CN110575818B - 快速高效选择性吸附痕量污染物的羧基修饰的离子型金属有机框架材料及其制备方法和应用 - Google Patents

快速高效选择性吸附痕量污染物的羧基修饰的离子型金属有机框架材料及其制备方法和应用 Download PDF

Info

Publication number
CN110575818B
CN110575818B CN201910721387.2A CN201910721387A CN110575818B CN 110575818 B CN110575818 B CN 110575818B CN 201910721387 A CN201910721387 A CN 201910721387A CN 110575818 B CN110575818 B CN 110575818B
Authority
CN
China
Prior art keywords
framework material
organic framework
carboxyl
metal organic
ligand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910721387.2A
Other languages
English (en)
Other versions
CN110575818A (zh
Inventor
段星
郑伟
吕然
季振国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201910721387.2A priority Critical patent/CN110575818B/zh
Publication of CN110575818A publication Critical patent/CN110575818A/zh
Application granted granted Critical
Publication of CN110575818B publication Critical patent/CN110575818B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开快速高效选择性吸附痕量污染物的羧基修饰的离子型金属有机框架材料及其制备方法和应用。该金属有机框架材料结构式为[(CH3)2NH2][In(L‑COOH)](G)31],属于四方晶系,空间群为P42/nnm,每个铟离子与羧基上的八个氧原子配位形成[In(COO)4]次级构建单元,然后与配体相连形成三维多孔结构,次级构建单元和配体分别作为4‑connected节点。本发明制备工艺简单,成本低,条件温和,稳定性好,该材料在空气和水中稳定,在加热条件下可以稳定到300℃,且在快速高效地吸附性吸附痕量污染物分子等方面有着广泛的应用前景。

Description

快速高效选择性吸附痕量污染物的羧基修饰的离子型金属有 机框架材料及其制备方法和应用
技术领域
本发明涉及一种快速高效选择性吸附痕量污染物的羧基修饰的离子型金属有机框架材料及其制备方法。
背景技术
随着工业和社会的发展,水污染问题日益严重,如何行之有效地处理含有各种污染物的废水已成为水纯化领域内的热点问题,而水纯化技术作为解决水污染的主要手段得到了越来越广泛的应用。目前被广泛报道的处理污染物的方法主要包括离子交换技术、生物质法、电化学法、吸附法、化学沉淀法、絮凝法等,然而其中大部分污水处理方法存在着效率较低、处理成本高昂、方法繁琐、易产生二次污染等弊端。而吸附法相比于其他的污染物处理方式,具有方法简单、材料来源广泛、易于回收利用、节约能源等优点,因此吸附材料的研究和应用具有广泛的科学前景。但传统的吸附材料如活性炭、功能树脂、沸石、活性白土及活性氧化铝等,存在处理效率低、吸附量小、吸附速度慢及选择性和识别性差等缺点。金属-有机框架(Metal-Organic Frameworks),简称MOFs,是由有机配体和金属离子或团簇通过配位键自组装形成的具有分子内孔隙的有机-无机杂化材料。在MOFs中,有机配体和金属离子或团簇的排列具有明显的方向性,可以形成不同的框架孔隙结构,从而表现出不同的吸附性能、光学性质、电磁学性质等。MOFs晶体材料具有比表面积高、孔体积大、存在不饱和的金属位点、设计性强等一系列优点,这些优势为研究开发具有大吸附容量、高去除效率、高选择性/识别性的新型污染物吸附、分离材料提供了可能性并将在水处理领域展现出极高的应用前景。
污染物分子具有不同的电荷和分子尺寸,如何对金属-有机框架材料进行设计以实现低浓度的特定污染物分子的快速有效吸附与分离是解决问题的关键,而离子型金属-有机框架材料因其具有静电吸引力在毒害性离子的富集上有很大的发展前景,此外,可以通过分子设计调整孔径尺寸的大小以适应污染物客体分子的尺寸实现更准确更快速更高效的吸附与分离,在实现不同尺寸污染物分子的分离方面具有较大优势。鉴于此,我们设计并合成了一种具有羧基修饰的阴离子型的金属有机框架材料,在高效快速吸附与分离低浓度污染物分子具有很好的应用前景。
发明内容
本发明的目的在于是针对现有技术的不足,提供一种快速高效选择性吸附痕量污染物的羧基修饰的离子型金属有机框架材料及其制备方法。
为实现上述目的,本发明用于快速高效吸附痕量污染物的离子型金属有机框架材料,为有序的多孔离子型晶体材料,具有PtS型的拓扑结构,其结构通式为[(CH3)2NH2][In(L-COOH)](G)31],属于四方晶系,空间群为P42/nnm,每个铟离子与配体的四个羧基上的八个氧原子配位形成[In(COO)4]-次级构建单元,进而与配体L-COOH相连形成三维多孔结构,次级构建单元和配体分别作为4-connected节点,G代表孔道内的溶剂。沿着a、b、c、110方向的孔道里都有大量的羧基基团暴露,沿着110方向的正方形孔道孔径大小分别大约为3.5χ5.5~
Figure BDA0002157341170000021
和6.7χ7.0~
Figure BDA0002157341170000022
其余孔道孔径均很小。
上述的L-COOH为[1,1’:4’,1”-三联苯]-2’,3,3”,5,5’,5”-六-羧酸,[1,1':4',1”-三联苯]-2',3,3”,5,5”-五-羧酸,[1,1':4',1”:4”,1”'-四联苯]-2',3,3”,3”',5,5”'-六-羧酸,[1,1':4',1”:4”,1”'-四联苯]-2',2”,3,3”',5,5',5”,5”'-八-羧酸,5,5'-(2,6-二-羧基-萘-1,4-基)-二-间苯二甲酸,5,5'-(2—羧基萘-1,4-基)间苯二甲酸,5,5'-(6,7-二-羧基-萘--1,4-基)间苯二甲酸。
本发明的另一个目的是提供用于快速高效选择性吸附痕量污染物的羧基修饰的离子型金属有机框架材料的制备方法,采用的溶剂热法,具体步骤如下:
将硝酸铟或者氯化铟与含有羧酸的有机配体溶于有机溶剂中,然后加入乙腈和硝酸,混合均匀后放入密闭的反应釜中,80℃~90℃反应48~96h,自然冷却到室温,用N,N-二甲基甲酰胺反复洗涤,过滤,得到羧基修饰的阴离子型的金属有机框架材料。
硝酸铟或者氯化铟与含有羧酸的有机配体按摩尔比为3.3~6:1;
有机溶剂、乙腈和硝酸的体积比为20:(7~12):(1.2~1.8)。
所述的有机溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N,N-二乙基乙酰胺、二甲基亚砜、乙醇、甲醇、二氧六环、四氢呋喃中的一种或多种;
所述的含羧酸基团的有机配体为结构式为(a)的[1,1’:4’,1”-三联苯]-2’,3,3”,5,5’,5”-六-羧酸,结构式为(b)的[1,1':4',1”-三联苯]-2',3,3”,5,5”-五-羧酸,结构式为(c)的[1,1':4',1”:4”,1”'-四联苯]-2',3,3”,3”',5,5”'-六-羧酸,结构式为(d)的[1,1':4',1”:4”,1”'-四联苯]-2',2”,3,3”',5,5',5”,5”'-八-羧酸,结构式为(e)的5,5'-(2,6-二-羧基-萘-1,4-基)-二-间苯二甲酸,结构式为(f)的5,5'-(2-羧基萘-1,4-基)间苯二甲酸或结构式为(g)的5,5'-(6,7-二-羧基-萘--1,4-基)间苯二甲酸。
Figure BDA0002157341170000031
本发明的又一个目的是提供羧基修饰的离子型金属有机框架材料在吸附痕量污染物上的应用。
本发明的金属有机框架材料制备方法简单,产率可达80%~85%。制的金属有机框架材料为羧基修饰的阴离子型框架,四方晶系,产物结晶度高,热稳定性和化学稳定性好,在低于300℃以及各种有机溶剂和水中等条件下都能保持结构不变。本发明的金属有机框架材料为无色透明的菱面体型晶体,尺寸大约在0.25mm×0.25mm×0.2mm。
本发明制备的羧基修饰的阴离子型金属有机框架材料属于四方晶系,空间群为P42/nnm,每个铟离子与羧基上的八个氧原子配位形成[In(COO)4]-次级构建单元,然后与配体相连形成三维多孔结构,次级构建单元和配体分别作为4-connected节点,框架材料具有PtS型的拓扑结构,能够完全去除痕量的有机污染物,选择性高,吸附速率快,去除速率快,相比于没有羧基修饰的金属有机框架材料具有更快的去除效率。另外本发明制备出的离子型金属有机框架材料能够重复利用,测试4个循环后仍能保持结构完整,吸附性能保持不变,重复利用性能好,对吸附材料的实际应用起到了极大的推动作用。
附图说明
图1为羧基修饰的阴离子型的In-有机框架材料InOF-1的单晶结构示意图;
图2为羧基修饰的阴离子型的In-有机框架材料InOF-1的XRD图谱;
图3为羧基修饰的阴离子型的In-有机框架材料InOF-1的TG图谱;
图4为在298K、0~5h条件下羧基修饰的阴离子型的In-有机框架材料InOF-1的亚甲基蓝的UV-vis吸收光谱曲线;
图5为在298K、0~12h条件下无羧基修饰的金属有机框架材料InOF-1的亚甲基蓝的UV-vis吸收光谱曲线;
图6为在298K、0~12h条件下羧基修饰的阴离子型的In-有机框架材料InOF-1的亚甲基蓝/罗丹明B,亚甲基蓝/罗丹明6G和亚甲基蓝/甲基橙的UV-vis吸收光谱曲线。
具体实施方式
以下结合实施例及其附图对本发明作进一步详细描述。
实施例1:
在20毫升的菌种瓶中,将[1,1’:4’,1”-三联苯]-2’,3,3”,5,5’,5”-六-羧酸(4mg,0.0086mmol)和In(NO3)3·H2O(10mg,0.0314mmol)溶解在N,N-二甲基甲酰胺和乙腈(3mL,2:1,v/v)的混合溶剂中,然后将硝酸(150μL)(69%,aq.)加入上述的混合溶液中,菌种瓶被密封;然后将上述溶液置于85℃烘箱中,反应72小时,取出后用N,N-二甲基甲酰胺洗涤3次,烘干后得到菱面体型的透明晶体,尺寸大约为0.22mm×0.23mm×0.18mm,产率为85%,即为制备的羧基修饰的阴离子型的In-有机框架材料InOF-1。其结构是通过Oxford Xcalibur GeminiUltra单晶衍射仪和元素分析测试确定,结构式为[(CH3)2NH2][In(C22H10O12)](C2H3N)7(H2O)24,属于四方晶系,空间群为P42/nnm,晶胞参数为
Figure BDA0002157341170000041
α=β=γ=90°,晶胞体积为
Figure BDA0002157341170000042
Z=2,Dc=0.658g/cm3;其中每个铟离子与羧基上的八个氧原子配位形成[In(COO)4]-次级构建单元,然后与配体相连形成三维多孔结构,如图1的a和b。次级构建单元和配体分别作为4-connected节点,框架材料具有PtS型的拓扑结构。如图1的c和d,在a、b、c轴三个方向都有不规则孔道,大量的未配位的羧基暴露在孔里,导致孔道尺寸减小。如图1的e,沿着110方向的孔道是方形孔,去除原子的范德华半径后,大小分别为
Figure BDA0002157341170000043
Figure BDA0002157341170000044
Figure BDA0002157341170000045
由于次级构建单元电荷不平衡带有负电荷,孔道里存在正电荷的[(CH3)2NH2]+离子与之平衡。热重测试表明该材料在300℃以前稳定。
双羧基修饰的阴离子型的金属有机框架材料(以下简称晶体)的XRD图谱见图2;图中曲线1为由单晶结构数据通过Mercury软件模拟的该晶体的XRD图谱;图中曲线2为实验合成的晶体的XRD图谱,由图可见,曲线1与曲线2完全吻合,说明合成的材料是纯相,没有杂质。
测试所得晶体的热稳定性能,如图3所示,TG曲线显示了从40℃~300℃有大约35%的重量失去,被归于孔道中溶剂分子和配位水分子的失去,而且晶体结构一直到400℃左右才完全坍塌,表明晶体具有良好的热稳定性能。
实施例2:
在20毫升的菌种瓶中,将[1,1':4',1”-三联苯]-2',3,3”,5,5”-五-羧酸(4mg,0.0095mmol)和In(NO3)3·H2O(10mg,0.0314mmol)溶解在N,N-二甲基甲酰胺和乙腈(3mL,2:0.8,v/v)的混合溶剂中,然后将硝酸(130μL)(69%,aq.)加入上述的混合溶液中,菌种瓶被密封;然后将上述溶液置于80℃烘箱中,反应48小时,取出后用N,N-二甲基甲酰胺洗涤3次,烘干后得到菱面体型的透明晶体,即为制备的羧基修饰的阴离子型的In-有机框架材料InOF-2。粉末X射线衍射表明,InOF-2与InOF-1同构,也是属于四方晶系的晶体,外观为菱面体型的透明晶体。
实施例3:
在20毫升的菌种瓶中,将[1,1':4',1”:4”,1”'-四联苯]-2',3,3”,3”',5,5”'-六-羧酸(4mg,0.0074mmol)和In(NO3)3·H2O(10mg,0.0314mmol)溶解在N,N-二甲基甲酰胺和乙腈(3mL,2:1.1,v/v)的混合溶剂中,然后将硝酸(160μL)(69%,aq.)加入上述的混合溶液中,菌种瓶被密封;然后将上述溶液置于90℃烘箱中,反应48小时,取出后用N,N-二甲基甲酰胺洗涤3次,烘干后得到菱面体型的透明晶体,即为制备的羧基修饰的阴离子型的In-有机框架材料InOF-3。粉末X射线衍射表明,InOF-3与InOF-1同构,也是属于四方晶系的晶体,外观为菱面体型的透明晶体。
实施例4:
在20毫升的菌种瓶中,将[1,1':4',1”:4”,1”'-四联苯]-2',2”,3,3”',5,5',5”,5”'-八-羧酸(4mg,0.0063mmol)和In(NO3)3·H2O(10mg,0.0314mmol)溶解在N,N-二甲基甲酰胺和乙腈(3mL,2:1,v/v)的混合溶剂中,然后将硝酸(150μL)(69%,aq.)加入上述的混合溶液中,菌种瓶被密封;然后将上述溶液置于90℃烘箱中,反应72小时,取出后用N,N-二甲基甲酰胺洗涤3次,烘干后得到菱面体型的透明晶体,即为制备的羧基修饰的阴离子型的In-有机框架材料InOF-4。粉末X射线衍射表明,InOF-4与InOF-1同构,也是属于四方晶系的晶体,外观为菱面体型的透明晶体。
实施例5:
在20毫升的菌种瓶中,将5,5'-(2,6-二-羧基-萘-1,4-基)-二-间苯二甲酸(4mg,0.0078mmol)和In(NO3)3·H2O(10mg,0.0314mmol)溶解在N,N-二甲基甲酰胺和乙腈(3mL,2:1.2,v/v)的混合溶剂中,然后将硝酸(180μL)(69%,aq.)加入上述的混合溶液中,菌种瓶被密封;然后将上述溶液置于90℃烘箱中,反应96小时,取出后用N,N-二甲基甲酰胺洗涤3次,烘干后得到菱面体型的透明晶体,即为制备的羧基修饰的阴离子型的In-有机框架材料InOF-5。粉末X射线衍射表明,InOF-5与InOF-1同构,也是属于四方晶系的晶体,外观为菱面体型的透明晶体。
实施例6:
在20毫升的菌种瓶中,将5,5'-(2-羧基萘-1,4-基)间苯二甲酸(4mg,0.0079mmol)和In(NO3)3·H2O(10mg,0.0314mmol)溶解在N,N-二甲基甲酰胺和乙腈(3mL,2:1.2,v/v)的混合溶剂中,然后将硝酸(180μL)(69%,aq.)加入上述的混合溶液中,菌种瓶被密封;然后将上述溶液置于90℃烘箱中,反应96小时,取出后用N,N-二甲基甲酰胺洗涤3次,烘干后得到菱面体型的透明晶体,即为制备的羧基修饰的阴离子型的In-有机框架材料InOF-6。粉末X射线衍射表明,InOF-6与InOF-1同构,也是属于四方晶系的晶体,外观为菱面体型的透明晶体。
实施例7:
在20毫升的菌种瓶中,将5,5'-(6,7-二-羧基-萘--1,4-基)间苯二甲酸(4mg,0.0078mmol)和In(NO3)3·H2O(10mg,0.0314mmol)溶解在N,N-二甲基甲酰胺和乙腈(3mL,2:1.2,v/v)的混合溶剂中,然后将硝酸(180μL)(69%,aq.)加入上述的混合溶液中,菌种瓶被密封;然后将上述溶液置于90℃烘箱中,反应96小时,取出后用N,N-二甲基甲酰胺洗涤3次,烘干后得到菱面体型的透明晶体,即为制备的羧基修饰的阴离子型的In-有机框架材料InOF-7。粉末X射线衍射表明,InOF-7与InOF-1同构,也是属于四方晶系的晶体,外观为菱面体型的透明晶体。
对照例1:
在20毫升的菌种瓶中,将[1,1’:4’,1”-三联苯]-3,3”,5,5”-四-羧酸(4mg,0.0043mmol)(图2)和In(NO3)3·H2O(10mg,0.0523mmol)溶解在N,N-二甲基甲酰胺和乙腈(3mL,2:1,v/v)的混合溶剂中,然后将硝酸(30μL)(69%,aq.)加入上述的混合溶液中,菌种瓶被密封;然后将上述溶液置于85℃烘箱中,反应72小时,取出后用N,N-二甲基甲酰胺洗涤3次,烘干后得到菱面体型的透明晶体,即为制备的无羧基修饰的离子型的In-有机框架材料。
Figure BDA0002157341170000061
结构式[1,1’:4’,1”-三联苯]-3,3”,5,5”-四-羧酸
应用实施例:
将5mg羧基修饰的阴离子型的In-有机框架材料InOF-1和5mg无羧基修饰的In-有机框架材料(对比例1)分别浸入5mL浓度为13ppm的亚甲基蓝水溶液中,在不同时间间隔分别取液体样品,离心后取上层清液,采用紫外-可见光谱仪在665nm处测定残余的亚甲基蓝含量。如图4所示,羧基修饰的阴离子型的In-有机框架材料InOF-1在5h后实现完全去除亚甲基蓝分子,而无羧基修饰的In-有机框架材料在8h后仍不能实现完全去除亚甲基蓝分子,如图5所示。
将5mg羧基修饰的阴离子型的In-有机框架材料InOF-1浸入亚甲基蓝/罗丹明B(4×10-5M,5mL/5mL),亚甲基蓝/罗丹明6G(4×10-5M,5mL/5mL)和亚甲基蓝/甲基橙(4×10-5M,5mL/5mL)混合水溶液中。在不同时间间隔抽取溶液测试其紫外-可见光谱以确定溶液中残留的亚甲基蓝/罗丹明B,亚甲基蓝/罗丹明6G和亚甲基蓝/甲基橙的含量。图6显示,对于InOF-1,三种混合溶液在12小时后亚甲基蓝分子完全被吸收,而罗丹明B、罗丹明6G和甲基橙在溶液中仍存在残留,这是由于羧基修饰的阴离子型的In-有机框架材料带有负电荷及合适的孔道尺寸,所以对带正电的甲基橙的吸附很微弱,罗丹明B和罗丹明6G的分子尺寸比亚甲基蓝的分子尺寸大,进入框架材料更加困难,因此,羧基修饰的阴离子型的In-有机框架材料对亚甲基蓝和其他染料能实现选择性吸附与分离。
上述具体实施方式用来解释说明本发明,但本发明不应该局限于该实施例和附图所公开的内容。所以凡是不脱离本发明公开的精神下完成的等效或修改,都落入本发明保护范围。

Claims (5)

1.羧基修饰的离子型金属有机框架材料在对亚甲基蓝/罗丹明6G和亚甲基蓝/罗丹明B能实现选择性吸附与分离上的应用,所述羧基修饰的离子型金属有机框架材料在低于300oC以及各种有机溶剂和水中条件下保持结构不变,其特征在于所述羧基修饰的离子型金属有机框架材料为有序的多孔离子型晶体材料,具有PtS型的拓扑结构,其结构通式为[(CH3)2NH2][In(L-COOH)](G)31],属于四方晶系,空间群为P42/nnm,每个铟离子与配体L-COOH四个羧基上的八个氧原子配位形成[In(COO)4]-次级构建单元,进而与配体L-COOH相连形成三维多孔结构,次级构建单元和配体L-COOH分别作为4-connected节点,G代表孔道内的溶剂;沿着a、b、c、110方向的孔道里均有大量的羧基基团暴露,沿着110方向的正方形孔道孔径大于其余方向孔道孔径;其中配体L-COOH为[1,1’:4’,1’’-三联苯]-2’,3,3’’,5,5’,5’’-六-羧酸;
所述羧基修饰的离子型金属有机框架材料沿着110方向的正方形孔道孔径大小分别为3.5χ5.5~3.6χ6.0Å和6.7χ7.0~6.8χ8.2Å。
2.如权利要求1所述的应用,其特征在于所述羧基修饰的离子型金属有机框架材料的制备方法是将硝酸铟或者氯化铟与含有羧酸的有机配体溶于有机溶剂中,然后加入乙腈和硝酸,混合均匀后放入密闭的反应釜中,80℃~90℃反应48~96h,自然冷却到室温,用N,N-二甲基甲酰胺反复洗涤,过滤,得到羧基修饰的阴离子型的金属有机框架材料;
所述的含羧酸基团的有机配体为结构式为(a)的[1,1’:4’,1’’-三联苯]-2’,3,3’’,5,5’,5’’-六-羧酸;
Figure 282208DEST_PATH_IMAGE002
3.如权利要求2所述的应用,其特征在于硝酸铟或者氯化铟与含有羧酸的有机配体按摩尔比为3.3~6:1。
4.如权利要求2所述的应用,其特征在于有机溶剂、乙腈和硝酸的体积比为20:(7~12):(1.2 ~1.8)。
5.如权利要求2所述的应用,其特征在于所述的有机溶剂为N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N,N-二乙基乙酰胺、二甲基亚砜、乙醇、甲醇、二氧六环、四氢呋喃中的一种或多种。
CN201910721387.2A 2019-08-06 2019-08-06 快速高效选择性吸附痕量污染物的羧基修饰的离子型金属有机框架材料及其制备方法和应用 Active CN110575818B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910721387.2A CN110575818B (zh) 2019-08-06 2019-08-06 快速高效选择性吸附痕量污染物的羧基修饰的离子型金属有机框架材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910721387.2A CN110575818B (zh) 2019-08-06 2019-08-06 快速高效选择性吸附痕量污染物的羧基修饰的离子型金属有机框架材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110575818A CN110575818A (zh) 2019-12-17
CN110575818B true CN110575818B (zh) 2022-08-23

Family

ID=68810962

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910721387.2A Active CN110575818B (zh) 2019-08-06 2019-08-06 快速高效选择性吸附痕量污染物的羧基修饰的离子型金属有机框架材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110575818B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015177511A1 (en) * 2014-05-23 2015-11-26 The Texas A&M University System Method of preparing a metal organic framework
CN105646899A (zh) * 2016-01-20 2016-06-08 辽宁大学 一种基于InⅢ的金属有机阴离子骨架及其制备方法和应用
CN106750470A (zh) * 2016-11-09 2017-05-31 中国科学院长春应用化学研究所 一种金属有机框架复合材料、其制备方法及应用
CN108144326A (zh) * 2018-02-11 2018-06-12 辽宁大学 一种基于阴离子型金属有机骨架材料高效分离有机染料的方法
CN109876776A (zh) * 2019-02-02 2019-06-14 北京建筑大学 铟基mof微纳米粉体及其室温制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9272262B2 (en) * 2011-12-16 2016-03-01 King Abdullah University of Science and Technology (KAUST) Materials for gas capture, methods of making materials for gas capture, and methods of capturing gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015177511A1 (en) * 2014-05-23 2015-11-26 The Texas A&M University System Method of preparing a metal organic framework
CN105646899A (zh) * 2016-01-20 2016-06-08 辽宁大学 一种基于InⅢ的金属有机阴离子骨架及其制备方法和应用
CN106750470A (zh) * 2016-11-09 2017-05-31 中国科学院长春应用化学研究所 一种金属有机框架复合材料、其制备方法及应用
CN108144326A (zh) * 2018-02-11 2018-06-12 辽宁大学 一种基于阴离子型金属有机骨架材料高效分离有机染料的方法
CN109876776A (zh) * 2019-02-02 2019-06-14 北京建筑大学 铟基mof微纳米粉体及其室温制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A porous metal–organic framework with –COOH groups for highly efficient pollutant removal;Qi Zhang et al.;《Chem. Commun.》;20140929;全文 *

Also Published As

Publication number Publication date
CN110575818A (zh) 2019-12-17

Similar Documents

Publication Publication Date Title
Sun et al. Fabrication of highly selective ion imprinted macroporous membranes with crown ether for targeted separation of lithium ion
CN112679731B (zh) 一类含有磺酸基团的共价有机框架材料及其制备和应用
Huang et al. An efficient lithium ion imprinted adsorbent using multi-wall carbon nanotubes as support to recover lithium from water
Xu et al. Molecularly imprinted TiO 2 hybridized magnetic Fe 3 O 4 nanoparticles for selective photocatalytic degradation and removal of estrone
Liu et al. Highly effective and fast removal of anionic carcinogenic dyes via an In 3-cluster-based cationic metal–organic framework with nitrogen-rich ligand
CN103599749A (zh) 磁性载钴有序介孔碳及其制备方法和应用
CN110756059B (zh) 一种以多孔离子聚合物为分散相的混合基质膜的制备方法及其气体分离的应用
CN107715916A (zh) 一种MIL‑100(Fe)纳米催化剂的制备方法及其应用
CN113332959B (zh) 一种具有高稳定性的新型铝基吸水MOFs材料及其制备方法和空气集水应用
Wang et al. Highly selective and efficient adsorption dyes self-assembled by 3D hierarchical architecture of molybdenum oxide
Liu et al. Removal of rare earth elements by MnFe2O4 based mesoporous adsorbents: Synthesis, isotherms, kinetics, thermodynamics
CN112452302A (zh) 三维镓印迹五倍子单宁硅基复合材料及其在回收镓中的应用
Wang et al. Preparation of the crosslinked GO/PAA aerogel and its adsorption properties for Pb (II) ions
WO2023065652A1 (zh) 一种胺化表面缺陷闪锌矿材料、制备方法及其在降解全氟化合物中的应用
CN106984137B (zh) 一种可快速相分离的吸收co2的聚氨基酸离子液体型相分离吸收剂的制备及其使用方法
Luo et al. Chitosan-covalent organic framework dual-layer membrane with high efficiency of iodine capture
Li et al. Round-the-clock water harvesting from dry air using a metal− organic framework
CN110575818B (zh) 快速高效选择性吸附痕量污染物的羧基修饰的离子型金属有机框架材料及其制备方法和应用
Gao et al. Microwave-assisted production of metal-organic frameworks for water purification: A mini-review
Huang et al. Sustainable method towards magnetic ordered mesoporous polymers for efficient Methylene Blue removal
CN113845666B (zh) 基于萘酰亚胺的金属有机框架的多孔材料、制备方法和应用
CN114471177B (zh) 阴离子交换驱动的阳离子选择性分离杂化膜及制备和应用
CN104525118B (zh) 一种高效石墨烯吸油材料的制备方法
Han et al. Synthesis of PbSO4 crystals by hydrogel template on postprocessing strategy for secondary pollution
US20230080965A1 (en) Phosphorus nitride adsorbent with high-efficiency selectivity and its applications in removing uranium pollution and extracting uranium from seawater

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant