CN110543646A - 磁斯格明子晶格和磁涡旋晶格的量子力学模拟方法 - Google Patents

磁斯格明子晶格和磁涡旋晶格的量子力学模拟方法 Download PDF

Info

Publication number
CN110543646A
CN110543646A CN201810526044.6A CN201810526044A CN110543646A CN 110543646 A CN110543646 A CN 110543646A CN 201810526044 A CN201810526044 A CN 201810526044A CN 110543646 A CN110543646 A CN 110543646A
Authority
CN
China
Prior art keywords
magnetic
quantum
simulation method
lattice
quantum mechanical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810526044.6A
Other languages
English (en)
Other versions
CN110543646B (zh
Inventor
刘照森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201810526044.6A priority Critical patent/CN110543646B/zh
Publication of CN110543646A publication Critical patent/CN110543646A/zh
Application granted granted Critical
Publication of CN110543646B publication Critical patent/CN110543646B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Hall/Mr Elements (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及计算物理和材料学领域,将量子理论用于模拟磁斯格明子晶格和磁涡旋晶格。包括:1、磁***哈密顿量中的各自旋为量子力学算符;2、所有物理量都严格按照量子理论算出;3.采用自洽算法;4.模拟自高温逐渐降至低温度,以保证程序的正确收敛;5.采用周期性边界条件;6.考虑垂直外加磁场,使因DMI和海森堡交换作用产生的螺旋状条纹,变为斯格明子或涡旋晶格;7.在海森堡交换和DMI作用共存时,考虑Compass型各向异性作用,模拟出近邻涡旋方向相反的斯格明子晶格。克服了微磁学和蒙特‑卡洛二经典方法的不足,使得模拟十分灵活、便捷,尤其在量子尺度内,模拟出二经典方法无法算出的周期性磁结构。

