CN110629154A - 一种FeCrMnBC基经济耐磨耐腐蚀涂层的制备方法 - Google Patents

一种FeCrMnBC基经济耐磨耐腐蚀涂层的制备方法 Download PDF

Info

Publication number
CN110629154A
CN110629154A CN201911035860.8A CN201911035860A CN110629154A CN 110629154 A CN110629154 A CN 110629154A CN 201911035860 A CN201911035860 A CN 201911035860A CN 110629154 A CN110629154 A CN 110629154A
Authority
CN
China
Prior art keywords
coating
wear
corrosion
resistant
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201911035860.8A
Other languages
English (en)
Inventor
魏仕勇
张友亮
付青峰
谌昀
金莹
万珍珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Applied Physics of Jiangxi Academy of Sciences
Original Assignee
Institute of Applied Physics of Jiangxi Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Applied Physics of Jiangxi Academy of Sciences filed Critical Institute of Applied Physics of Jiangxi Academy of Sciences
Priority to CN201911035860.8A priority Critical patent/CN110629154A/zh
Publication of CN110629154A publication Critical patent/CN110629154A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/067Metallic material containing free particles of non-metal elements, e.g. carbon, silicon, boron, phosphorus or arsenic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

铁基涂料的主要优点是成本低、环保性能好。在本发明中,开发了一种基于FeCrMnBC合金的非常经济的涂层***,它只包含经济上有利的元素。涂层生产使用喷粉的粒度分布为‑90+45 μm,喷涂设备为三元阴极等离子发生器Triplexprotm–210,通过评估的组织,硬度、磨损和耐蚀性表明,涂层具有致密的层状组织,显微硬度值大于HV0.1=600。盐雾试验证实,与等离子喷涂的316 L不锈钢涂层相比,涂层的耐磨性显著提高。由于具有较高的耐磨性、较好的腐蚀性和较低的材料成本,这种新的涂层***可以作为传统不锈钢涂层的更经济的替代品,以保护碳钢或者铸铁部件免受磨损和腐蚀。

Description

一种FeCrMnBC基经济耐磨耐腐蚀涂层的制备方法
技术领域
本发明涉及一种经济廉价的FeCrMnBC基耐磨耐腐蚀涂层的制备方法,具体涉及一种在金属表面采用等离子喷涂的手段获取一种经济型耐磨耐腐蚀铁基涂层的方法。
背景技术
铁基涂层通常可以通过等离子喷涂、高速氧燃料喷涂和电弧喷涂来制备。比如AISI 316 L和AISI 431的不锈钢涂层通常用于保护碳钢部件免受腐蚀和磨损。AISI 316 L涂层硬度相对较低。据报道,等离子喷涂的AISI 316 L涂层硬度为HV=241-262。因此,AISI316 L涂层的耐磨性能不是很好。AISI 431涂层比AISI 316 L涂层更硬。显微硬度测量表明,AISI 431涂层的马氏体基体中HV=422。对于散装材料,AISI 431涂层由于其化学成分比AISI 316 L涂层耐腐蚀性更低。近年来,随着高压喷涂和高速空气-燃料(HVAF)喷涂技术的发展,具有增强耐磨性和耐腐蚀性的铁基涂料得到了发展。这些涂层的高耐磨性主要归因于析出的硬质颗粒,如硼化物或其非晶/纳米晶的微观结构。这些涂层的高铬含量提供了所需的耐腐蚀性,部分借助于额外的合金元素,如钼和镍。与传统的不锈钢涂层相比,这些涂层的成本更高,因为它们的材料成本更高,工艺更昂贵。由于这些涂层已被开发用于HVOF和HVAF喷涂,它们在等离子喷涂中的适用性还没有得到深入的研究。据报道,当使用大气等离子喷涂(APS)工艺喷涂时,这些涂层的裂纹敏感性增加。
本发明提出了一种经济型合金FeCr25Mn10BC(简称FeCrMnBC)涂层的制备方法,该合金专为等离子喷涂设计。由于这种合金不包含成本较高的合金元素,如镍和钼,因此它的成本更便宜。FeCr25Mn10BC涂层的耐腐蚀性与316 L涂层的相当,但耐磨性明显更好。测试的空化和侵蚀测试结果表明,FeCrMnBC涂层可以作为改善含腐蚀性介质中提高泵部件耐腐蚀性能的良好候选材料。该涂层是用粉末大小分布为-90 +45μm,由三元阴极等离子发生器TriplexPro™-210制备出来。在制备过程中较高的颗粒速度下,导致了较致密的微观结构和较低的氧化物夹杂。同时在这项发明中,在大气等离子喷涂过程中,可以实现低速粒子喷涂下获得高磨损和耐腐蚀涂层。
附图说明
图1:喷雾粉末的背散射电子(BSE) 扫描电镜(SEM)显微图。
图2:涂层的横截面的BSE-SEM显微图。
图3:x射线衍射模式的涂层相比图。
图4:电子探针微量分析仪(EPMA)测定的硼在涂层中的分布。
图5:FeCr25Mn10BC涂层的摩擦系数和316 L涂层对比。
图6: CSLM对316 L涂层磨损轨迹的显微图像。
图7: 316 L涂层的磨损轨迹的BSE - SEM显微图。
图8:使用CSLM对FeCr25Mn10BC涂层磨损轨迹的一段显微图像。
图9: FeCr25MnBC涂层磨损轨迹的BSE-SEM显微图。
图10:盐雾试验t=30 h和t=120 h后的316 L涂层表面。
图11:盐雾试验t=30 h、t=120 h、t=320 h后的FeCrMnBC涂层表面。
图12:316 L涂层t = 120 h后盐雾试验横截面的显微图。
图13:FeCr25Mn10BC涂层t = 320 h后盐雾试验横截面的显微照片。
具体实施方式
粉末的化学成分质量分数配比为Crwt%为24.8,Mnwt%为9.3,B+C wt%为1.69(Bwt%:C wt%范围为0.7-1.1之间),其余为Fe,粉体纯度为99.9%,粉体粒径分布范围为-90+ 45μm。高铬含量的25 wt. %被用来提供理想的高耐腐蚀性。利用10wt %的高锰含量,提高了该合金的延性,降低了喷涂过程中氧化铬的消耗。加入1.69 wt. %的硼和碳沉淀硬质颗粒,提高耐磨性。粉末由气体喷雾和空气分离。利用Cu靶的x射线衍射分析相组成,利用Zeiss LED 1530扫描电子显微镜(SEM)观察粉末的形貌(图1)。粉末的粒度分布由颗粒分析***Morphologi G2 测定。以灰色铸铁EN-GJL-250板材为基体样品。利用等离子体发生器TriplexProTM-210对铸铁板进行表面处理。在预制定喷涂参数后,选择喷嘴直径9mm,喷涂电流为360A,氩气等离子气体流速为70SLPM,喷涂距离为100mm的参数(另一可选参数为选择喷嘴直径6.5mm,喷涂电流为300A,氩气等离子气体流速为140SLPM,喷涂距离为100mm),沉积涂层。使用粒子诊断***SprayWatch 4s (芬兰设备)测定了给定喷雾条件下粒子的飞行特性。此外,利用该参数集确定了粉末的沉积效率。
用光学显微镜和扫描电镜研究了涂层的微观结构(图2)。采用JXA-8530F (JOEL,日本)电子探针微量分析仪对涂层中硼的分布进行了评价。采用XRD对涂层的相组成进行了分析(图3)。涂层的显微硬度是用维氏硬度计(德国杜塞尔多夫比勒有限公司)在涂层横截面上施加F=0.98N的载荷来测量的。根据公式KIC=0.015·(E/H)1/2·(P/C3/2) (E:杨氏模量,H:维氏硬度,P:载荷,C:裂纹长度)确定涂层的断裂韧性。在本发明中,杨氏模量是通过涂层的压痕模量来估算的。压痕模量是通过使用Fischerscope HM2000(德国设备)进行压痕试验确定的。用维氏硬度计对F=19.6 N载荷下的维氏硬度进行了测试,以形成带有裂纹的压痕。该涂层的孔隙度是由德国耶拿公司(Carl Zeiss Jena GmbH)的AxioVision图像分析***在涂层截面上确定的。采用载气热萃取法测定了涂层中的氧含量。
采用德国弗莱堡CSM公司的摩擦计对涂层和参考涂层(316L不锈钢涂层)的磨损性能进行了比较(图5-图9)。试验是在室温下进行的,没有添加润滑剂。氧化铝球直径Ø= 6毫米被用作计数器的身体为了检查耐磨性。由于氧化铝球的硬度明显高于涂层,因此可以很好地评价涂层的耐磨性。正常荷载为F= 2N,滑动速度为v= 100mm /s。滑动距离为500米。涂层表面在使用1200目的研磨纸进行测试之前进行了抛光,以提供类似的表面形貌。体积损失由德国Keyence Deutschland公司的共焦激光扫描显微镜(CLSM) VK-X210测定。利用扫描电镜对磨损轨迹进行了研究,并对磨损轨迹上选定的位置进行了能谱分析 采用iso9000质量管理体系的盐雾试验,对涂层与316L标准涂层的腐蚀行为进行了比较(图10-图13)。

Claims (5)

1.一种FeCrMnBC基经济耐磨耐腐蚀涂层的制备方法,采用的是三元阴极等离子喷涂设备将Fe,Mn,Cr,B,和C五种单质粉体颗粒按照相应的质量分数配比混合,在打磨后的光滑基体表面喷射出一层耐磨和耐腐蚀的致密性涂层的技术。
2.根据权利要求1所述的粉体颗粒,其质量分数配比为Crwt%为24.8,Mnwt%为9.3,B+Cwt%为1.69(Bwt%:C wt%范围为0.7-1.1之间),其余为Fe,粉体纯度为99.9%,粉体粒径分布范围为-90 + 45μm。
3.根据权利要求1所述的三元阴极等离子喷涂设备,其设备型号参数为TriplexproTM– 210,喷嘴直径可选9mm,和6.5mm,喷涂电流为360和300A,氩气等离子气体流速为70和140SLPM,粉体颗粒喷射速度为121±21 m/s,较高的颗粒冲击速度可以明显产生较致密的微观结构和较低的氧化物夹杂,喷涂距离为100mm。
4.根据权利要求1所述的涂层,其耐磨耐腐蚀原理在于高铬含量25 wt. %被用来提供理想的高耐腐蚀性,利用10wt . %左右的高锰含量,提高了该合金涂层的延性,降低了喷涂过程中氧化铬的消耗,加入1.69 wt. %的硼和碳沉淀硬质颗粒,提高耐磨性。
5.根据权利要求1所述的打磨后的光滑基体,其表面粗糙度应在50-200目之间,过于粗糙达不到涂层附着后致密性达不到要求,过于光滑,涂层与基体之间的结合力降低。
CN201911035860.8A 2019-10-29 2019-10-29 一种FeCrMnBC基经济耐磨耐腐蚀涂层的制备方法 Withdrawn CN110629154A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911035860.8A CN110629154A (zh) 2019-10-29 2019-10-29 一种FeCrMnBC基经济耐磨耐腐蚀涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911035860.8A CN110629154A (zh) 2019-10-29 2019-10-29 一种FeCrMnBC基经济耐磨耐腐蚀涂层的制备方法

Publications (1)

Publication Number Publication Date
CN110629154A true CN110629154A (zh) 2019-12-31

Family

ID=68978164

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911035860.8A Withdrawn CN110629154A (zh) 2019-10-29 2019-10-29 一种FeCrMnBC基经济耐磨耐腐蚀涂层的制备方法

Country Status (1)

Country Link
CN (1) CN110629154A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101698940A (zh) * 2009-10-21 2010-04-28 河海大学 高抗汽蚀性复合覆层及其制备方法
JP2011117079A (ja) * 2009-12-03 2011-06-16 Sulzer Metco Ag 噴霧材料、熱噴霧層、並びに熱噴霧層を備えたシリンダ
CN102586716A (zh) * 2012-04-06 2012-07-18 天津大学 一种用于热作模具钢表面强化的耐磨金属陶瓷涂层及其制备方法
CN104313531A (zh) * 2014-11-04 2015-01-28 长安大学 一种锅炉管束用耐蚀耐磨铁基非晶涂层的制备方法
JP2017514992A (ja) * 2014-03-11 2017-06-08 ダイムラー・アクチェンゲゼルシャフトDaimler AG 鉄合金組成物から成るブレーキディスク被覆及びその製造方法
CN109468569A (zh) * 2018-12-29 2019-03-15 宝鸡市金得利新材料有限公司 一种耐磨耐腐蚀合金涂层及制备涂层的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101698940A (zh) * 2009-10-21 2010-04-28 河海大学 高抗汽蚀性复合覆层及其制备方法
JP2011117079A (ja) * 2009-12-03 2011-06-16 Sulzer Metco Ag 噴霧材料、熱噴霧層、並びに熱噴霧層を備えたシリンダ
CN102586716A (zh) * 2012-04-06 2012-07-18 天津大学 一种用于热作模具钢表面强化的耐磨金属陶瓷涂层及其制备方法
JP2017514992A (ja) * 2014-03-11 2017-06-08 ダイムラー・アクチェンゲゼルシャフトDaimler AG 鉄合金組成物から成るブレーキディスク被覆及びその製造方法
CN104313531A (zh) * 2014-11-04 2015-01-28 长安大学 一种锅炉管束用耐蚀耐磨铁基非晶涂层的制备方法
CN109468569A (zh) * 2018-12-29 2019-03-15 宝鸡市金得利新材料有限公司 一种耐磨耐腐蚀合金涂层及制备涂层的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KIRSTEN BOBZIN等: ""Development of a FeCrMnBC-based economical wear and corrosion resistant Coating "", 《SURFACE & COATINGS TECHNOLOGY》 *
KIRSTEN BOBZIN等: ""Novel Fe-based wear and corrosion resistant coatings by three-cathode plasma technology"", 《SURFACE & COATINGS TECHNOLOGY》 *

Similar Documents

Publication Publication Date Title
Wang et al. Wear, erosion and corrosion resistance of HVOF-sprayed WC and Cr3C2 based coatings for electrolytic hard chrome replacement
Hong et al. Synergistic effect of ultrasonic cavitation erosion and corrosion of WC–CoCr and FeCrSiBMn coatings prepared by HVOF spraying
Ludwig et al. WC10Co4Cr coatings deposited by HVOF on martensitic stainless steel for use in hydraulic turbines: Resistance to corrosion and slurry erosion
Singh et al. An erosion and corrosion study on thermally sprayed WC-Co-Cr powder synergized with Mo2C/Y2O3/ZrO2 feedstock powders
Chen et al. Effect of induction remelting on the microstructure and properties of in situ TiN-reinforced NiCrBSi composite coatings
Redjdal et al. Characterization of thermal flame sprayed coatings prepared from FeCr mechanically milled powder
Lin et al. Evaluation of cavitation erosion resistance of arc-sprayed Fe-based amorphous/nanocrystalline coatings in NaCl solution
Zhang et al. A comparative study of cavitation erosion resistance of several HVOF-sprayed coatings in deionized water and artificial seawater
Ding et al. Microstructure and performance of multi-dimensional WC-CoCr coating sprayed by HVOF
Hou et al. Cavitation erosion mechanisms in Co-based coatings exposed to seawater
Liu et al. Performance analysis of cavitation erosion resistance and corrosion behavior of HVOF-sprayed WC-10Co-4Cr, WC-12Co, and Cr 3 C 2-NiCr coatings
Cinca et al. Study of stellite-6 deposition by cold gas spraying
Zhou et al. Corrosion behavior of HVOF sprayed WC-10Co4Cr coatings in the simulated seawater drilling fluid under the high pressure
Goyal et al. Mechanical and microstructural properties of carbon nanotubes reinforced chromium oxide coated boiler steel
CN107937857B (zh) 一种7075铝合金表面防腐蚀耐磨复合涂层及其制备方法
Babu et al. Enhanced slurry and cavitation erosion resistance of deep cryogenically treated thermal spray coatings for hydroturbine applications
Surzhenkov et al. Sliding wear of TiC-NiMo and Cr^ sub 3^ C^ sub 2^-Ni cermet particles reinforced FeCrSiB matrix HVOF sprayed coatings
Chen et al. Microstructure and properties of TiB2–Ni coatings with different binder phase contents deposited by HVOF spray process
Hailang et al. Surface microstructure and anti-wear of WC-CoCr coatings cladded by electron beam
Marginean et al. Microstructure refinement and alloying of WC–CoCr coatings by electron beam treatment
Wang et al. Characterization and wear behavior of WC-0.8 Co coating on cast steel rolls by electro-spark deposition
Mahesh et al. Microstructural characterization and hardness evaluation of HVOF sprayed Ni–5Al coatings on Ni-and Fe-based superalloys
Zheng et al. Experimental study on the wear behavior of HVOF sprayed nickel-based coating
Poshtahani et al. Plasma nitriding effect on tribological and corrosion properties of Stellite 6 and 12 PTA weld clad hardfaced on stainless steel 410
CN110629154A (zh) 一种FeCrMnBC基经济耐磨耐腐蚀涂层的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20191231