CN110596010A - 一种可接收和发射超声的微透镜阵列 - Google Patents

一种可接收和发射超声的微透镜阵列 Download PDF

Info

Publication number
CN110596010A
CN110596010A CN201911015515.8A CN201911015515A CN110596010A CN 110596010 A CN110596010 A CN 110596010A CN 201911015515 A CN201911015515 A CN 201911015515A CN 110596010 A CN110596010 A CN 110596010A
Authority
CN
China
Prior art keywords
micro
optical
receiving
high optical
array capable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911015515.8A
Other languages
English (en)
Other versions
CN110596010B (zh
Inventor
曾吕明
纪轩荣
吴俊伟
邓丽军
朴忠烈
丁宇
周阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang Deep Ocean Electronic Technology Co Ltd
Original Assignee
Nanchang Deep Ocean Electronic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang Deep Ocean Electronic Technology Co Ltd filed Critical Nanchang Deep Ocean Electronic Technology Co Ltd
Priority to CN201911015515.8A priority Critical patent/CN110596010B/zh
Publication of CN110596010A publication Critical patent/CN110596010A/zh
Application granted granted Critical
Publication of CN110596010B publication Critical patent/CN110596010B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0654Imaging
    • G01N29/0681Imaging by acoustic microscopy, e.g. scanning acoustic microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2418Probes using optoacoustic interaction with the material, e.g. laser radiation, photoacoustics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/1702Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids
    • G01N2021/1708Systems in which incident light is modified in accordance with the properties of the material investigated with opto-acoustic detection, e.g. for gases or analysing solids with piezotransducers

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Acoustics & Sound (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

本发明公布一种可接收和发射超声的微透镜阵列,包括采用高光学透过率的压电材料制作的基层底板、具有高光学透过率的电极层、具有高光学透过率的声匹配层、具有高光学反射率的光学掩膜。该微透镜阵列可同时实现大视场的光学阵列式显微聚焦、超声阵列式发射和接收等光学和声学的两类功能,具有结构简单、体积小、重量轻等优点,便于大面积工业制备和***集成,有望应用于采用激光超声技术开发的生物身份识别、医学成像诊断、工业无损检测、多功能水下检测机器人等领域。

