CN110545917A - 含有TiO2的多孔整料及其生产方法 - Google Patents

含有TiO2的多孔整料及其生产方法 Download PDF

Info

Publication number
CN110545917A
CN110545917A CN201880027993.8A CN201880027993A CN110545917A CN 110545917 A CN110545917 A CN 110545917A CN 201880027993 A CN201880027993 A CN 201880027993A CN 110545917 A CN110545917 A CN 110545917A
Authority
CN
China
Prior art keywords
monolith
porous monolith
porous
solution
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880027993.8A
Other languages
English (en)
Inventor
S.贝尔纳代
A.费坎
D.乌齐奥
R-V.巴科夫
S.拉万
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP NEW ENERGY Co
IFP Energies Nouvelles IFPEN
Original Assignee
IFP NEW ENERGY Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP NEW ENERGY Co filed Critical IFP NEW ENERGY Co
Publication of CN110545917A publication Critical patent/CN110545917A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/31Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/653500-1000 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/657Pore diameter larger than 1000 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/69Pore distribution bimodal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0045Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by a process involving the formation of a sol or a gel, e.g. sol-gel or precipitation processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0058Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity open porosity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0067Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the density of the end product
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/007Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5041Titanium oxide or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • C04B2111/00827Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Catalysts (AREA)
  • Nanotechnology (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种多孔整料,其包含相对于整料的总重量计20重量%至70重量%的TiO2和相对于整料的总重量计30重量%至80重量%的选自二氧化硅、氧化铝或二氧化硅‑氧化铝的耐火氧化物,其特征在于所述多孔整料具有小于0.19 g/ml的堆密度。

Description

含有TiO2的多孔整料及其生产方法
技术领域
本发明的领域在于具有分级结构的材料。更特别地,本发明涉及含有TiO2的多孔整料及其制备方法。
现有技术
制备具有多重孔隙率的基于无机氧化物,特别基于二氧化硅的整料是已知做法,借助通过直接乳液成型的方法获得大孔率。
A. Araya等人(US 4 888 309)和A. Imhof等人(Nature, vol. 389, 1997年10月30日,第948-952页)描述了使用溶解在醇中并通过加入少量水水解的醇盐实施溶胶-凝胶法,要强调的是,大多数醇盐与水的反应性高并且没有产生稳定乳液。这一文献也描述了由油在甲酰胺中的单分散乳液制备孔径为50 nm至几微米的氧化钛、氧化锆或二氧化硅的单分散微孔材料。
B. P. Binks(Adv. Mater., 2002, 14, No. 24, 第1824-1827页,12月17日)描述了在不存在表面活性剂的情况下由仅用二氧化硅粒子稳定化的乳液制备多孔二氧化硅。
J. S. Beck等人(J. Am. Chem. Soc., 1992, 114, 10834-10843)描述了由硅酸盐或铝硅酸盐构成的介孔固体的制备。
专利申请WO 2015/110772描述了多孔整料形式的基于N-TiO2的材料作为用于空气或水中的污染物在可见光谱辐射下降解或用于水在可见光谱辐射下裂解成H2的光催化剂的用途。
另一专利申请FR 2975309描述了含TiO2的多孔整料的制备模式及其作为用于空气或水中的污染物在辐照下降解的光催化剂的用途。所要求保护的整料具有大约1 g/ml的堆密度。
从M. Tahir和N. S. Amin(Appl. Catal. A: General 467 (2013), 483-496和Chem. Eng. J., 230 (2013), 314-327)中也已知使用含有被半导体化合物涂布的毫米级通道的“蜂窝”型整料。这种类型的物体也具有高的每单位体积密度(大约0.8至0.9 g/ml)。
但是,现有技术文献无一描述了含有至少20重量% TiO2并具有小于0.19 g/ml的堆密度的多孔整料类型的材料。根据本发明的主题,高TiO2含量和低堆密度的组合使得有可能提供与现有技术相比具有增加的暴露TiO2表面的整料。这些性质允许根据本发明的整料有利地用于催化或光催化用途。
更特别地,本发明描述了一种多孔整料,其含有相对于整料的总重量计20重量%至70重量%的TiO2、相对于整料的总重量计30重量%至80重量%的选自二氧化硅、氧化铝或二氧化硅-氧化铝的耐火氧化物并具有小于0.19 g/ml的堆密度。通过取多孔整料的重量与其几何体积的比率计算堆密度。
根据一个变体,所述多孔整料具有对于0.2至50 nm的孔径而言0.01至1 ml/g,优选0.05至0.5 ml/g的介孔体积。
根据一个变体,所述多孔整料具有0.1至3 ml/g,优选0.2至2.5 ml/g的I型大孔体积,即其孔径大于50 nm和小于或等于1000 nm。
根据一个变体,所述多孔整料具有0.1至8 ml/g,优选0.5至8 ml/g的II型大孔体积,即其孔径大于1 µm和小于或等于10 µm。
根据一个优选变体,多孔整料形式的所述光催化剂具有如上所述的介孔率和/或I型大孔率和/或II型大孔率。
根据一个变体,所述多孔整料也具有对于大于10 µm的孔径而言小于0.5 ml/g的大孔体积。
大孔和介孔体积通过根据标准ASTM D4284-83在4000巴(400 MPa)的最大压力下、使用484达因/厘米的表面张力和140º的接触角的压汞法测量。
根据一个变体,多孔整料形式的所述光催化剂具有150至700 m2/g,优选200至600m2/g的比表面积(根据由如S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem.Soc., 1938, 60 (2), 第309-319页中规定的Brunauer, Emmett, Teller方法,即BET方法建立的标准ASTM D 3663-78测量)。
优选地,TiO2为其锐钛矿和金红石形式,锐钛矿:金红石比优选在95:5至50:50之间。
本发明还涉及一种制备所述多孔整料的方法,其中在与硅和/或铝氧化物前体不同的步骤中引入Ti前体。该方法包括下列步骤:
a) 将含表面活性剂的溶液与酸性水溶液混合以获得含表面活性剂的酸性水溶液;
b) 将至少一种硅和/或铝前体添加到在步骤a)中获得的溶液中;
c) 将至少一种与在步骤b)中获得的溶液不混溶的液体有机化合物添加到在步骤b)中获得的溶液中以形成乳液;
d) 在步骤c)中获得的乳液在湿状态下熟化以获得凝胶;
e) 用有机溶液洗涤在步骤d)中获得的凝胶;
f) 将在步骤e)中获得的凝胶干燥和煅烧以获得多孔整料;
g) 将包含至少一种可溶性钛前体的溶液浸渍在步骤f)中获得的多孔整料的孔隙中;
h) 任选地,在步骤g)中获得的多孔整料在湿状态下熟化;
i) 将在步骤g)或h)中获得的多孔整料干燥和煅烧以获得含TiO2的多孔整料。
发明详述
定义
在下文中,化学元素的族根据CAS分类给出(CRC Handbook of Chemistry andPhysics,CRC Press出版,主编D. R. Lide,第81版,2000-2001)。例如,根据CAS分类的第VIII族对应于根据新IUPAC分类的第8、9和10列的金属。
在本说明书中,根据IUPAC公约,术语“微孔”意在表示直径小于2 nm的孔隙;术语“介孔”意在表示直径大于2 nm和小于或等于50 nm的孔隙,且术语“大孔”意在表示直径大于50 nm的孔隙,更特别地,术语“I型大孔”意在表示直径大于50 nm和小于或等于1000 nm(1 µm)的孔隙,且术语“II型大孔”意在表示直径大于1 µm和小于或等于10 µm的孔隙。
描述
根据本发明,该多孔整料包含相对于整料的总重量计20重量%至70重量%的TiO2,优选20重量%至60重量%的TiO2。根据本发明的多孔整料还包含相对于整料的总重量计30重量%至80重量%的选自二氧化硅、氧化铝或二氧化硅-氧化铝的耐火氧化物,优选40重量%至80重量%。
根据本发明的多孔整料具有小于0.19 g/ml,优选小于0.16 g/ml的堆密度。通过多孔整料的重量与其几何体积的比率计算堆密度。
有利地,所述多孔整料可含有独自或作为混合物的至少一种选自元素周期表的第IA、IIA、VIIIB、IB和IIIA族元素的元素M,其为金属或氧化状态。优选地,元素M的总含量为多孔整料的总重量的0.001重量%至20重量%。
有利地,多孔整料可用选自金属元素,例如元素V、Ni、Cr、Mo、Fe、Sn、Mn、Co、Re、Nb、Sb、La、Ce、Ta或Ti,非金属元素,例如C、N、S、F或P的一种或多种元素,或用金属和非金属元素的混合物掺杂。掺杂元素的含量为多孔整料的总重量的0.001重量%至5重量%。
根据一个变体,所述多孔整料具有对于0.2至50 nm的孔径而言0.01至1 ml/g,优选0.05至0.5 ml/g的介孔体积。
根据一个变体,所述多孔整料具有0.1至3 ml/g,优选0.2至2.5 ml/g的I型大孔体积,即其孔径大于50 nm和小于或等于1000 nm(1 µm)。
根据一个变体,所述多孔整料具有0.1至8 ml/g,优选0.5至8 ml/g的II型大孔体积,即其孔径大于1 µm和小于或等于10 µm。
根据一个优选变体,所述多孔整料具有介孔率和/或I型大孔率和/或II型大孔率。
根据一个变体,所述多孔整料也具有对于大于10 µm的孔径而言小于0.5 ml/g的大孔体积。
根据一个变体,所述多孔整料具有150至700 m2/g的BET表面积。
本发明还描述了制备所述多孔整料的方法,以在与硅和/或铝氧化物前体不同的步骤中引入Ti前体;
a) 将含表面活性剂的溶液与酸性水溶液混合以获得含表面活性剂的酸性水溶液;
b) 将至少一种硅和/或铝前体添加到在步骤a)中获得的溶液中;
c) 将至少一种与在步骤b)中获得的溶液不混溶的液体有机化合物添加到在步骤b)中获得的溶液中以形成乳液;
d) 在步骤c)中获得的乳液在湿状态下熟化以获得凝胶;
e) 用有机溶液洗涤在步骤d)中获得的凝胶;
f) 将在步骤e)中获得的凝胶干燥和煅烧以获得多孔整料;
g) 将包含至少一种可溶性钛前体的溶液浸渍在步骤f)中获得的多孔整料的孔隙中;
h) 任选地,在步骤g)中获得的多孔整料在湿状态下熟化;
i) 将在步骤g)或h)中获得的多孔整料干燥和煅烧以获得含TiO2的多孔整料。
下面详细描述这些步骤。
步骤a) (含表面活性剂的酸性水溶液的制备)
在根据本发明的方法的步骤a)的过程中,将含表面活性剂的溶液与酸性水溶液混合以获得含表面活性剂的酸性水溶液。这一步骤优选在环境温度下进行。
表面活性剂可以是阴离子型、阳离子型、两性或非离子型。表面活性剂优选是阳离子表面活性剂。表面活性剂非常优选是溴化十六烷基三甲基铵或溴化十四烷基三甲基铵。酸性水溶液优选选自无机酸性水溶液,如硝酸、硫酸、磷酸、盐酸或氢溴酸,或有机酸,如羧酸或磺酸,独自或作为混合物。酸性水溶液优选选自盐酸水溶液或硝酸水溶液。在步骤a)中获得的溶液的pH优选小于4。
步骤b) (至少一种硅酮和/或铝前体的添加)
在根据本发明的方法的步骤b)的过程中,将至少一种硅和/或铝前体添加到在步骤a)中获得的溶液中。
优选选择一种或多种醇盐类型的铝和/或硅前体。非常优选地,一种或多种铝和/或硅前体选自异丙醇铝、叔丁醇铝、原硅酸四乙酯或原硅酸四甲酯。
优选地,“前体/表面活性剂”重量比为0.1至10,优选0.2至5。
步骤c) (乳液的形成)
在根据本发明的方法的步骤c)的过程中,将至少一种与在步骤b)中获得的溶液不混溶的液体有机化合物添加到在步骤b)中获得的溶液中以形成乳液。这一步骤优选在环境温度下进行。
优选地,该液体有机化合物是具有5至15个碳原子的烃或烃混合物;例如,可以提到十二烷。优选地,“液体有机化合物/在步骤b)中获得的溶液”重量比为0.2至5,优选0.3至3。
步骤d) (凝胶的形成)
在根据本发明的方法的步骤d)的过程中,在步骤c)中获得的乳液在湿状态下熟化以获得凝胶。
优选地,在5至80℃,优选20至70℃的温度下进行熟化。优选地,熟化进行1至30天,优选1至15天。
步骤e) (洗涤)
在根据本发明的方法的步骤d)的过程中,用有机溶液洗涤在步骤d)中获得的凝胶。这一步骤优选在环境温度下进行。
优选地,该有机溶液是丙酮、乙醇、甲醇、异丙醇、四氢呋喃、乙酸乙酯或乙酸甲酯,独自或作为混合物。优选地,该洗涤步骤重复至少两次。
步骤f) (干燥和煅烧)
在根据本发明的方法的步骤f)的过程中,在步骤e)中获得的凝胶在空气下干燥和煅烧以获得多孔整料。
优选地,在5至80℃,优选20至75℃的温度下进行干燥。优选地,干燥进行1至30天,优选1至15天。
通常在优选包含0至80克水/千克空气、5体积%至25体积%的氧气含量和0体积%至10体积%的二氧化碳含量的空气下进行干燥;例如,该空气是来自烃,优选甲烷的燃烧的空气,或在加热空气下进行干燥。
优选地,在空气下在300至1000℃,优选350至900℃的温度下进行煅烧。优选地,煅烧进行1至72小时,优选2至48小时。
再更优选地,在两个步骤中进行煅烧:在120至250℃之间1至10小时的第一温度稳定期,然后在300至950℃之间2至24小时的第二温度稳定期。
通常,在燃烧空气,优选包含40至80克水/千克燃烧空气、5体积%至15体积%的氧气含量和4体积%至10体积%的CO2含量的来自甲烷燃烧的空气下进行煅烧步骤。
步骤g) (Ti前体的浸渍)
在根据本发明的方法的步骤g)的过程中,将包含至少一种可溶性钛前体的溶液浸渍在步骤f)中获得的多孔整料的孔隙中。
优选地,钛前体选自醇钛;非常优选地,钛前体选自异丙醇钛或原钛酸四乙酯,独自或作为混合物。
任选地,可以独自或与醇钛前体一起使用至少一种其它无机钛前体,其为离子类型或溶胶形式。
步骤h) (任选熟化步骤)
在根据本发明的方法的步骤h)的过程中,在步骤g)中获得的多孔整料在湿状态下熟化。
优选地,熟化步骤然后在5至80℃,优选20至75℃的温度下进行0.5至30天,优选1至15天。
步骤i) (干燥和煅烧)
在根据本发明的方法的步骤h)的过程中,在步骤g)或h)中获得的多孔整料在空气下干燥和煅烧以获得含TiO2的多孔整料。
优选地,在5至80℃,优选20至75℃的温度下进行干燥。优选地,干燥进行1至30天,优选1至15天。
通常在包含0至80克水/千克燃烧空气、5体积%至25体积%的氧气含量和0体积%至10体积%的二氧化碳含量的来自烃,优选甲烷的燃烧的空气或加热空气下进行干燥。
优选地,在空气下在300至1000℃的温度下进行煅烧。优选地,煅烧进行1至72小时,优选2至48小时。
优选地,在空气下煅烧的步骤用在80至150℃之间1至10小时的第一温度稳定期,然后在大于150和小于或等于250℃ 1至10小时的第二温度稳定期和最后在300至700℃之间0.5至24小时的第三温度稳定期进行。
通常,在燃烧空气,优选包含40至80克水/千克燃烧空气、5体积%至15体积%的氧气含量和4体积%至10体积%的CO2含量的来自甲烷燃烧的空气下进行煅烧步骤。
根据一个变体,TiO2可在所述方法的任一步骤中和通过本领域技术人员已知的任何方法用选自金属离子,例如元素V、Ni、Cr、Mo、Fe、Sn、Mn、Co、Re、Nb、Sb、La、Ce、Ta或Ti,非金属元素,例如C、N、S、F或P,或金属和非金属元素的混合物的一种或多种元素掺杂。
根据一个变体,在步骤a)、b)和/或g)中,任选在步骤i)后加入金属或氧化状态的选自元素周期表的第IA、IIA、VIIIB、IB和IIIA族元素的元素M的前体。该前体可为溶解在溶液中的形式、固体粉末形式或溶胶形式。
当试图获得完全或部分为其金属形式的元素M时,有可能在步骤i)后进行在氢气料流下在100至600℃的温度下还原0.5至24h的步骤。
非限制性地,根据本发明的含TiO2的多孔整料可有利地用于通过水的解离生产氢气(dihydrogen)的光催化。
下列实施例例示本发明而不限制其范围。
实施例
实施例1: 固体A(非根据本发明)TiO2整料
将1克聚乙二醇(AldrichTM,MW = 20 000)添加到2毫升蒸馏水中,然后与1毫升盐酸溶液(37重量%,AldrichTM,纯度97%)混合。在环境温度下将1.1克异丙醇钛(AldrichTM,纯度97%)添加到该混合物中并搅拌所得混合物直至获得明显单相混合物。
然后将该混合物倒入内径5.5厘米的Petri培养皿,将其置于饱和器(由饱和器根据蒸气压定律调节水蒸气含量)7天以在环境温度下胶凝。
所得凝胶然后用异丙醇(AldrichTM,纯度> 99.5%)相继洗涤两次,然后在环境温度下干燥2天。最后,凝胶在马弗炉中在空气下在180℃下煅烧2小时,然后在350℃下煅烧6小时。
然后以TiO2基多孔整料的形式获得固体A。
固体A具有0.16 ml/g的介孔体积、0.19 ml/g的I型大孔体积和2.3 ml/g的II型大孔体积。固体A具有94 m2/g的比表面积。
多孔整料A具有0.23 g/ml的堆密度。
实施例2: 固体B(非根据本发明)TiO2整料
将1.12克溴化十四烷基三甲基铵(AldrichTM,纯度> 99%)添加到2毫升蒸馏水中,然后与1毫升盐酸溶液(37重量%,AldrichTM,纯度97%)混合。在环境温度下将2.2克异丙醇钛(AldrichTM,纯度97%)添加到该混合物中并搅拌所得混合物直至获得明显单相混合物。
将7克庚烷(AldrichTM,纯度> 99%)在搅拌下缓慢引入该混合物直至形成乳液。
然后将0.4毫升氨水溶液(AldrichTM,ACS试剂,28.0-30.0% NH3基础)添加到该乳液中。
然后将该乳液倒入内径5.5厘米的Petri培养皿,将其置于饱和器7天以在环境温度下胶凝。
所得凝胶然后第一次用无水四氢呋喃(AldrichTM,纯度> 99%)洗涤,然后用按体积计70/70的无水四氢呋喃/丙酮混合物(VWRTM,ACS级)相继洗涤两次。
该凝胶然后在环境温度下干燥7天。最后,凝胶在马弗炉中在空气下在200℃下煅烧2小时,然后在450℃下煅烧6小时。
然后以TiO2基多孔整料的形式获得固体B。
固体B具有0.29 ml/g的介孔体积、0.30 ml/g的I型大孔体积和小于0.4 ml/g的II型大孔体积。固体B具有135 m2/g的比表面积。
多孔整料B具有1.1 g/ml的堆密度。
实施例3: 固体C(根据本发明)TiO2/SiO2整料
将1.12克溴化十四烷基三甲基铵(AldrichTM,纯度>99%)添加到2毫升蒸馏水中,然后与1毫升盐酸溶液(37重量%,AldrichTM,纯度97%)混合。在环境温度下将1.02克原硅酸四乙酯(AldrichTM,纯度> 99%)添加到该混合物中并搅拌所得混合物直至获得明显单相混合物。
将7克十二烷(AldrichTM,纯度> 99%)在搅拌下缓慢引入该混合物直至形成乳液。
然后将该乳液倒入内径5.5厘米的Petri培养皿,将其置于饱和器7天以在环境温度下胶凝。
所得凝胶然后第一次用无水四氢呋喃(AldrichTM,纯度> 99%)洗涤,然后用按体积计70/30的无水四氢呋喃/丙酮混合物(VWRTM,ACS级)相继洗涤两次。
该凝胶然后在环境温度下干燥7天。最后,凝胶在马弗炉中在空气下在180℃下煅烧2小时,然后在650℃下煅烧5小时。然后获得总孔隙体积为10.5 ml/g的SiO2基多孔整料。
在搅拌下制备含有34毫升蒸馏水、44.75毫升异丙醇(AldrichTM,纯度> 99.5%)、10.74毫升盐酸(37重量%,AldrichTM,纯度97%)和10.50毫升异丙醇钛(AldrichTM,纯度97%)的溶液。将与总孔隙体积对应的一部分这种溶液浸渍在整料的孔隙中,然后在环境温度下熟化12小时。该整料然后在环境气氛下干燥24小时。二次重复该步骤。最后,该整料在马弗炉中在空气下在120℃下煅烧2小时,然后在180℃下煅烧2小时,最后在400℃下煅烧1小时。然后获得包含在SiO2基质中的TiO2的多孔整料。
固体C具有0.20 ml/g的介孔体积、1.15 ml/g的I型大孔体积和5.8 ml/g的II型大孔体积。固体C具有212 m2/g的比表面积。通过ICP-AES测得的Ti元素的含量为27.35重量%,其等同于在固体C中52.1重量%的TiO2半导体。
多孔整料C具有0.14 g/ml的堆密度。
实施例4: 固体用于通过在气相中的水解离光催化生产氢气的用途
对多孔整料A、B和C施以在配有由石英制成的光学窗口和在光学窗口对面的玻璃料(将固体沉积在其上)的流通床连续钢反应器中通过在气相中的水解离光催化生产氢气的试验。
将整料置于玻璃料上,它们的直径等于反应器的直径。所有光催化剂的辐照表面积为8.042477 x 10-04 m2。在环境温度下在大气压下进行试验。3 ml/min的氩气流速在分配到反应器中之前经过水饱和器。每4分钟通过微型气相色谱法分析流出物,以监测由在饱和器中夹带的水的光催化还原制成的氢气气体的产量。由Xe-Hg灯(AsahiTM,MAX302TM)提供UV-可见光辐照源。对于315至400 nm的波长范围,辐照功率始终保持在80 W/m2。该试验的持续时间为20小时。
光催化活性以µmol制成的氢气/小时/克TiO2表示。它们是在试验的整个持续期间的平均活性。结果列在下表1中。
表1: 就用于由氩气和H2O的混合物在气相中生产氢气的平均活性计的光催化剂 的性能水平
活性值表明根据本发明的固体在用于通过水的解离光催化生产氢气时表现出更好的性能水平。

Claims (15)

1.一种多孔整料,其包含相对于整料的总重量计20重量%至70重量%的TiO2、相对于整料的总重量计30重量%至80重量%的选自二氧化硅、氧化铝或二氧化硅-氧化铝的耐火氧化物,其特征在于所述多孔整料包含小于0.19 g/ml的堆密度。
2.如权利要求1中所述的整料,其特征在于所述多孔整料包含小于0.16 g/ml的堆密度。
3.如权利要求1或权利要求2中所述的整料,其特征在于其包含对于0.2至50 nm的孔径而言0.1至1 ml/g的介孔体积。
4.如权利要求1或权利要求2中所述的整料,其特征在于其包含0.1至3 ml/g的I型大孔体积,其孔径大于50 nm和小于或等于1000 nm。
5.如权利要求1或权利要求2中所述的整料,其特征在于其包含0.1至8 ml/g的II型大孔体积,其孔径大于1 µm和小于或等于10 µm。
6.如权利要求 1至5任一项中所述的整料,其特征在于其包含介孔率和/或I型大孔率和/或II型大孔率。
7.如权利要求 1至6任一项中所述的整料,其特征在于其也包含对于大于10 µm的孔径而言小于0.5 ml/g的大孔体积。
8.如权利要求 1至7任一项中所述的整料,其特征在于其包含150至700 m2/g的BET比表面积。
9.如权利要求 1至8任一项中所述的整料,其特征在于其还包含独自或作为混合物的至少一种选自元素周期表的第IA、IIA、VIIIB、IB和IIIA族元素的元素M,其为金属或氧化状态。
10.如权利要求9中所述的整料,其中元素M的含量为多孔整料的总重量的0.001重量%至20重量%。
11.如权利要求 1至10任一项中所述的整料,其特征在于其还包含选自金属元素,例如元素V、Ni、Cr、Mo、Fe、Sn、Mn、Co、Re、Nb、Sb、La、Ce、Ta或Ti,非金属元素,例如C、N、S、F或P,或金属和非金属元素的混合物的一种或多种掺杂元素。
12.如权利要求11中所述的整料,其中掺杂元素的含量为多孔整料的总重量的0.001重量%至5重量%。
13.一种制备如权利要求 1至12任一项中所述的多孔整料的方法,其包括下列步骤:
a) 将含表面活性剂的溶液与酸性水溶液混合以获得含表面活性剂的酸性水溶液;
b) 将至少一种硅和/或铝前体添加到在步骤a)中获得的溶液中;
c) 将至少一种与在步骤b)中获得的溶液不混溶的液体有机化合物添加到在步骤b)中获得的溶液中以形成乳液;
d) 在步骤c)中获得的乳液在湿状态下熟化以获得凝胶;
e) 用有机溶液洗涤在步骤d)中获得的凝胶;
f) 将在步骤e)中获得的凝胶干燥和煅烧以获得多孔整料;
g) 将包含至少一种可溶性钛前体的溶液浸渍在步骤f)中获得的多孔整料的孔隙中;
h) 任选地,在步骤g)中获得的多孔整料在湿状态下熟化;
i) 将在步骤g)或h)中获得的多孔整料干燥和煅烧以获得含TiO2的多孔整料。
14.如权利要求13中所述的方法,其中在步骤i)中,在5至80℃的温度下进行干燥并在300至1000℃的温度下进行煅烧。
15.如权利要求13或权利要求14中所述的方法,其中在步骤i)中,在两个相继步骤中进行煅烧:在120至250℃之间1至10小时的第一温度稳定期,然后在300至950℃之间2至24小时的第二温度稳定期。
CN201880027993.8A 2017-04-28 2018-04-23 含有TiO2的多孔整料及其生产方法 Pending CN110545917A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1753757 2017-04-28
FR1753757A FR3065649B1 (fr) 2017-04-28 2017-04-28 Monolithe poreux contenant du tio2 et son procede de preparation
PCT/EP2018/060376 WO2018197432A1 (fr) 2017-04-28 2018-04-23 MONOLITHE POREUX CONTENANT DU TiO2 ET SON PROCEDE DE PREPARATION

Publications (1)

Publication Number Publication Date
CN110545917A true CN110545917A (zh) 2019-12-06

Family

ID=59381453

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880027993.8A Pending CN110545917A (zh) 2017-04-28 2018-04-23 含有TiO2的多孔整料及其生产方法

Country Status (7)

Country Link
US (1) US11077427B2 (zh)
EP (1) EP3615210A1 (zh)
JP (1) JP7203755B2 (zh)
CN (1) CN110545917A (zh)
AU (1) AU2018258982A1 (zh)
FR (1) FR3065649B1 (zh)
WO (1) WO2018197432A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3080545B1 (fr) * 2018-04-26 2020-04-10 IFP Energies Nouvelles Procede de captation et de decontamination d'un milieu gazeux en presence d'un monolithe comprenant du tio2 et de la silice.
CN110038595A (zh) * 2019-03-28 2019-07-23 昆明理工大学 一种Cr、S共掺杂TiO2纳米粉体的制备方法
FR3115219B1 (fr) 2020-10-15 2023-07-14 Ifp Energies Now Lit catalytique comprenant un catalyseur photocatalytique particulaire

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1068975A (zh) * 1992-08-17 1993-02-17 中国石油化工总公司 低密度、大孔容、高强度氧化铝载体的制备方法
JP2008105905A (ja) * 2006-10-26 2008-05-08 Matsushita Electric Ind Co Ltd 水の光分解装置
JP2009007219A (ja) * 2007-06-29 2009-01-15 Shinetsu Quartz Prod Co Ltd 多孔質光触媒体の製造方法及び多孔質光触媒体並びに浄化装置
CN101722052A (zh) * 2008-10-15 2010-06-09 赢创德固赛有限责任公司 催化剂载体
JP2010535614A (ja) * 2007-08-08 2010-11-25 サン−ゴバン クワルツ エス.ア.エス. 光触媒フィルター用媒体
CN101974314A (zh) * 2010-09-29 2011-02-16 北京航空航天大学 隔热材料用二氧化硅基多孔块材及其包覆-干压成型的制备方法
CN102355946A (zh) * 2009-03-16 2012-02-15 巴斯夫欧洲公司 基于硅胶的催化剂载体
CN103861574A (zh) * 2014-02-28 2014-06-18 中国海洋石油总公司 一种钛硅复合氧化物的制备方法
CN104150525A (zh) * 2014-08-21 2014-11-19 安徽理工大学 氧化物多孔材料及其普适性制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2199541A (en) 1986-10-16 1988-07-13 Rig Design Services Production of engineering drawings
US5322821A (en) * 1993-08-23 1994-06-21 W. R. Grace & Co.-Conn. Porous ceramic beads
FR2937970B1 (fr) 2008-10-30 2012-06-15 Univ Paris Curie Procede de preparation d'un monolithe de carbone ou de ceramique alveolaire comportant un reseau poreux hierarchise
FR2975309A1 (fr) 2011-05-19 2012-11-23 Centre Nat Rech Scient Monolithe macrocellulaire de dioxyde de titane, procede de preparation, utilisation a titre de photocatalyseur et procede de decontamination
FR3011547B1 (fr) * 2013-10-03 2015-12-11 Centre Nat Rech Scient Materiau composite solide alveolaire comportant des nanoparticules metalliques, procede de preparation et utilisations pour le stockage reversible de l'hydrogene
FR3016813B1 (fr) 2014-01-27 2017-11-24 Total Sa Materiau a base de ti02 absorbant dans le visible et procede pour sa fabrication
JP2016143742A (ja) * 2015-01-30 2016-08-08 シャープ株式会社 波長変換部材、発光装置、および波長変換部材の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1068975A (zh) * 1992-08-17 1993-02-17 中国石油化工总公司 低密度、大孔容、高强度氧化铝载体的制备方法
JP2008105905A (ja) * 2006-10-26 2008-05-08 Matsushita Electric Ind Co Ltd 水の光分解装置
JP2009007219A (ja) * 2007-06-29 2009-01-15 Shinetsu Quartz Prod Co Ltd 多孔質光触媒体の製造方法及び多孔質光触媒体並びに浄化装置
JP2010535614A (ja) * 2007-08-08 2010-11-25 サン−ゴバン クワルツ エス.ア.エス. 光触媒フィルター用媒体
CN101722052A (zh) * 2008-10-15 2010-06-09 赢创德固赛有限责任公司 催化剂载体
CN102355946A (zh) * 2009-03-16 2012-02-15 巴斯夫欧洲公司 基于硅胶的催化剂载体
CN101974314A (zh) * 2010-09-29 2011-02-16 北京航空航天大学 隔热材料用二氧化硅基多孔块材及其包覆-干压成型的制备方法
CN103861574A (zh) * 2014-02-28 2014-06-18 中国海洋石油总公司 一种钛硅复合氧化物的制备方法
CN104150525A (zh) * 2014-08-21 2014-11-19 安徽理工大学 氧化物多孔材料及其普适性制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘鹏程等: "球形TiO_2-Al_2O_3的制备、结构和理化性能研究", 《无机化学学报》 *

Also Published As

Publication number Publication date
US11077427B2 (en) 2021-08-03
JP2020517443A (ja) 2020-06-18
FR3065649A1 (fr) 2018-11-02
EP3615210A1 (fr) 2020-03-04
FR3065649B1 (fr) 2020-05-29
JP7203755B2 (ja) 2023-01-13
US20210101133A1 (en) 2021-04-08
AU2018258982A1 (en) 2019-10-17
WO2018197432A1 (fr) 2018-11-01

Similar Documents

Publication Publication Date Title
Yan et al. Preparation, characterization and photocatalytic activity of Si-doped and rare earth-doped TiO2 from mesoporous precursors
Nasir et al. Study of synergistic effect of Ce-and S-codoping on the enhancement of visible-light photocatalytic activity of TiO2
He et al. Thermally stable SiO2-doped mesoporous anatase TiO2 with large surface area and excellent photocatalytic activity
Zhang et al. Preparation and photocatalytic activity of B–N co-doped mesoporous TiO2
DK1719737T3 (en) PROCEDURE FOR PREPARING A TEMPERATURE-STABLE TiO2 / SiO2 MIXTURE OXIDE AND ITS USE AS A CATALYST CARRIER
CA2781794C (en) Complex oxide, method for producing same and exhaust gas purifying catalyst
US11077427B2 (en) Porous monolith containing TiO2 and method for the production thereof
Cheng et al. SiO2/TiO2 composite aerogels: preparation via ambient pressure drying and photocatalytic performance
Jaenicke et al. Structural and morphological control in the preparation of high surface area zirconia
KR20090115714A (ko) 금속 산화물 및 이의 복합물 기재 에어로겔 물질
KR20120029475A (ko) 비다공도를 갖는, 산화세륨 및 산화지르코늄을 포함하는 조성물, 그의 제조 방법 및 촉매작용에서의 그의 용도
US7807605B2 (en) Process for the preparation of a TiO2-containing catalyst or catalyst support which is stable to high temperatures
Park et al. Removal of sulfur dioxide from dibenzothiophene sulfone over Mg-based oxide catalysts prepared by spray pyrolysis
US11739000B2 (en) Preparation of SiO2—TiO2 composite aerogels and SiO2@TiO2 core-shell aerogels with high thermal stability and enhanced photocatalysis
Choi et al. Synthesis of high surface area TiO 2 aerogel support with Pt nanoparticle catalyst and CO oxidation study
Shimoda et al. Synthesis of tetragonal zirconia in mesoporous silica and its catalytic properties for methanol oxidative decomposition
Galindo et al. Synthesis and characterization of titania-based ternary and binary mixed oxides prepared by the sol− gel method and their activity in 2-propanol dehydration
JP6245695B2 (ja) 排ガス浄化用触媒担体及び排ガス浄化用触媒
CN106560230A (zh) 基于铁氮掺杂二氧化钛的复合催化剂在一氧化氮光催化中的应用
JP5828478B2 (ja) 排ガス浄化用触媒担体及び排ガス浄化用触媒
Wen et al. Synthesis, characterization and photo-catalytic performance of meso-porous Si–N co-doped nano-spherical anatase TiO 2 with high thermal stability
Brodzik et al. The influence of preparation method on the physicochemical properties of titania–silica aerogels: Part two
Brodzik et al. The influence of preparation method on the physicochemical properties of titania–silica aerogels
AU2018258984B2 (en) Process for preparing a monolith with multimodal porosity
Wang et al. Surface chemical structure of titania-silica nanocomposite powder

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20191206