CN110556433B - 一种碲化镉纳米晶太阳电池及其制备方法 - Google Patents

一种碲化镉纳米晶太阳电池及其制备方法 Download PDF

Info

Publication number
CN110556433B
CN110556433B CN201910625034.2A CN201910625034A CN110556433B CN 110556433 B CN110556433 B CN 110556433B CN 201910625034 A CN201910625034 A CN 201910625034A CN 110556433 B CN110556433 B CN 110556433B
Authority
CN
China
Prior art keywords
layer
film
solar cell
preparing
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910625034.2A
Other languages
English (en)
Other versions
CN110556433A (zh
Inventor
覃东欢
吴婉华
罗恺楹
谢斯航
郭秀珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201910625034.2A priority Critical patent/CN110556433B/zh
Publication of CN110556433A publication Critical patent/CN110556433A/zh
Application granted granted Critical
Publication of CN110556433B publication Critical patent/CN110556433B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0384Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material
    • H01L31/03845Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material comprising semiconductor nanoparticles embedded in a semiconductor matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1836Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising a growth substrate not being an AIIBVI compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种碲化镉纳米晶太阳电池及其制备方法。该太阳电池包括衬底和依次层叠于所述衬底上的阴极层、阴极界面层、窗口层、光活性层、阳极界面层和阳极层,所述阳极界面层为厚度为170~240nm的Spiro‑OMeTAD薄膜或厚度为10~40nm的聚[双(4‑苯基)(2,4,6‑三甲基苯基)胺]薄膜。本发明通过引入有机材料作为空穴传输层,有效地减少了载流子的复合,改善了漏电现象,相比于传统的倒置太阳电池,提高了器件短路电流和开路电压,改善了器件性能。本发明采用全溶液法加工,成本低,制作简便,有望实现大规模生产。

Description

一种碲化镉纳米晶太阳电池及其制备方法
技术领域
本发明属于光电器件领域,具体涉及一种碲化镉纳米晶太阳电池及其制备方法。
背景技术
能源问题是本世纪人类所面临的最大危机,在开发和使用能源的同时,保护好人类赖以生存的地球环境与生态已经成为一个全球性的重要研究课题。太阳能是资源最丰富的可再生能源,光伏转换是近些年来发展最快、取得成果最大、最具活力和最有前途的有效利用太阳能研究领域之一。
近年来,薄膜太阳电池发展迅猛,主要包括硅基薄膜太阳电池、无机化合物薄膜太阳电池、有机聚合物薄膜太阳电池和纳米晶太阳电池。其中,溶液法加工纳米晶太阳电池是当前的一个研究热点,与传统的薄膜电池相比,这种太阳电池的主要优势是:原材料使用率高、制备工艺简单、对制备环境要求低、可发展为“卷对卷”印刷制备工艺、电池的成本相对较低。在所有的半导体纳米晶当中,碲化镉由于带隙(约1.5eV)与太阳光谱匹配,是理想的太阳电池材料。
2005年Alivisatos(Gur I,Fromer N A,Geier M L,et al.Air-stable all-inorganic nanocrystal solar cells processed from solution[J].Science,2005,310(5747):462-465.)研究小组借鉴有机聚合物溶液成膜的方法,首次成功地制备了全无机纳米晶太阳电池,器件的转化效率达2.9%。2014年,Panthani等(Panthani M G,Kurley J M,Crisp R W,et al.High efficiency solution processed sintered CdTe nanocrystalsolar cells:The role of interfaces[J].Nano letters,2014,14(2):670-675.)制备出了n-ZnO/p-CdTe异质结太阳电池,最终获得的器件短路电流达到25.8mA/cm2,填充因子增加到71%,最优器件效率达到了12.3%,是目前世界上碲化镉纳米晶太阳电池的最高效率。
但是,传统的具有倒置结构的太阳能电池中的载流子复合严重,使器件的光电转换效率受限。与传统太阳电池相比,具有空穴传输层的器件具有更高的效率。
无机界面材料在传统太阳能电池中的应用已有较多的研究。2012年,白治中等人(白治中.高转换效率CdTe薄膜太阳电池制备及管件科学问题研究.安徽:中国科学技术大学,2012.)分别引用Sb2Te3、ZnTe:Cu和MoO3作为背接触材料进行了实验。Sb2Te3无需掺杂就有良好的接触,且该薄膜电阻率很低,但由于背电极存在一定的能垒,其转换效率只有不到10%。ZnTe:Cu具有优良的电学性能,与CdTe薄膜接触良好,降低了由于晶格失配带来的界面缺陷和复合中心,获得了11.46%的转换效率,但其填充因子较低。MoO3有着很高的功函数,在背接触中起到扩散阻挡作用,有效阻挡背电极中金属离子的扩散,稳定性有所提高,转换效率达到8.4%,但由于MoO3本身电阻值较大,影响了电池的短路电流和串联电阻。2017年,肖迪等人(肖迪.碲化镉薄膜太阳电池背场缓冲层及电池制备研究.安徽:中国科学技术大学,2017.)分别引用NiO和CuI作为空穴传输层,改善了器件性能。由于NiO起到背场反射电子的作用,降低了电子在电池背表面处的复合,而CuI能有效降低背接触肖特基势垒,它们的转换效率分别达到了12.5%和10.5%,但其短路电流和填充因子都较低。这些材料的薄膜都是通过真空蒸镀法制备的,用于商业上成本较高。
有机界面材料则在钙钛矿电池中的应用比较成熟。2012年,Wenning Wang等人(Wang W,Paudel N R,Yan Y,et al.PEDOT:PSS as back contact for CdTe solar cellsand the effect of PEDOT:PSS conductivity on device performance[J].Journal ofMaterials Science:Materials in Electronics,2016,27(2):1057-1061.)引用PEDOT:PSS作为电池的背接触,通过在PEDOT的沉积之前进行溴/甲醇处理封闭空间升华(CSS)从而产生低欧姆接触,获得9.1%的效率。2016年,Xiaohang Du等人(Du X,Chen Z,Liu F,etal.Improvement in open-circuit voltage of thin film solar cells from aqueousnanocrystals by interface engineering[J].ACS applied materials&interfaces,2015,8(1):900-907.)用Spiro-OMeTAD作为空穴传输层,通过溶液加工法制备器件,获得了6.56%的效率。但是,目前关于有机界面材料在纳米晶太阳电池中的应用报道较少。
发明内容
针对上述问题,本发明的首要目的在于提供一种碲化镉纳米晶太阳电池。
本发明的另一目的在于提供上述一种碲化镉纳米晶太阳电池的制备方法。
本发明的目的通过以下方案予以实现:
一种碲化镉纳米晶太阳电池,包括衬底和依次层叠于所述衬底上的阴极层、阴极界面层、窗口层、光活性层、阳极界面层和阳极层,所述阳极界面层为厚度为170~240nm的Spiro-OMeTAD薄膜或厚度为10~40nm的聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)薄膜。
优选的,所述Spiro-OMeTAD薄膜的厚度为200nm。
优选的,所述聚[双(4-苯基)(2,4,6-三甲基苯基)胺]薄膜的厚度为12nm。
优选的,所述衬底为玻璃。
优选的,所述阴极层为氟掺杂的氧化锡薄膜(FTO)或铟掺杂的氧化锡薄膜(ITO),更优选的为ITO薄膜;所述阴极层的厚度为80~200nm。
优选的,所述阴极界面层为ZnO薄膜;所述阴极界面层的厚度为20~80nm。
优选的,所述窗口层为CdS薄膜和CdSe薄膜中的一种或两种,所述窗口层的厚度为80~140nm。
优选的,所述光活性层为CdTe薄膜,所述光活性层的厚度为400~600nm。
优选的,所述阳极层为Au、Ag和Al中的一种,更优选为Au;所述阳极层的厚度为80~100nm。
上述一种碲化镉纳米晶太阳电池的制备方法,包括如下步骤:
(1)在衬底上通过磁控溅射法或者化学气相沉积法制备阴极层;
(2)通过溶液加工法在阴极层上依次制备阴极界面层、窗口层、光活性层和阳极界面层;
(3)采用真空蒸镀法在阳极界面层上蒸镀阳极层;
优选的,步骤(2)所述阴极界面层的制备步骤为:采用sol-gel法制备得到浓度为35~45mg/mL的ZnO前驱体溶液,取ZnO前驱体溶液,通过溶液加工法制备阴极界面层,再在200~400℃温度下热处理10~20min。
优选的,所述采用sol-gel法制备得到ZnO前驱体溶液的方法为文献H.Liu,Y.Y.Tian,Y.J.Zhang,K.Gao,K.K.Lu,R.W.Fang,D.H.Qin,H.B.Wu,Z.S.Peng,L.T.Hou,W.B.Huang,J.Materials.Chemistry.2015,3,4227-4234所述的方法。
优选的,步骤(2)所述窗口层的制备步骤为:采用溶剂热法制备得到CdS纳米晶和CdSe纳米晶,然后分别溶于有机溶剂中得到浓度为25~35mg/mL的CdS纳米晶溶液和浓度为40~50mg/mL的CdSe纳米晶溶液,根据需要通过溶液加工法分别制备CdS薄膜和CdSe薄膜,其中,CdS薄膜制备完成后,在340~400℃下热处理30~40min;CdSe薄膜制备完成后,在300~400℃下热处理30~40min。
优选的,所述采用溶剂热法制备得到CdS纳米晶的方法为文献S.W.Liu,W.G.Liu,J.X.Heng,W.F.Zhou,Y.R.Chen,S.Y.Wen,D.H.Qin,Solution-Processed EfficientNanocrystal Solar Cells Based on CdTe and CdS Nanocrystals.Coatings 2018,8,26.所述的方法。
优选的,所述采用溶剂热法制备得到CdSe纳米晶的方法为文献S.Sun,H.M.Liu,Y.P.Gao,D.H.Qin,J.Materials.Chemistry.2012,517,6853-6856.所述的方法。
优选的,所述采用溶剂热法制备得到CdS纳米晶和CdSe纳米晶,然后分别溶于有机溶剂,所述有机溶剂为正丙醇、吡啶、甲苯和体积比为1:1的吡啶/正丙醇的混合溶剂中的一种,更优选的为体积比为1:1的吡啶/正丙醇混合溶液。
优选的,步骤(2)所述光活性层的制备步骤为:采用溶剂热法制备得到CdTe纳米晶,将其溶于有机溶剂得到溶度为40~50mg/mL的CdTe纳米晶溶液,通过溶液加工法沉积于窗口层上,最后在300~380℃下热处理30~40min。
优选的,所述采用溶剂热法制备得到CdTe纳米晶,将其溶于有机溶剂,所述有机溶剂为正丙醇、吡啶、甲苯和体积比为1:1的吡啶/正丙醇的混合溶剂中的一种,更优选的为体积比为1:1的吡啶/正丙醇混合溶剂。
优选的,所述采用溶剂热法制备得到CdTe纳米晶的方法为文献S.Sun,H.M.Liu,Y.P.Gao,D.H.Qin,J.Materials.Chemistry.2012,517,6853-6856.所述的方法。
优选的,步骤(2)所述阳极界面层的制备步骤如下:
Spiro-OMeTAD薄膜的制备:将72mgSpiro-OMeTAD(2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴)、9mgLi-TFSI(双三氟甲烷磺酰亚胺锂盐)、29μL TBP(4-叔丁基吡啶)溶于1mL氯苯和0.1mL乙腈组成的混合溶剂中,搅拌过夜,得到浅橙色溶液,将橙色溶液通过溶液加工法沉积在光活性层上,再在90~130℃下热处理10~15min,即制备得到所述Spiro-OMeTAD薄膜;
聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)薄膜的制备:将PTAA溶于氯苯中,搅拌过夜,得到PTAA浓度为3~8mg/mL的无色透明溶液,将无色透明溶液经溶液加工法沉积在光活性层上,再在100~180℃下热处理10~15min,即制备得到所述聚[双(4-苯基)(2,4,6-三甲基苯基)胺]薄膜。
优选的,步骤(3)所述真空蒸镀法的真空度为3×10-4~5×10-4Pa,更优选的为3×10-4Pa。
优选的,步骤(2)所述溶液加工法为旋涂、刷涂、喷涂、浸涂、辊涂、丝网印刷、印刷和喷墨打印中的一种。
与现有技术相比,本发明具有以下优点和有益效果:
(1)引入有机材料作为阳极界面层,由于材料中的N和CdTe层可发生络合作用,进行表面掺杂,更容易形成欧姆接触,可减少电子/空穴的复合,降低器件的串联电阻,同时,提高器件的填充因子,从而提高器件的效率,改善器件性能;
(2)采用倒置结构,使入射光离P-N结更近,有利于载流子的分离收集,而且采用高功函数金属作为阳极界面层,防止了电极被氧化,保证了阳极的稳定性,增强了纳米晶太阳电池的稳定性,增加了其使用寿命;
(3)引入CdS/CdSe双电子受体层,提高了碲化镉纳米晶太阳电池在增强短波长区域和长波长区域中的光电流,平缓各界面间的能级势垒,从而可提高器件的电流;
(4)采用了溶液加工和真空蒸镀技术,制备工艺简单轻便、轻薄化,节省原料,容易实现大规模自动智能生产。
附图说明
图1为本发明所述碲化镉纳米晶太阳电池的结构示意图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例所述匀胶机为中国科学院微电子研究所生产,型号为KW-4A;所述室温为25℃。
实施例1
不同浓度PTAA溶液对CdTe纳米晶电池的影响
碲化镉纳米晶太阳电池的制备步骤如下:
(1)ITO导电玻璃衬底的清洗:将基片(规格为15毫米×15毫米,ITO的厚度为80nm)在甲苯中超声振荡5min,超声频率为35KHz,然后在依次在丙酮、滴加碱液的去离子水中超声振荡15min,超声频率为35KHz,接着在去离子水中超声,超声频率为35KHz,每次10min,重复5次至ITO表面无气泡,最后加异丙醇超声,超声频率为35KHz,超声振荡10min,清洁ITO的衬底表面,随后将ITO片放入恒温烘箱中85℃下静置烘干,得到清洗后的ITO导电玻璃衬底。
(2)ZnO薄膜的制备:采用sol-gel法制备浓度为40.69mg/mL的ZnO前驱体溶液(制备参考H.Liu,Y.Y.Tian,Y.J.Zhang,K.Gao,K.K.Lu,R.W.Fang,D.H.Qin,H.B.Wu,Z.S.Peng,L.T.Hou,W.B.Huang,J.Materials.Chemistry.2015,3,4227-4234),将清洗后的ITO导电玻璃衬底置于KW-4A型旋涂仪上,用0.45μm滤头将ZnO前驱体溶液过滤后滴在清洗后的ITO导电玻璃衬底上,经高速旋涂(旋涂速度为3000rpm,时间为20s),放于加热台上,先在200℃下热处理10min,刮掉阴极位置的ZnO层,再在400℃加热10min,冷却至室温,分别置于丙酮和异丙醇中超声,超声频率为35KHz,超声时间为10min,氮***吹干,得到厚度为40nm的ZnO薄膜层,即阴极界面层。
(3)窗口层薄膜的制备
①CdS薄膜的制备:采用溶剂热法制备得到CdS纳米晶(制备参考S.W.Liu,W.G.Liu,J.X.Heng,W.F.Zhou,Y.R.Chen,S.Y.Wen,D.H.Qin,Solution-ProcessedEfficient Nanocrystal Solar Cells Based on CdTe and CdS Nanocrystals.Coatings2018,8,26.),将CdS纳米晶溶于体积比为1:1的吡啶/正丙醇混合溶剂中,得到溶度为30mg/mL的CdS纳米晶溶液,将CdS纳米晶溶液通过匀胶机在阴极界面层上旋涂,经高速旋涂(旋涂转速为3000rpm,时间为20s)制得CdS纳米晶单层,置于加热台上150℃热处理10min以去除混合溶剂,刮掉阴极位置的CdS层,而后380℃热处理30min,在异丙醇中超声处理3min,用氮***吹干,得到厚度为25nm的CdS薄膜。
②CdSe薄膜的制备:采用溶剂热法制备得到CdSe纳米晶(制备参考S.Sun,H.M.Liu,Y.P.Gao,D.H.Qin,J.Materials.Chemistry.2012,517,6853-6856.),将CdSe纳米晶溶于体积比为1:1的吡啶/正丙醇混合溶剂中,得到溶度为50mg/mL的CdSe纳米晶溶液,利用匀胶机,将CdSe纳米晶溶液旋涂(旋涂转速为3000rpm,时间为20s)于①制得的CdS薄膜上,制得CdSe纳米晶单层,置于加热台上150℃热处理10min以去除混合溶剂,刮掉阴极位置的CdSe层,而后在350℃下热处理40s,利用相同的方法制备第2层CdSe纳米晶单层,最后置于加热台上在350℃下热处理30min,在异丙醇中超声处理3min,用氮***吹干,得到总厚度为80nm的CdSe薄膜。
(4)CdTe薄膜的制备:采用溶剂热法制备得到CdTe纳米晶(制备参考S.Sun,H.M.Liu,Y.P.Gao,D.H.Qin,J.Materials.Chemistry.2012,517,6853-6856.),将CdTe纳米晶溶于体积比为1:1的吡啶/正丙醇混合溶剂中,得到溶度为50mg/mL的CdTe纳米晶溶液,利用匀胶机,将CdTe纳米晶溶液旋涂(旋涂速率为1100rpm,时间为20s)于步骤(3)制得的CdSe薄膜上,制得CdTe纳米晶单层,将其放在加热台上在150℃热处理3min以除去有机溶剂,刮掉阴极位置的CdTe层,浸入60℃饱和的CdCl2甲醇溶液中处理15s,再浸入正丙醇溶液中5s除去多余的CdCl2,用氮气吹干,放在加热台上350℃热处理40s,利用相同的方法再制备5层CdTe纳米晶单层,层层叠加的方式溶液加工制得能够有效地减少界面缺陷和内应力的、均匀致密的光活性层(CdTe薄膜);最后旋涂一层氯化镉,在330℃下处理30min,用无水甲醇洗去多余氯化镉,得到总厚度为600nm的CdTe薄膜。
(5)PTAA薄膜的制备:将PTAA溶于氯苯中,磁子搅拌过夜,得到无色透明溶液,将步骤(4)处理的基片置于匀胶机上,滴加上述PTAA溶液,经高速旋涂(旋涂速率为3000rpm,时间为20s)获得PTAA单层,放在加热台上于140℃下热处理10min以除去氯苯,即制备得到阳极界面层,作为对比,本实例配置的PTAA溶液的浓度分别为3mg/mL、5mg/mL、7mg/mL和8mg/mL。
(6)阳极的制备:将阳极界面层置于真空镀腔中,在3×10-4Pa的高真空下蒸镀阳极,实施例蒸镀80nm的Au,得到结构ITO/ZnO/CdS/CdSe/CdTe/PTAA/Au的碲化镉纳米晶太阳电池器件。
实施例1所得碲化镉纳米晶太阳电池器件的相关参数对比如表1。表1中的Isc代表短路电流,Voc代表开路电压,FF代表填充因子,PCE代表光电转换效率。
表1实施例1所得阳电池器件性能一览表
Figure BDA0002126806890000071
由表1可知:当PTAA浓度为5mg/mL时,器件短路电流,开路电压,填充因子均有提高,器件效率最高,PTAA薄膜较薄时,阻挡载流子复合的效果不明显,较厚时,载流子难以通过,当浓度为5mg/mL时,界面层膜厚合适,为12nm。
实施例2
不同PTAA热处理温度对CdTe纳米晶电池的影响
碲化镉纳米晶太阳电池的制备步骤如下:
除了步骤(4)中的CdTe薄膜的厚度变为500nm、步骤(5)中PTAA溶液的浓度变为5mg/mL、获得PTAA单层后放在加热台上热处理步骤改为:分别在100℃、120℃、130℃、140℃和180℃下热处理10min,实施例2其他步骤同实施例1一样。得到结构为ITO/ZnO/CdS/CdSe/CdTe/PTAA/Au的碲化镉纳米晶太阳电池器件。
实施例2所得碲化镉纳米晶太阳电池器件的相关参数对比如表2。表2中的Isc代表短路电流,Voc代表开路电压,FF代表填充因子,PCE代表光电转换效率。
表2实施例2所得阳电池器件性能一览表
Figure BDA0002126806890000081
由表2可知:当热处理温度为100℃、130℃、140℃时,薄膜成膜性较好,器件短路电流较高,空穴传输层的存在使得载流子复合减少,器件性能提高。
实施例3
不同Spiro热处理温度对CdTe纳米晶电池的影响
碲化镉纳米晶太阳电池的制备步骤如下:
步骤(1)~(3)同实施例1,步骤(4)中CdTe薄膜改为5层叠加,总厚度为500nm。
(5)Spiro-OMeTAD薄膜的制备:将72mgSpiro-OMeTAD,9mgLi-TFSI,29μlTBP溶于1mL氯苯和0.1mL乙腈组成的混合溶剂中,磁子搅拌过夜,得到浅橙色溶液,将步骤(4)处理的基片置于匀胶机(KW-4A型)上,滴加上述浅橙色溶液,经高速旋涂(旋涂速率为2000rpm,时间为20s)获得Spiro-OMeTAD单层,放在加热台上热处理10min以除去有机溶剂,制得的薄膜厚度为200nm,作为对比,本实例的热处理温度分别为90℃、100℃、110℃、120℃和130℃。
(6)阳极的制备:将上述基片置于真空镀腔中,在3×10-4Pa的高真空下蒸镀80nm的Au,得到结构为ITO/ZnO/CdS/CdSe/CdTe/Spiro-OMeTAD/Au的碲化镉纳米晶太阳电池器件。
实施例3所得碲化镉纳米晶太阳电池器件的相关参数对比如表3。表3中Isc代表短路电流,Voc代表开路电压,FF代表填充因子,PCE代表光电转换效率。
表3实施例3所得阳电池器件性能一览表
Figure BDA0002126806890000091
由表3可知:当热处理温度为100℃、120℃、130℃时,器件短路电流较高,阳极界面层的存在使得载流子复合减少,器件性能提高。
不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种碲化镉纳米晶太阳电池,其特征在于,包括衬底和依次层叠于所述衬底上的阴极层、阴极界面层、窗口层、光活性层、阳极界面层和阳极层,所述阳极界面层为厚度为170~240nm的Spiro-OMeTAD薄膜或厚度为10~40nm的聚[双(4-苯基)(2,4,6-三甲基苯基)胺]薄膜;
所述Spiro-OMeTAD薄膜还需在90~130℃下热处理10~15min;
所述的聚[双(4-苯基)(2,4,6-三甲基苯基)胺]薄膜还需在100~180℃下热处理10~15min;所述窗口层为CdS薄膜和CdSe薄膜的双层薄膜,厚度为80~140nm。
2.根据权利要求1所述一种碲化镉纳米晶太阳电池,其特征在于,所述Spiro-OMeTAD薄膜的厚度为200nm;
所述聚[双(4-苯基)(2,4,6-三甲基苯基)胺]薄膜的厚度为12nm;
所述阴极层为氟掺杂的氧化锡薄膜或铟掺杂的氧化锡薄膜;所述阴极层的厚度为80~200nm;
所述阴极界面层为ZnO薄膜;所述阴极界面层的厚度为20~80nm。
3.根据权利要求1或2所述一种碲化镉纳米晶太阳电池,其特征在于,所述光活性层为CdTe薄膜,所述光活性层的厚度为400~600nm;
所述阳极层为Au、Ag和Al中的一种;所述阳极层的厚度为80~100nm;
所述衬底为玻璃。
4.权利要求1~3任一项所述一种碲化镉纳米晶太阳电池的制备方法,其特征在于,包括如下步骤:
(1)在衬底上通过磁控溅射法或者化学气相沉积法制备阴极层;
(2)通过溶液加工法在阴极层上依次制备阴极界面层、窗口层、光活性层和阳极界面层;
(3)采用真空蒸镀法在阳极界面层上蒸镀阳极层。
5.根据权利要求4所述一种碲化镉纳米晶太阳电池的制备方法,其特征在于,步骤(2)所述阴极界面层的制备步骤为:采用sol-gel法制备得到浓度为35~45mg/mL的ZnO前驱体溶液,取ZnO前驱体溶液,通过溶液加工法制备阴极界面层,再在200~400℃温度下热处理10~20min。
6.根据权利要求4所述一种碲化镉纳米晶太阳电池的制备方法,其特征在于,步骤(2)所述窗口层的制备步骤为:采用溶剂热法制备得到CdS纳米晶和CdSe纳米晶,然后分别溶于有机溶剂中得到浓度为25~35mg/mL的CdS纳米晶溶液和浓度为40~50mg/mL的CdSe纳米晶溶液,根据需要通过溶液加工法分别制备CdS薄膜和CdSe薄膜,其中,CdS薄膜制备完成后,在340~400℃下热处理30~40min;CdSe薄膜制备完成后,在300~400℃下热处理30~40min。
7.根据权利要求4所述一种碲化镉纳米晶太阳电池的制备方法,其特征在于,步骤(2)所述光活性层的制备步骤为:采用溶剂热法制备得到CdTe纳米晶,将其溶于有机溶剂得到溶度为40~50mg/mL的CdTe纳米晶溶液,通过溶液加工法沉积于窗口层上,最后在300~380℃下热处理30~40min。
8.根据权利要求4所述一种碲化镉纳米晶太阳电池的制备方法,其特征在于,步骤(2)所述阳极界面层的制备步骤如下:
Spiro-OMeTAD薄膜的制备:将72mg2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴、9mg双三氟甲烷磺酰亚胺锂盐、29μL4-叔丁基吡啶溶于1mL氯苯和0.1mL乙腈组成的混合溶剂中,搅拌过夜,得到浅橙色溶液,将橙色溶液通过溶液加工法沉积在光活性层上,再在90~130℃下热处理10~15min,即制备得到所述Spiro-OMeTAD薄膜;
聚[双(4-苯基)(2,4,6-三甲基苯基)胺]薄膜的制备:将聚[双(4-苯基)(2,4,6-三甲基苯基)胺]溶于氯苯中,搅拌过夜,得到浓度为3~8mg/mL的无色透明溶液,将无色透明溶液经溶液加工法沉积在光活性层上,再在100~180℃下热处理10~15min,即制备得到所述聚[双(4-苯基)(2,4,6-三甲基苯基)胺]薄膜。
9.根据权利要求6或7所述一种碲化镉纳米晶太阳电池的制备法,其特征在于,所述有机溶剂为正丙醇、吡啶、甲苯和体积比为1:1的吡啶/正丙醇的混合溶剂中的一种。
10.根据权利要求4所述一种碲化镉纳米晶太阳电池的制备方法,特征在于,步骤(3)所述真空蒸镀法的真空度为3×10-4~5×10-4Pa;
步骤(2)所述溶液加工法为旋涂、刷涂、喷涂、浸涂、辊涂、丝网印刷、印刷和喷墨打印中的一种。
CN201910625034.2A 2019-07-11 2019-07-11 一种碲化镉纳米晶太阳电池及其制备方法 Expired - Fee Related CN110556433B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910625034.2A CN110556433B (zh) 2019-07-11 2019-07-11 一种碲化镉纳米晶太阳电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910625034.2A CN110556433B (zh) 2019-07-11 2019-07-11 一种碲化镉纳米晶太阳电池及其制备方法

Publications (2)

Publication Number Publication Date
CN110556433A CN110556433A (zh) 2019-12-10
CN110556433B true CN110556433B (zh) 2021-03-30

Family

ID=68735503

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910625034.2A Expired - Fee Related CN110556433B (zh) 2019-07-11 2019-07-11 一种碲化镉纳米晶太阳电池及其制备方法

Country Status (1)

Country Link
CN (1) CN110556433B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112490298B (zh) * 2020-11-26 2022-06-17 华中科技大学 硒化镉类单晶薄膜制备方法、太阳能电池制备方法及产物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107919403B (zh) * 2017-10-31 2021-07-16 华南理工大学 一种高效硒碲化镉合金纳米晶太阳电池及其制备方法

Also Published As

Publication number Publication date
CN110556433A (zh) 2019-12-10

Similar Documents

Publication Publication Date Title
Ajayan et al. A review of photovoltaic performance of organic/inorganic solar cells for future renewable and sustainable energy technologies
EP3172776B1 (en) Mesoscopic framework for organic-inorganic perovskite based photoelectric conversion device and method for manufacturing the same
KR101117127B1 (ko) 비정질 실리콘 태양전지와 유기 태양전지를 이용한 탠덤형 태양전지
CN110600614B (zh) 一种钙钛矿/钙钛矿两端叠层太阳能电池的隧穿结结构
CN108767118B (zh) 一种三元全聚合物太阳能电池
CN109904318B (zh) 一种基于反溶液浴的钙钛矿薄膜制备方法及太阳能电池
CN111092160B (zh) 一种钝化反型结构钙钛矿太阳能电池下界面的方法
CN110335945B (zh) 一种双电子传输层无机钙钛矿太阳能电池及其制法和应用
CN104218109A (zh) 一种高效率钙钛矿薄膜太阳电池及其制备方法
CN114256387B (zh) 一种钙钛矿-异质结三端mwt结构叠层太阳能电池的制备方法
CN112018100A (zh) 一种硅/钙钛矿叠层太阳能电池
EP4311388A1 (en) Perovskite/silicon heterojunction tandem solar cell and production method therefor
WO2016023064A1 (en) A photovoltaic cell and a method of forming a photovoltaic cell
KR101794988B1 (ko) 페로브스카이트 광흡수층 제조방법 및 이를 적용한 태양전지 제조방법
CN114551637A (zh) 钙钛矿光吸收层及其制备方法、太阳能电池及其制备方法
CN114335348A (zh) 一种pn异质结硒化锑/钙钛矿太阳能电池及其制备方法
KR101694803B1 (ko) 금속 나노선을 광전극으로 포함하는 페로브스카이트 태양전지 및 이의 제조방법
Farhana et al. Enhancement of the photoconversion efficiency of Sb2S3 based solar cell by overall optimization of electron transport, light harvesting and hole transport layers
CN110556433B (zh) 一种碲化镉纳米晶太阳电池及其制备方法
KR101701670B1 (ko) 산소와 할로겐 원자로 개질 된 n형 반도체를 갖는 페로브스카이트 태양전지 및 그 제조방법
CN113644195A (zh) 一种全无机钙钛矿/有机叠层太阳电池及其制备方法
CN109935652B (zh) 一种CdTe纳米晶太阳电池及其制备方法
CN114447234B (zh) 有机无机杂化钙钛矿表界面处理方法、材料及应用
KR101983094B1 (ko) 하이브리드 광 흡수층을 포함하는 페로브스카이트 태양전지 및 그 제조 방법
KR101791801B1 (ko) 칼코겐원소로 개질된 n형 반도체를 갖는 페로브스카이트 태양전지 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210330