Description

一种可接收和发射超声的微透镜阵列
技术领域
本发明涉及光学元器件,尤其涉及可接收和发射超声的微透镜阵列,适用于采用激光超声技术开发的生物身份识别、医学成像诊断、工业无损检测、多功能水下检测机器人等领域。
背景技术
微透镜阵列又称为复眼透镜或蝇眼透镜,通常由一系列孔径在几个微米至几百个微米的微小型透镜按照一定排序组成的阵列,可非常方便制作于玻璃或树脂等光学透明材料上。它不仅具有传统光学透镜的聚焦、成像等基本功能,而且具有单元尺寸小、集成度高的特点,使得它能够完成传统光学元件无法完成的功能,并能构成许多新型的光学检测***,在波前传感、光聚焦、光整形等领域有着广泛的应用。
工业和医用超声相控阵技术已有几十年的发展历史,其性能的优劣首先看超声阵列探头的质量。通常它是由压电晶片切割成按一定的规律分布排列的压电阵元,如线阵、面阵、环阵等,再与匹配层、背衬等封装而成,并采用机械或电子扫描方式实现超声波束的聚焦发射和接收。
激光超声是一种非接触、高精度、无损伤的新型检测技术,它结合了超声检测的高精度和光学检测的非接触的优点,具有灵敏度高和检测带宽宽的优点,在工业无损检测、生物医学成像等领域有着广阔的应用。超声波产生的方式有激光激励或压电换能器激励产生,超声波接收的方式有压电换能器接收或光学法接收(包括光学干涉法和非干涉法)。因此,主要的激光超声检测方法可划分为三种模式:激光激励-激光接收、激光激励-超声接收、超声发射-激光接收。目前,后两种模式的激光超声检测***都是激光和超声两套独立的***构成,且大多数光学或声学结构复杂不便于实现小型化,难以真正实现同尺度的光学和声学集成一体化。
发明内容
针对上述问题,本发明提供了一种可接收和发射超声的微透镜阵列,包括采用高光学透过率的压电材料制作的基层底板、具有高光学透过率的电极层、具有高光学透过率的声匹配层、具有高光学反射率的光学掩膜层,实现了光学和声学结构的集成一体化和微型化,大大降低了采用激光超声技术的检测***复杂性。
为实现上述发明目的,本发明包括如下设计方案:
一种可接收和发射超声的微透镜阵列,其中包括采用高光学透过率的压电材料制作的基层底板、具有高光学透过率的电极层、具有高光学透过率的声匹配层、具有高光学反射率的光学掩膜层。
所述基层底板上刻有多个微透镜组成的大面积阵列;所述微透镜上镀着有电极层;所述基层底板上除了微透镜以外的区域都镀有光学掩膜层;所述基层底板外表面粘贴有声匹配层;所述微透镜具有光学显微聚焦功能的同时可发射和接收超声信号。
所述基层底板优选高光学透过率的压电单晶材料或压电复合材料;所述微透镜优选微米级至厘米级的尺寸;所述微透镜优选圆形或方形结构;所述微透镜上可镀有特定光谱区域的光学增透膜;所述微透镜优选采用相同的形状、尺寸和光学焦距;所述微透镜组成的大面积阵列的排布方式优选方形排布。
本发明的有益效果在于:
(1)在激光超声检测结构中,采用高光学透过率的微透镜阵列,同时实现了大视场光学阵列式显微聚焦的光学功能、超声阵列式发射和接收的声学功能。
(2)多个光学微焦点进一步简化光路中所需的光学透镜数量,降低了光路的复杂性和激光的衰减,单个微透镜就实现了光学和声学路径的同轴、共焦、小型一体化的简单结构,消除了光学和声学的多次反射衰减,有效提高了光学和声学的耦合效率和检测灵敏度。
(3)通过调整微透镜的形状、尺寸、间距、厚度和材料构成等参数,可微透镜阵列获得不同的声学和光学性能参数,包括光学焦距、光学焦斑形状、声学主频、声学带宽、声学灵敏度等。
附图说明
图1为本发明的可发射和接收超声的微透镜阵列结构示意图;
图2为本发明的可发射和接收超声的微透镜阵列侧视图;
图3为公式图解图;
图4为放大后的单个微透镜;
图5a和图5b分别为PMNT压电单晶材料的阻抗谱及超声接收响应图,图5c和图5d分别为PMNT 1-3压电复合材料的阻抗谱及超声接收响应图;
图6为两种掺锡氧化铟(ITO)薄膜的光学透过率曲线图。
附图标记:基层底板1、电极层2、光学掩膜层3、微透镜4、光学增透膜5、声匹配层6。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例:一种可接收和发射超声的微透镜阵列,其特征在于,包括采用高光学透过率的压电材料制作的基层底板1、具有高光学透过率的电极层2、具有高光学反射率的光学掩膜层3、具有高光学透过率的声匹配层6。
进一步地,所述基层底板1选择高光学透过率的PMNT单晶材料;所述基层底板1上刻有直径250μm、曲率半径为835μm的微透镜4组成的10mm×10mm阵列,单个微透镜4的有效焦距小于1.8mm;所述微透镜4的阵列采用40×40的正方形排布方式;所述微透镜4采用二维球面方形结构,各微透镜4之间的中心间距为250μm;所述微透镜4的电极层2表面可镀有350-700nm宽带的光学增透膜5;所述微透镜4上镀有电极层2;所述基层底板1上除了微透镜4以外的区域都镀有光学掩膜层3;所述微透镜4上可粘贴有高光学透过率的声匹配层6;通过如下理论计算,所述微透镜阵列可以产生束腰半径为3.5μm、瑞利长度约为72μm的衍射焦点。其中,瑞利长度是指光束沿着其行进方向,从其腰部到面积为腰部面积两倍的截面的距离。假如采用高斯光束作为光源模型时,瑞利长度可以用来衡量高斯光束的准直范围。
图3中ω0表示束腰半径,ω表示激光入射到透镜表面光斑半径,Z表示透镜焦距,ZR代表瑞利长度。依据公式:
式中λ表示激光波长(此处选择设置为532nm),则可得在束腰半径为3.525μm,得到理论条件下的瑞利长度为73μm。
进一步地,所述微透镜4的声学中心频率f和厚度d的关系为f=N/d,其中N为压电材料的频率常数;下图5a-5d分别为PMNT压电单晶材料和PMNT1-3压电复合材料的阻抗谱及超声接收响应图;
进一步地,所述电极层2优选高光学透过率的ITO薄膜材料,例如一般ITO薄膜对450nm-1100nm的光学透过率可达70%-80%,下图6为两种ITO薄膜的光学透过率曲线图。
进一步地,光学掩膜层3优选高光学反射率的铬版掩膜。
进一步地,所述声匹配层6优选高光学透过率的环氧树脂。
作为实施方式一,所述微透镜4的厚度为4.1mm,具有光学显微聚焦效果的同时可发射和接收中心频率为0.5MHz的超声信号。
作为实施方式二,所述微透镜4的厚度为1.03mm,具有光学显微聚焦效果的同时可发射和接收中心频率为2.0MHz的超声信号。
需要说明的是,在本文中,尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (6)

1.一种可接收和发射超声的微透镜阵列,其特征在于包括采用高光学透过率的压电材料制作的基层底板、具有高光学透过率的电极层、具有高光学透过率的声匹配层、具有高光学反射率的光学掩膜层;所述基层底板上刻有多个微透镜组成的阵列;所述微透镜上镀有电极层;所述基层底板上除了微透镜以外的区域都镀有光学掩膜层;所述基层底板外表面粘贴有声匹配层;所述微透镜具有光学显微聚焦功能的同时可发射和接收超声信号。
2.根据权利要求1所述的一种可接收和发射超声的微透镜阵列,其特征在于:所述基层底板选择高光学透过率的压电单晶材料或压电复合材料。
3.根据权利要求1所述的一种可接收和发射超声的微透镜阵列,其特征在于:所述微透镜选择微米级至厘米级的尺寸。
4.根据权利要求1所述的一种可接收和发射超声的微透镜阵列,其特征在于:所述微透镜选择圆形或方形结构。
5.根据权利要求1所述的一种可接收和发射超声的微透镜阵列,其特征在于:所述微透镜选择采用相同的形状、尺寸和光学焦距。
6.根据权利要求1所述的一种可接收和发射超声的微透镜阵列,其特征在于:所述微透镜组成的阵列排布方式选择方形排布。
CN201911015515.8A 2019-10-24 2019-10-24 一种可接收和发射超声的微透镜阵列 Active CN110596010B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911015515.8A CN110596010B (zh) 2019-10-24 2019-10-24 一种可接收和发射超声的微透镜阵列

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911015515.8A CN110596010B (zh) 2019-10-24 2019-10-24 一种可接收和发射超声的微透镜阵列

Publications (2)

Publication Number Publication Date
CN110596010A true CN110596010A (zh) 2019-12-20
CN110596010B CN110596010B (zh) 2022-07-08

Family

ID=68850227

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911015515.8A Active CN110596010B (zh) 2019-10-24 2019-10-24 一种可接收和发射超声的微透镜阵列

Country Status (1)

Country Link
CN (1) CN110596010B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101006931A (zh) * 2005-11-04 2007-08-01 株式会社东芝 超声波诊断装置和超声波探头
US20070282204A1 (en) * 2006-05-31 2007-12-06 Kabushiki Kaisha Toshiba Array-type ultrasonic probe and ultrasonic diagnostic apparatus
CN201244025Y (zh) * 2008-07-03 2009-05-27 刘国栋 光声超声激发与传感一体化检测装置
CN101910829A (zh) * 2007-11-14 2010-12-08 3M创新有限公司 制造微阵列的方法
US20110190617A1 (en) * 2008-05-30 2011-08-04 Stc.Unm Photoacoustic imaging devices and methods of making and using the same
CN104644212A (zh) * 2013-11-20 2015-05-27 精工爱普生株式会社 超声波器件及其制造方法、电子设备及超声波图像装置
US20150305714A1 (en) * 2014-04-25 2015-10-29 Transducerworks, Llc Acoustic Lens Of Enhanced Wear Resistance
CN106963416A (zh) * 2015-10-29 2017-07-21 精工爱普生株式会社 超声波器件、超声波探测器、电子设备及超声波图像装置
CN107079223A (zh) * 2015-04-30 2017-08-18 奥林巴斯株式会社 超声波振子以及超声波探头
CN107607473A (zh) * 2017-08-31 2018-01-19 华南师范大学 一种同时多点激发与匹配接收的光声三维成像装置及方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101006931A (zh) * 2005-11-04 2007-08-01 株式会社东芝 超声波诊断装置和超声波探头
US20070282204A1 (en) * 2006-05-31 2007-12-06 Kabushiki Kaisha Toshiba Array-type ultrasonic probe and ultrasonic diagnostic apparatus
CN101910829A (zh) * 2007-11-14 2010-12-08 3M创新有限公司 制造微阵列的方法
US20110190617A1 (en) * 2008-05-30 2011-08-04 Stc.Unm Photoacoustic imaging devices and methods of making and using the same
CN201244025Y (zh) * 2008-07-03 2009-05-27 刘国栋 光声超声激发与传感一体化检测装置
CN104644212A (zh) * 2013-11-20 2015-05-27 精工爱普生株式会社 超声波器件及其制造方法、电子设备及超声波图像装置
US20150305714A1 (en) * 2014-04-25 2015-10-29 Transducerworks, Llc Acoustic Lens Of Enhanced Wear Resistance
CN107079223A (zh) * 2015-04-30 2017-08-18 奥林巴斯株式会社 超声波振子以及超声波探头
CN106963416A (zh) * 2015-10-29 2017-07-21 精工爱普生株式会社 超声波器件、超声波探测器、电子设备及超声波图像装置
CN107607473A (zh) * 2017-08-31 2018-01-19 华南师范大学 一种同时多点激发与匹配接收的光声三维成像装置及方法

Also Published As

Publication number Publication date
CN110596010B (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
CN109669226B (zh) 一种基于超表面透镜组阵列的激光雷达扫描装置及其设计方法
EP0090567B1 (en) Ultrasonic sector-scan probe
CN102946809A (zh) 超声波探测器以及使用该超声波探测器的超声波检査装置
WO2013183302A1 (ja) 音響光学撮像装置
CN104339084A (zh) 使用非球面多焦点透镜加工脆性基底的设备
US20130301114A1 (en) Acousto-optic imaging device
KR102456228B1 (ko) 투명 초음파 센서 기반 초음파 광학 복합 이미징 시스템
CN105890769A (zh) 太赫兹焦平面阵列及其设计方法
CN112490671A (zh) 一种反射式光学相控阵芯片及制造方法及激光扫描装置
CN110596010B (zh) 一种可接收和发射超声的微透镜阵列
JP7333083B2 (ja) 近接場テラヘルツ撮像デバイス
JP4017934B2 (ja) 超音波探触子
CN110596009B (zh) 一种高灵敏度大面积激光超声成像方法
CN114913842B (zh) 一种双功能声学平面超透镜
CN105676254A (zh) 一种嵌套式x射线天文望远镜***在线精密装配方法
JP5851208B2 (ja) 水中映像取得装置
CN114101018B (zh) 一种超材料声透镜相控阵换能器及提升焦点声压的方法
KR20210034466A (ko) 투명 초음파 센서 및 그 제조방법
LENS Ultrasonic imaging with an acoustic lens
JPS6361161A (ja) 集束型超音波探触子
JP2004105741A (ja) 超音波探触子
Folds Status of ultrasonic lens development
JPS6098799A (ja) 積層型超音波トランスデユ−サ
CN111538021B (zh) 光雷达***及其制造方法
US20220163789A1 (en) Condensing objective optical system and photoacoustic device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant