CN110596644A - 一种使用移动环形传声器阵列的声源定位方法及*** - Google Patents

一种使用移动环形传声器阵列的声源定位方法及*** Download PDF

Info

Publication number
CN110596644A
CN110596644A CN201910905051.1A CN201910905051A CN110596644A CN 110596644 A CN110596644 A CN 110596644A CN 201910905051 A CN201910905051 A CN 201910905051A CN 110596644 A CN110596644 A CN 110596644A
Authority
CN
China
Prior art keywords
sound field
global
array
estimating
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910905051.1A
Other languages
English (en)
Other versions
CN110596644B (zh
Inventor
韩欣宇
吴鸣
韩泽瑞
杨军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Acoustics CAS
Original Assignee
Institute of Acoustics CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Acoustics CAS filed Critical Institute of Acoustics CAS
Priority to CN201910905051.1A priority Critical patent/CN110596644B/zh
Publication of CN110596644A publication Critical patent/CN110596644A/zh
Application granted granted Critical
Publication of CN110596644B publication Critical patent/CN110596644B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/20Position of source determined by a plurality of spaced direction-finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/28Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves by co-ordinating position lines of different shape, e.g. hyperbolic, circular, elliptical or radial

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本发明公开了一种使用移动环形传声器阵列的声源定位方法,该方法通过一个环形传声器阵列实现,该阵列的传声器个数为M,阵列与地面平行放置;所述方法包括:将环形阵列的中心移动至Q个不同的空间位置,高度不发生变化;获取在第q个空间位置第m个传声器采集到的频率分离信号;根据M个频率分离信号估计每个空间位置的局部声场系数;利用声场系数的空间变换关系,根据获得的局部声场系数估计各频率点的全局声场系数;根据获得的全局声场系数估计声源方位。本发明的方法通过移动一个环形传声器阵列,在远大于阵列孔径的空间范围内充分地采集声场信息,从而提高声源定位的性能。

Description

一种使用移动环形传声器阵列的声源定位方法及***
技术领域
本发明涉及阵列信号处理领域,特别涉及一种使用移动环形传声器阵列的声源定位方法及***。
背景技术
声源定位在智能音箱、机器人、视频会议和安防等领域有着广泛应用。传统的阵元域声源定位方法分为间接和直接法两类。间接法首先计算声源到各阵元的相对时间延迟,然后根据阵列的几何形状来确定声源方位;直接法则需要计算一系列候选方位上的损失函数,据此估计最有可能的方位,根据损失函数可以分为可控响应功率法,最大似然方法和子空间类方法。
与阵元域方法的直接处理传声器数据不同,空间谐波域方法先对数据做空间谐波分解,在补偿频率依赖项之后,再对空间谐波域的数据进行处理。空间谐波域的导向矢量具有频率无关特性,这一特性能够简化频率聚焦操作(空间谐波域的聚焦可以通过样本协方差矩阵求和平均实现),也能够实现低频的高分辨特性。
空间谐波域的方法目前可以用于两类的阵型结构:球形阵列和环形阵列,分别对应球谐波域和圆谐波域。本发明的声源定位方法属于圆谐波域方法。
圆谐波域声源定位方法的分辨率和鲁棒性受限于环形阵列的尺寸和阵元数量。增加阵列的尺寸和阵元数量能够有效的提高声源定位性能,但是这样做会导致:贝塞尔零点问题恶化、成本提高和***庞大笨重。因此,如何用小孔径和少阵元的环形阵列实现高性能的声源定位,是一个重要的问题。
发明内容
本发明的目的在于解决上述问题,提出一种使用移动环形传声器阵列的声源定位方法,该方法能够用极大地提升声源定位性能。
为实现上述发明目的,本发明提出一种使用移动环形传声器阵列的声源定位方法,该方法通过一个环形传声器阵列实现,该阵列的传声器个数为M,阵列与地面平行放置;所述方法包括:
将环形阵列的中心移动至Q个不同的空间位置,高度不发生变化;获取在第q个空间位置第m个传声器采集到的频率分离信号;
根据M个频率分离信号估计每个空间位置的局部声场系数;
利用声场系数的空间变换关系,根据获得的局部声场系数估计各频率点的全局声场系数;
根据获得的全局声场系数估计声源方位。
作为上述方法的一种改进,所述根据M个频率分离信号估计每个空间位置的局部声场系数,具体包括:
步骤2-1)将频率分离信号Xq,m(k)表示为圆谐波展开的形式:
其中,k=2πf/c为波数,f为频率,c为声速,αq,n(k)为第q个空间位置的n阶声场系数,Jn为n阶第一类贝塞尔函数,e为自然底数,第m个传声器相对于第q个空间位置的极坐标表示为(r,φq,m);传声器位于半经为r的圆上;
则Xq,m(k)截断为:
当截断阶次满足时,上式的截断误差小于16.1%;
步骤2-2)构造变换矩阵Bq(k),q=1,...,Q,将式(2)写成矩阵形式:
xq(k)=Bq(k)αq(k) (3)
其中为第q个空间位置的频域数据快拍;为第q个空间位置的声场系数矢量,变换矩阵具有如下形式:
步骤2-3)估计局部声场系数
使用最小二乘法对式(3)所示的方程进行求解。因此按照式(5)估计局部声场系数:
其中λ1为正则化因子,为单位矩阵。
作为上述方法的一种改进,所述利用声场系数的空间变换关系,根据获得的局部声场系数估计各频率点的全局声场系数;具体包括:
步骤3-1)构建变换矩阵定义一个包含所有空间位置的最小环形区域为全局区域,全局区域的半径用R表示,区域中心即全局坐标原点;将全局声场在全局原点处做圆谐波展开能够得到全局声场系数其与局部声场系数存在如下关系:
其中变换系数具有如下形式:
其中(rqq)是空间位置q相对于全局坐标原点的极坐标表示;将式(7)写成矩阵形式:
α(k)=T(k)β(k)(8)
其中:
步骤3-2)使用最小二乘法求解式(8)能够求得全局声场系数为:
其中λ2为正则化因子,
作为上述方法的一种改进,所述步骤4)具体包括:
步骤4-1)构建全局声场系数的样本协方差矩阵Rβ
其中,K为感兴趣的频率点数目;
步骤4-2)构建与频率无关的加权矢量
步骤4-3)改变加权矢量的指向方向估计方位谱
步骤4-4)将方位谱的峰值所在位置作为声源方位的估计。
本发明还提供了一种使用移动环形传声器阵列的声源定位***,所述***包括:
环形传声器阵列,包括M个传声器;将环形阵列的中心移动至Q个不同的空间位置,高度不发生变化;在第q个空间位置处第m个传声器采集到的时域信号;
短时傅里叶变换模块,用于对时域信号依次进行分帧、加窗和傅里叶变换,得到相应的频率分离信号;
局部声场系数估计模块,用于利用频率分离信号估计局部声场系数;
全局声场系数估计模块,用于利用局部声场系数估计全局声场系数;
声源定位模块,用于根据全局声场系数估计声源方位角。
与现有技术相比,本发明的优点在于:
1、本发明的方法通过移动一个环形传声器阵列,在远大于阵列孔径的空间范围内充分地采集声场信息,从而提高声源定位的性能;
2、本发明的方法具有较强的抗干扰能力,对阵元位置误差稳健;
3、使用本发明的方法,能够实现小孔径传声器阵列的低频高分辨率定位,在实际应用中,成本低、体积小且使用起来灵活方便;
4、本发明的声源定位方法能够实现:在远大于阵列孔径的空间范围内充分地采集声场信息,从而提高声源定位的性能,在低频的定位性能的提升尤为明显。
附图说明
图1为本发明的使用移动环形传声器阵列的结构示意图;
图2为本发明的声源定位***的示意图;
图3为移动环形传声器阵列的三个示例的示意图;
图4为本发明在频率为500Hz的空间谱估计结果示意图;
图5为阵元位置误差对本发明的定位性能的影响的示意图。
具体实施方式
下面结合附图和实施例对本发明进行进一步说明。
实施例1:
本发明的实施例1提出了一种使用移动环形传声器阵列的声源定位方法,具体步骤包括:
步骤1)采集频域分离信号Xq,m(k);包括:
步骤1-1)如图1所示,设置一个环形传声器阵列,传声器个数为M=9,传声器位于半经为r=6cm的圆上,环形阵列与地面平行放置。将环形阵列依次移动至Q个不同的空间位置并进行测量。在第q个空间位置处,第m个传声器处采集到的时域信号为xq,m(t);q=1,...,Q;m=1,...,M;
步骤1-2)对时域信号xq,m(t)依次进行分帧、加窗和傅里叶变换,得到相应的频率分离信号Xq,m(k);
步骤2)估计局部声场系数
步骤2-1)构造变换矩阵Bq(k),q=1,...,Q;
采集到的频率分离信号Xq,m(k)可以表示为圆谐波展开的形式:
其中k=2πf/c为波数,f为频率,c为声速,αq,n(k)为第q个空间位置的n阶声场系数,Jn为n阶第一类贝塞尔函数。如图1所示,(r,φq,m)为第m个传声器相对于空间位置oq的极坐标表示。式(1)可以截断为:
其中截断阶次将式(2)写成矩阵形式:
xq(k)=Bq(k)αq(k),q=1,...,Q (3)
其中为步骤1)在q个空间位置采集到的频率分离信号构成的频域数据快拍,为q个空间位置的局部声场系数矢量,矩阵具有如下形式:
步骤2-2)估计局部声场系数
式(3)描述了Q个最小二乘问题。空间位置q的局部声场系数矢量可以按照式(5)估计得到:
其中λ1为正则化因子,为单位矩阵。
步骤3)估计全局声场系数具体步骤如下:
步骤3-1)构建变换矩阵
如图1所示,全局区域的区域半径为R,区域中心为o。空间位置q的中心为oq,相对于区域中心的极坐标表示为(rqq)。建立局部声场系数与表征全局区域声场特性的全局声场系数β(k)之间的关系:
其中变换系数具有如下形式:
将式(7)写成矩阵形式:
α(k)=T(k)β(k) (8)
其中:
步骤3-2)估计全局声场系数
使用最小二乘法对式(8)进行求解,全局声场系数矢量可以按照式(12)估计得到:
其中λ2为正则化因子,为所述的步骤2)获得的局部声场系数估计值构成的矢量。
步骤4)估计声源方位角;
步骤4-1)按照式(13)构建全局声场系数的样本协方差矩阵
其中K为感兴趣的频率点数目。
步骤4-2)构建与频率无关的加权矢量
步骤4-3)按照式(15)估计方位谱;
步骤4-4)将方位谱的峰值所在位置作为声源方位的估计。
如图2所示,本发明的实施例2提出了一种声源定位***,包括:
环形传声器阵列,包括M个传声器;将环形阵列的中心移动至Q个不同的空间位置,高度不发生变化;在第q个空间位置处第m个传声器采集到的时域信号xq,m(t);
短时傅里叶变换模块101,用于对时域信号xq,m(t)依次进行分帧、加窗和傅里叶变换,得到相应的频率分离信号Xq,m(k);
局部声场系数估计模块102,用于利用频率分离信号估计局部声场系数;
全局声场系数估计模块103,用于利用局部声场系数估计全局声场系数;
声源定位模块104,用于根据全局声场系数估计声源方位角。
假设空间中存在两个相干平面波,频率为500Hz,入射角分别为60°和90°。按照图3所示的三种方式移动环形传声器阵列,移动半径R=66cm,这三种方式分别标记为DUCA-L、DUCA-R和DUCA-C。按照上述实施方式对移动环形传声器阵列采集到的数据进行处理,可得如图4所示的归一化空间谱。可见三种移动方式均可以得到两个可区分的谱峰,这说明该方法定位低频相干信号的优异性能。
在实际应用中,环形传声器阵列相对位置的标定不可避免地存在着误差。假设每次对环形传声器阵列中心位置的标定存在±1cm的随机误差和±5°的旋转误差,归一化空间谱如图5所示。其中“match”表示不存在位置误差的估计结果,“mismatch”表示存在位置误差的估计结果。结果表明:本发明的方法对位置误差时稳健的。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (5)

1.一种使用移动环形传声器阵列的声源定位方法,该方法通过一个环形传声器阵列实现,该阵列的传声器个数为M,阵列与地面平行放置;所述方法包括:
将环形阵列的中心移动至Q个不同的空间位置,高度不发生变化;获取在第q个空间位置第m个传声器采集到的频率分离信号;
根据M个频率分离信号估计每个空间位置的局部声场系数;
利用声场系数的空间变换关系,根据获得的局部声场系数估计各频率点的全局声场系数;
根据获得的全局声场系数估计声源方位。
2.根据权利要求1所述的使用移动环形传声器阵列的声源定位方法,其特征在于,所述根据M个频率分离信号估计每个空间位置的局部声场系数,具体包括:
步骤2-1)将频率分离信号Xq,m(k)表示为圆谐波展开的形式:
其中,k=2πf/c为波数,f为频率,c为声速,αq,n(k)为第q个空间位置的n阶声场系数,Jn为n阶第一类贝塞尔函数,e为自然底数,第m个传声器相对于第q个空间位置的极坐标表示为(r,φq,m);传声器位于半经为r的圆上;
则Xq,m(k)截断为:
当截断阶次满足时,上式的截断误差小于16.1%;
步骤2-2)构造变换矩阵Bq(k),q=1,...,Q,将式(2)写成矩阵形式:
xq(k)=Bq(k)αq(k) (3)
其中为第q个空间位置的频域数据快拍;为第q个空间位置的声场系数矢量,变换矩阵具有如下形式:
步骤2-3)估计局部声场系数
使用最小二乘法对式(3)所示的方程进行求解;因此按照式(5)估计局部声场系数:
其中λ1为正则化因子,为单位矩阵。
3.根据权利要求1所述的使用移动环形传声器阵列的声源定位方法,其特征在于,所述利用声场系数的空间变换关系,根据获得的局部声场系数估计各频率点的全局声场系数;具体包括:
步骤3-1)构建变换矩阵定义一个包含所有空间位置的最小环形区域为全局区域,全局区域的半径用R表示,区域中心即全局坐标原点;将全局声场在全局原点处做圆谐波展开能够得到全局声场系数其与局部声场系数存在如下关系:
其中变换系数具有如下形式:
其中(rqq)是空间位置q相对于全局坐标原点的极坐标表示;将式(7)写成矩阵形式:
α(k)=T(k)β(k) (8)
其中:
步骤3-2)使用最小二乘法求解式(8)能够求得全局声场系数为:
其中λ2为正则化因子,
4.根据权利要求1所述的使用移动环形传声器阵列的声源定位方法,其特征在于,所述步骤4)具体包括:
步骤4-1)构建全局声场系数的样本协方差矩阵Rβ
其中,K为感兴趣的频率点数目;
步骤4-2)构建与频率无关的加权矢量
步骤4-3)改变加权矢量的指向方向估计方位谱
步骤4-4)将方位谱的峰值所在位置作为声源方位的估计。
5.一种使用移动环形传声器阵列的声源定位***,其特征在于,所述***包括:
环形传声器阵列,包括M个传声器;将环形阵列的中心移动至Q个不同的空间位置,高度不发生变化;在第q个空间位置处第m个传声器采集到的时域信号;
短时傅里叶变换模块,用于对时域信号依次进行分帧、加窗和傅里叶变换,得到相应的频率分离信号;
局部声场系数估计模块,用于利用频率分离信号估计局部声场系数;
全局声场系数估计模块,用于利用局部声场系数估计全局声场系数;
声源定位模块,用于根据全局声场系数估计声源方位角。
CN201910905051.1A 2019-09-24 2019-09-24 一种使用移动环形传声器阵列的声源定位方法及*** Active CN110596644B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910905051.1A CN110596644B (zh) 2019-09-24 2019-09-24 一种使用移动环形传声器阵列的声源定位方法及***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910905051.1A CN110596644B (zh) 2019-09-24 2019-09-24 一种使用移动环形传声器阵列的声源定位方法及***

Publications (2)

Publication Number Publication Date
CN110596644A true CN110596644A (zh) 2019-12-20
CN110596644B CN110596644B (zh) 2022-03-08

Family

ID=68863015

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910905051.1A Active CN110596644B (zh) 2019-09-24 2019-09-24 一种使用移动环形传声器阵列的声源定位方法及***

Country Status (1)

Country Link
CN (1) CN110596644B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111551321A (zh) * 2020-06-14 2020-08-18 荆门汇易佳信息科技有限公司 基于超声检测的气密容器泄漏定位测量***
CN112147571A (zh) * 2020-08-31 2020-12-29 南京理工大学 基于正则正交匹配追踪和蝙蝠算法的声源方位角估计方法
CN113281707A (zh) * 2021-05-26 2021-08-20 上海电力大学 一种强噪声下基于加窗lasso的声源定位方法
CN115436880A (zh) * 2022-09-23 2022-12-06 无锡聚诚智能科技有限公司 基于传声器阵列的自适应超声波检测方法及***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102333265A (zh) * 2011-05-20 2012-01-25 南京大学 一种基于连续声源概念的三维局部空间声场重放方法
CN103438985A (zh) * 2013-08-14 2013-12-11 大连理工大学 一种用于声场合成的声场信息采集方法
CN104678359A (zh) * 2015-02-28 2015-06-03 清华大学 一种声场识别的多孔声全息方法
CN106093866A (zh) * 2016-05-27 2016-11-09 南京大学 一种适用于空心球阵列的声源定位方法
CN108549052A (zh) * 2018-03-20 2018-09-18 南京航空航天大学 一种时频-空域联合加权的圆谐域伪声强声源定位方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102333265A (zh) * 2011-05-20 2012-01-25 南京大学 一种基于连续声源概念的三维局部空间声场重放方法
CN103438985A (zh) * 2013-08-14 2013-12-11 大连理工大学 一种用于声场合成的声场信息采集方法
CN104678359A (zh) * 2015-02-28 2015-06-03 清华大学 一种声场识别的多孔声全息方法
CN106093866A (zh) * 2016-05-27 2016-11-09 南京大学 一种适用于空心球阵列的声源定位方法
CN108549052A (zh) * 2018-03-20 2018-09-18 南京航空航天大学 一种时频-空域联合加权的圆谐域伪声强声源定位方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
查梦芳: "基于Ambisonics的多区域声场重放方法研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
王雅婧: "基于均匀圆阵的信源数估计和测向算法研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
耿明昕 等: "基于传声器阵列合成孔径算法的变电站噪声源测量方法研究", 《陕西电力》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111551321A (zh) * 2020-06-14 2020-08-18 荆门汇易佳信息科技有限公司 基于超声检测的气密容器泄漏定位测量***
CN111551321B (zh) * 2020-06-14 2021-12-03 南昌市燃气集团有限公司 基于超声检测的气密容器泄漏定位测量***的测量方法
CN112147571A (zh) * 2020-08-31 2020-12-29 南京理工大学 基于正则正交匹配追踪和蝙蝠算法的声源方位角估计方法
CN112147571B (zh) * 2020-08-31 2023-10-31 南京理工大学 基于正则正交匹配追踪和蝙蝠算法的声源方位角估计方法
CN113281707A (zh) * 2021-05-26 2021-08-20 上海电力大学 一种强噪声下基于加窗lasso的声源定位方法
CN115436880A (zh) * 2022-09-23 2022-12-06 无锡聚诚智能科技有限公司 基于传声器阵列的自适应超声波检测方法及***
CN115436880B (zh) * 2022-09-23 2023-10-10 无锡聚诚智能科技有限公司 基于传声器阵列的自适应超声波检测方法及***

Also Published As

Publication number Publication date
CN110596644B (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
CN110596644B (zh) 一种使用移动环形传声器阵列的声源定位方法及***
US10506337B2 (en) Frequency-invariant beamformer for compact multi-ringed circular differential microphone arrays
CN109633525B (zh) 一种快速的均匀圆阵空间谱测向实现方法
CN107884741B (zh) 一种多球阵列多宽带声源快速定向方法
CN112180329B (zh) 一种基于阵元随机均匀分布球阵反卷积波束形成的汽车噪声源声成像方法
CN104166120B (zh) 一种声矢量圆阵稳健宽带mvdr方位估计方法
CN102147458A (zh) 一种针对宽带声源的波达方向估计方法及其装置
CN111123192A (zh) 一种基于圆形阵列和虚拟扩展的二维doa定位方法
CN106093866A (zh) 一种适用于空心球阵列的声源定位方法
Huang et al. Two-stage decoupled DOA estimation based on real spherical harmonics for spherical arrays
CN110389316B (zh) 基于两步矩阵差分的近场和远场混合信源定位方法
Huang et al. Two-step spherical harmonics ESPRIT-type algorithms and performance analysis
CN112462363B (zh) 非均匀稀疏极化阵列相干目标参数估计方法
CN108318855B (zh) 基于均匀圆阵的近场和远场混合信号源定位方法
CN101252382B (zh) 一种宽频段信号极化与doa估计方法及装置
Ahmad et al. Wideband DOA estimation based on incoherent signal subspace method
CN109696657A (zh) 一种基于矢量水听器的相干声源定位方法
CN110376546B (zh) 基于协方差矩阵差分的远场和近场混合信源定位方法
CN103837858B (zh) 一种用于平面阵列的远场波达角估计方法及***
CN110376547B (zh) 基于二阶统计量的近场源定位方法
CN113593596B (zh) 一种基于子阵划分的鲁棒自适应波束形成定向拾音方法
WO2021087728A1 (en) Differential directional sensor system
Grondin et al. Multiple sound source localization with SVD-PHAT
CN112363108A (zh) 信号子空间加权超分辨的波达方向检测方法及***
CN109655783B (zh) 一种感应器列阵来波方向的估计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant