bridge plug clapboard igniter, the clapboard detonating device 302 is connected with a combustion chamber 202 containing initiating explosive devices, the combustion chamber 202 is connected with an upper piston (not shown), and the upper piston is connected with a lower piston 204 through a hydraulic cavity 203. After the initiating explosive device 302 in the combustion chamber 202 is ignited, the initiating explosive device is violently combusted, high pressure is released, the upper piston is pushed to move towards the hydraulic cavity 203, and then the pressure is transmitted to the lower piston 204 through the hydraulic cavity 203. The transmission of hydraulic pressure chamber 203 can reduce the vibration that the inhomogeneous burning of combustion chamber 202 brought, plays the cushioning effect to the transmission of power simultaneously, and then makes the increase of thrust more steady. The lower piston 204 is connected with a transfer plate 205, an axial through groove 206 is formed in the side wall of the outer cylinder d201, the transfer plate 205 extends out of the through groove 206, and the transfer plate 205 can slide in the through groove 206 along the axial direction; the transfer plate 205 is connected to the setting housing of the isolated gas lift packer 100 through the housing 208 of the adapter 207, and the housing barrel d201 is connected to the base pipe of the isolated gas lift packer 100 through the mandrel 209 of the adapter 207. Therefore, in the setting tool 200, the force of the internal combustion pushing the internal components to move is transmitted to the setting housing of the isolated gas lift packer 100 through the transmission plate 205 and the housing 208 of the adapter 207, and the central tube of the isolated gas lift packer 100 is connected with the outer casing d201, so that the relative position of the central tube and the outer casing d201 is kept unchanged, and further, the internal and external conversion of the force transmission is realized, and the setting of the isolated gas lift packer 100 is facilitated. The releasing structure is arranged on a mandrel 209 of the adapter, and after the setting of the isolated gas lift packer 100 is completed, the releasing structure is triggered to release the connection with the isolated gas lift packer 100 along with the further increase of the tension, so that the releasing is realized.
As shown in fig. 7, in order to make the pushing force of the setting tool 200 more smooth when setting, a damping passage 210 is provided in the hydraulic chamber of the setting tool 200. During setting, the upper piston moves towards the hydraulic cavity 203, hydraulic oil in the hydraulic cavity 203 transmits pressure to the lower piston 204 through the damping channel 210, and the damping channel 210 can effectively reduce the flow of the hydraulic oil, buffer the movement of the lower piston 204 and the transmission plate 205, and further provide stable power output for setting of the isolated gas lift packer 100.
As shown in fig. 3, in order to ensure the stability of the installation of the isolation gas lift packer 100, slips 104 are further sleeved on the outer side of the central pipe 101, and when setting is performed, the slips 104 are unfolded to play a role of fixing and supporting the isolation gas lift packer 100, and the sealing rubber barrel 102 mainly plays a role of sealing.
The specific isolated gas lift packer 100 may adopt an existing permanent packer structure or a detachable packer structure, and a channel for communicating the inside and the outside of the central tube 101 needs to be formed on the side wall of the central tube, the channel is located between two adjacent sealing rubber cylinders, the channel is provided with a check valve 103, and the check valve 103 is arranged to allow fluid to flow out of the central tube into the central tube, which is within the scope of the present invention as an improved solution: as shown in fig. 3, the isolated gas lift packer 100 includes a central tube 101, and an upper push cylinder 105, an upper sealing rubber cylinder, a middle push cylinder 106, a lower sealing rubber cylinder, a lower push cylinder 108 and slips 104 are sequentially sleeved on the outer side of the central tube 101 from top to bottom. The side wall of the central tube 101 is provided with a channel for communicating the inside and outside of the central tube, the channel is positioned between two adjacent packing rubber cylinders 102, the channel is provided with a one-way valve 103, and the one-way valve 103 is arranged to allow fluid to flow out of the central tube into the central tube. An axial through groove 107 is formed in the middle push cylinder 106, the check valve 103 is installed in the through groove 107, and when the middle push cylinder 106 slides along the central tube 101, the middle push cylinder 106 and the check valve 103 are avoided through the through groove 107. The lower ends of the slips 104 are connected to the base pipe 101 by slip bowl. The upper end of the central tube 101 is connected to the release structure of the mandrel 209 and the upper end of the push-up barrel 105 is docked to the housing 208 of the adapter 207. When setting, the central pipe 101 is fixed, the outer shell 208 pushes the upper push cylinder 105 to slide downwards, the slips 104 are squeezed out and spread out to realize fixing through the transmission of the middle push cylinder 106 and the lower push cylinder 108, and meanwhile, the sealing rubber cylinder 102 is squeezed out and expanded to realize sealing. A ratchet structure is arranged between the upper push barrel 105 and the central tube 101, and the upper push barrel 105 cannot slide upwards after sliding downwards relative to the central tube 101, so that the upper push barrel is locked automatically after being seated.
The structure of the check valve 103 may adopt the existing check valve, and is within the scope of the present invention as an improved solution: as shown in fig. 9, the check valve 103 includes a valve body 109, a return spring 110, and a sealing plug 111. The valve body 109 is provided with a first passage 112 and a second passage 113 which are perpendicular to each other, the first passage 112 and the second passage 113 are respectively communicated with the valve cavity, the first passage 112 is connected with the outside of the central tube 101, and the second passage 113 is connected with the inside of the central tube 101. The return spring 110 and the sealing plug 111 are arranged in the valve cavity, the return spring 110 and the sealing plug 111 are arranged coaxially with the first passage 112, the return spring 110 presses the sealing plug 111 on the first passage 112 to realize sealing, and the second passage 113 is communicated with the side wall of the valve cavity. When the gas is lifted, the pressure at the first passage 112 is greater than the pressure at the second passage 113 plus the pressure of the return spring 110, so that the sealing plug 111 moves upwards, and the first passage 112 and the second passage 113 are communicated, so that high-pressure gas can enter the central tube 101. In production, the pressure at the second passage 113 is greater than the pressure at the first passage 112, further pressing the sealing plug 111 against the first passage 112 can enhance the seal.

Claims (9)

1. The utility model provides an isolated gas lift drainage method, gets rid of interior hydrops through isolated gas lift drainage gas production pipe cluster, alleviates hydrops pressure, resumes gas well production, isolated gas lift drainage gas production pipe cluster is including isolated gas lift packer, seat and seals instrument, starting drive and the rifle that punches a hole, its characterized in that: the gas lift drainage method comprises the following steps:
s1, assembling and installing the pipe string; sequentially connecting a first starting device, a punching gun (400), a second starting device and an isolated gas lift packer (100), wherein the second starting device is connected with the isolated gas lift packer (100) through a releasing structure;
s2, punching a well; the punching gun (400) is positioned above the isolated gas lift packer (100), the installation pipe string is lowered to a specified position from the production well pipe, and the punching gun (400) is controlled by the first starting device to punch a hole on the production well pipe;
s3, lifting up and setting; lifting the installation pipe string, moving the isolated gas lift packer (100) up to a punching position, and controlling the isolated gas lift packer (100) to be set through a second starting device;
s4, lifting the releasing part, setting and then realizing the releasing part, and recovering the first starting device, the punching gun (400) and the second starting device to complete installation;
s5, injecting high-pressure gas into the installation pipe string, enabling the high-pressure gas to enter an annular space closed by the isolation type gas lift packer (100), pressurizing accumulated liquid through the high-pressure gas, and discharging the accumulated liquid in the sub-micron isolation type gas lift packer (100) outwards.
2. An isolated gas lift drainage method according to claim 1, wherein: the first starting device and the second starting device are both cable-controlled safety ignition heads (500).
3. An isolated gas lift drainage method according to claim 1, wherein: the first starting device is a cable-controlled safety ignition head (500); the second starting device is a time delay detonating device (300), and the time delay detonating device (300) is connected with the punching gun (400).
4. An isolated gas lift drainage method according to claim 1, wherein: the installation pipe string comprises an isolated gas lift packer (100), a second starting device, a punching gun (400) and a safe ignition head (500); the isolated gas lift packer (100) comprises a central pipe (101), and at least two sealing rubber cylinders (102) are sleeved on the outer side of the central pipe (101); the side wall of the central pipe (101) is provided with a channel for conducting the inside and the outside of the central pipe, the channel is positioned between two adjacent sealing rubber cylinders (102), the channel is provided with a one-way valve (103), and the one-way valve (103) is arranged to allow fluid to flow out of the central pipe (101) into the central pipe (101); the second starting device comprises a setting tool (200) and a delayed detonation device (300), and the lower end of the setting tool (200) is detachably connected with the upper end of the isolated gas lift packer (100) through a releasing structure; the lower end of the delay detonating device (300) is connected with the upper end of the setting tool (200); the lower end of the punching gun (400) is connected with the upper end of the delayed initiation device (300); the lower end of the safety ignition head (500) is connected with the upper end of the punching gun (400).
5. An isolated gas lift drainage method according to claim 4, wherein: the safety ignition head (500) comprises a shell barrel a (501), a spring contact (502) is mounted at the upper end of the shell barrel a (501), and the spring contact (502) is connected with the shell barrel a (501) in an insulating mode; the lower end of the shell cylinder a (501) is provided with an ignition detonator (503), and two poles of the ignition detonator (503) are respectively connected with the spring contact (502) and the shell cylinder a (501); the shell cylinder a (501) is made of conductive materials.
6. An isolated gas lift drainage method according to claim 5, wherein: the punching gun (400) comprises a shell cylinder b (401), wherein the upper end of the shell cylinder b (401) is connected with the lower end of a shell cylinder a (501); the middle part of the shell cylinder b (401) is provided with a punching bullet (402); two ends of the outer shell barrel b (401) are respectively provided with a booster (403), the two booster (403) are connected through a detonating cord (404), and the booster (403) at the upper end is connected with a detonating detonator (503); the punch bomb (402) is connected with a detonating cord (404).
7. An isolated gas lift drainage method according to claim 4, wherein: the delayed initiation device (300) comprises a shell cylinder c (301), and the upper end of the shell cylinder c (301) is connected with the lower end of a shell cylinder b (401); a partition board detonating device (302) connected with a booster tube (403) at the lower end of the outer shell cylinder b (401) is mounted at the upper end of the outer shell cylinder c (301), and a booster tube (403) is mounted at the lower end of the outer shell cylinder c (301); and a combustion transmission device (303) is installed in the outer shell cylinder c (301), and the clapboard detonating device (302) is connected with a booster tube (403) at the lower end of the outer shell cylinder c (301) through the combustion transmission device (303).
8. An isolated gas lift drainage method according to claim 7, wherein: the setting tool (200) comprises a shell cylinder d (201) and an adapter (207), and the upper end of the shell cylinder d (201) is connected with the lower end of the shell cylinder c (301); the upper end of the outer shell cylinder d (201) is provided with a partition plate detonating device (302) connected with a booster tube (403) at the lower end of the outer shell cylinder c (301), the partition plate detonating device (302) is connected with a combustion chamber (202) in which initiating explosive devices are stored, the combustion chamber (202) is connected with an upper piston, the upper piston is connected with a lower piston (204) through a hydraulic cavity (203), the lower piston (204) is connected with a transfer plate (205), the side wall of the outer shell cylinder d (201) is provided with an axial through groove, and the transfer plate (205) extends out of the through groove; the transmission plate element (205) is connected with a setting shell (208) of the isolation type gas lift packer (100) through a shell (208) of an adapter (207), the shell cylinder d (201) is connected with a central pipe (101) of the isolation type gas lift packer (100) through a mandrel (209) of the adapter (207), and the releasing structure is arranged on the mandrel (209) of the adapter (207).
9. An isolated gas lift drainage method according to claim 7, wherein: the hydraulic chamber (203) is provided with a damping channel (210).
CN201910872159.5A 2019-09-16 2019-09-16 Isolated gas lift drainage method Active CN110630226B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910872159.5A CN110630226B (en) 2019-09-16 2019-09-16 Isolated gas lift drainage method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910872159.5A CN110630226B (en) 2019-09-16 2019-09-16 Isolated gas lift drainage method

Publications (2)

Publication Number Publication Date
CN110630226A true CN110630226A (en) 2019-12-31
CN110630226B CN110630226B (en) 2020-05-01

Family

ID=68971356

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910872159.5A Active CN110630226B (en) 2019-09-16 2019-09-16 Isolated gas lift drainage method

Country Status (1)

Country Link
CN (1) CN110630226B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180156021A1 (en) * 2016-12-06 2018-06-07 Saudi Arabian Oil Company System and Method For Removing Sand From a Wellbore
CN108252685A (en) * 2016-12-28 2018-07-06 中国石油天然气股份有限公司 A kind of extension gas lift method of permanent type completion tubular column
CN108457601A (en) * 2018-04-10 2018-08-28 山东普瑞思德石油技术有限公司 Gas-lift production one plows completion tubular column and technique
CN207795072U (en) * 2017-12-28 2018-08-31 中国石油天然气股份有限公司 A kind of perforation-test-gas lift liquid drainage axle-linked cable-car

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180156021A1 (en) * 2016-12-06 2018-06-07 Saudi Arabian Oil Company System and Method For Removing Sand From a Wellbore
CN108252685A (en) * 2016-12-28 2018-07-06 中国石油天然气股份有限公司 A kind of extension gas lift method of permanent type completion tubular column
CN207795072U (en) * 2017-12-28 2018-08-31 中国石油天然气股份有限公司 A kind of perforation-test-gas lift liquid drainage axle-linked cable-car
CN108457601A (en) * 2018-04-10 2018-08-28 山东普瑞思德石油技术有限公司 Gas-lift production one plows completion tubular column and technique

Also Published As

Publication number Publication date
CN110630226B (en) 2020-05-01

Similar Documents

Publication Publication Date Title
US11719078B2 (en) Directly initiated addressable power charge
CN101389826B (en) Apparatus and method for selective actuation of downhole tools
US8061431B2 (en) Method of operating a pressure cycle operated perforating firing head and generating electricity in a subterranean well
US5551520A (en) Dual redundant detonating system for oil well perforators
US3011551A (en) Fracturing gun
EA036655B1 (en) Firing mechanism with time delay and metering system
US11078738B2 (en) Hydraulically activated setting tool and method
CN115234207B (en) Methane in-situ combustion and explosion fracturing method considering shaft liquid discharge
US11639637B2 (en) System and method for centralizing a tool in a wellbore
CN110608018B (en) Isolated gas lift drainage gas production pipe string
CN110630226B (en) Isolated gas lift drainage method
CN115234202B (en) Full-flow circulating type continuous oil pipe multistage perforation method
US11634957B2 (en) Perforating gun brake and set device and method
US2396768A (en) Firing mechanism for well shooting guns
CA3035816C (en) Hydraulically activated setting tool and method
CN115341873A (en) Toe end sliding sleeve with perforation function and construction method thereof
SU202822A1 (en)
AU2015203768A1 (en) Pressure cycle operated perforating firing head

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200911

Address after: Intercontinental building, 16 ande Road, Dongcheng District, Beijing

Co-patentee after: SICHUAN SHENGNUO OIL AND GAS ENGINEERING TECHNOLOGY SERVICE Co.,Ltd.

Patentee after: PetroChina Co.,Ltd.

Address before: 618300 south section 3, Zhongshan Avenue, Guanghan City, Deyang City, Sichuan Province

Co-patentee before: SICHUAN SHENGNUO OIL AND GAS ENGINEERING TECHNOLOGY SERVICE Co.,Ltd.

Patentee before: CHINA NATIONAL PETROLEUM CORPORATION, SOUTHWEST OIL & GASFIELD BRANCH, ENGINEERING TECHNOLOGY Research Institute

TR01 Transfer of patent right