Description

磁斯格明子晶格和磁涡旋晶格的量子力学模拟方法
技术领域
本发明属于计算物理和计算材料学领域,尤其涉及磁斯格明子晶格和磁涡旋晶格的量子力学模拟方法。由于磁斯格明子和磁涡旋的大小常在纳米量级,且需要操控的电流甚小,所以它们被视为下一代磁存储和磁逻辑运算的;理想候选者,因而具有重要的理论和应用价值。
背景技术
数十年来,国内外研究者广泛采用蒙特-卡洛(Monte Carlo)[1]和微磁学(Micromagnetics)[2,3]两种数值方法模拟磁性材料的微观磁结构和研究其宏观物理性质。此二法在科学研究中取得的成果及其在计算物理中的地位是举世公认的,国内外研究者运用它们发表的文献数不胜数,在此无需引证。
然而,这二种方法都建立于经典物理之上:磁***中的自旋或磁矩被当做长度不变的经典矢量。这显然会对磁***的精确描述、计算速度和最终的计算结果产生不良的影响。
为了达到***的平衡态,蒙特-卡洛法采用Metropolis算法,运算中的每一步都开始于旋转各自旋的空间取向,以期降低***的总能量;在运行数万甚至数百万个循环后,对***中每个自旋的矢量值求平均,以确定其大小和空间取向;然后再计算整个***的磁化强度、磁化率、比热等宏观物理量。
微磁学模拟法通常把磁体分成许多网格,每个网格的磁矩设为Mi,并假设它们的大小MS在整个磁体中处处相等,Mi随时间的变化规律满足Landau-Lifshitz-Gilbert方程[2,3]。微磁学通常不考虑温度效应,即仅研究零温的特殊情况。为了克服这一缺陷,Skomski等人把磁矩的大小MS以及***参量K1等作为与温度相关的量[4]。但是,如何确定MS(T)和K1(T)二函数又成了新的问题。此外,诸如纳米等有限***,其中各处的磁矩大小显然不同。所以,微磁学的描述是不够完备的。
蒙特-卡洛和微磁学二方法的经典局限性可能大大影响收敛速度和模拟结果的正确性。可以发现许多文献中用蒙特-卡洛法算出的磁结构并不具应有的对称性。例如,国外学者考虑磁偶极矩之间的相互作用,用二法算出的圆型纳米盘上的磁结构都不对称[5,6];还有,采用蒙特-卡洛根本无法模拟出非零温度下无限二维正方格子上的反铁磁斯格明子晶格[7,8]。
为克服上述二方法的经典局限性,本人近年来研发了一种新的量子模拟方法。因其使用自洽算法(Self-Consistent Algorithm),故简称为SCA方法。在此量子模型中,***哈密顿量中的自旋或总角动量是量子力学算符,而不是经典矢量;任意温度下各种物理量,如磁化强度、***总能量、总自由能、热容量等都严格按照量子理论算出。至今,笔者用此量子方法模拟了纳米颗粒、纳米线、纳米管、纳米盘等[9-16],且模拟结果与实验和理论相符[10,12]。如考虑海森堡交换作用(Heisenberg exchange interaction)与Dzyaloshinsky-Moriya作用(DMI)共存的磁性纳米盘,模拟出了铁磁(FM)和反铁磁(AFM)的涡旋。
在文献[12,13]中,本人利用量子SCA法模拟出纳米盘上的铁磁和反铁磁涡旋。由于纳米盘的有限尺度,故仅算出至多两个磁涡旋。文献[13]题目中使用反铁磁斯格明子一词,但是实际仅仅算出两个反铁磁涡旋,并非周期性的晶格(crystal)。2017年6月25日,本人在第三届全国凝聚态物理会议上的报告题目中也仅涉及纳米盘上的多个磁涡旋而已[16]。
磁斯格明子存在于反演对称性破缺的磁性表面或多层金属的界面上,它通常因Dzyaloshinsky-Moriya作用而产生。磁斯格明子的直径在几个纳米到100纳米之间。它们微小的尺度,及易被微弱电流驱动的优点,被看作下一代理想的磁存储和磁逻辑单元。这些年来,国内外学者都运用微磁学和蒙特-卡洛法,对斯格明子进行理论研究。然而,在多层磁材料的界面上形成的直径仅仅几个纳米的斯格明子[17-20]才具有极高的应用价值。因微磁学基于连续模型,它尚能描述大尺度的斯格明子,但在此微小的尺度内,连续模型不再适用,所以微磁学的描述不再精确和可靠[21]。另一方面,因微观尺度上显著的量子效应,蒙特-卡洛也变得不理想,如用它无法模拟出正方晶格上的反铁磁斯格明子晶格[8]。因此,模拟和研究纳米尺度大小的磁斯格明子和磁涡旋,迫切需要运用量子理论写出的新软件。本发明就是为此目的提出和展开的。
参考文献
[1]K.Binder,Dieter Heermann,Monte Carlo Simulation in StatisticalPhysics,An Introduction,5-th edition.Springer,2010。
[2]W.F.Brown,Micromagnetics,New York:Interscience,1963。
[3]R.H.Kodama,A.E.Beikwitz,Atomic Scale Magnetic Modelling of OxideNanoparticles,Phys.Rev.B 59(1999)6321。
[4]R.Skomski,P.Kumar,George C.Hadjipanayis,and D.J.Sellmyer,Finite-Temperature Micromagnetism,IEEE TRANSACTIONS ON MAGNETICS 49(2013)3229。
[5]E.Y.Vedmedenko,H.P.Oepen,A.Ghazali,J.-C.S.Lévy,and J.Kirschncr,Magnetic Microstructure of the Spin Reorientation Transition:A computerexperiment,Phys.Rev.Lett.84(2000)5884。
[6]Ph.Depondt,J.-C.S.Lévy,F.G.Mertens,Vortex polarity in 2-D magneticdots by Langevin dynamics simulations,Phys.Lett.A 375(2011)628-632。
[7]H.D.Rosales,D.C.Cabra,and P.Pujol,Three-sublattice skyrmioncrystal in the antiferromagnetic triangular lattice,Phys.Rev.B 92(2015)214439。
[8]R.Keesman,M.Raaijmakers,A.E.Baerends,G.T.Barkcma,and R.A.Duine,Skyrmions in square-lattice antiferromagnets,Phys.Rev.B 94(2016)054402。
[9]Z.-S.Liu,M.and V.Magnetism of PrAl2 nanoparticleinvestigated with a quantum simulation model,J.Phys.:Condens.Matter 23(2011)016002。
[10]Z.-S.Liu,V.and M.Magnetism of DyNi2B2Cnanoparticle investigated with a quantum simulation model,Phys.Status SolidiB,249(2012)202-208。
[11]Z.-S.Liu,V.and M.Mutual verification of two newquantum simulation approaches for nanomagnets,Physica E 62(2014)123-127。
[12]Z.-S.Liu,H.Ian,Effects of Dzyaloshinsky-Moriya interaction onmagnetism in nanodisks from a self-consistent approach,J.Nanopart.Res.(2016)18:9。
[13]Z.-S.Liu,H.Ian,Numerical studies on antiferromagnetic skyrmionsin nanodisks by means of a new quantum simulation approach,Chem.Phys.Lett.649(2016)135。
[14]Z.-S.Liu,H.Ian,Duality of two pairs of frustrated double-wallednanotubes consisting of S=1 and S=3/2 spins probed by means of a quantumsimulation approach,Physica E 85(2017)82-89。
[15]Z.-S.Liu,et a1.Vortical structures for nanomagnetic memoryinduced by dipole-dipole interaction in monolayer disks,Superlatt.&Microstr.117(2018)495-502。
[16]刘照森,Computational Studies of Spin Vortices Induced byDzyaloshinsky-Moriya and Dipole-Dipole Interactions on Nanodisks with Two NewQuantum Simulation Approaches,2018年第三届全国凝聚态物理会议(上海)。
[17]S.Heinze,K.von Bergmann,M.Menzel,J.Brede,A.Kubetzka,R.Wiesendanger,G.Bihlmayer,and S.Blügel,Nat.Phys.7(2011)713-718.
[18]B.Dupé,G.Bihlmayer,S.Blügel,and S.Heinze,Nat.Commun.7(2016)11779
[19]J.Hagemeister,D.Iaia,E.Y.Vedmedenko,K.von Bergmann,A.Kubetzka,andR.Wiesendanger,Phys.Rev.Lett.117(2016)207202
[20]J.Hagemeister,N.Romming,K.von Bergmann,E.Y.Vedmedenko,R.Wiesendanger,Nat.Commun.6(2015)8455
[21]Magnetic skyrmion,https://en.wikipedia.org/wiki/Magnetic skyrmion
[22]X.-Z.Yu,Y.Onose,N.Kanazawa,J.H.Park,J.H.Han,Y.Matsui,N.Nagaosa,Y.Tokura,Nature,465(2010)901。
[23]P.F.Bessarab,D.Yudin,D.R.Gulevich,P.Wadley,M.Titov,and OlegA.Tretiakov,Stability and Lifetime of Antiferromagnetic Skyrmions,arXiv:1709.04454v3[cond-mat.mes-hall]22 Sep 2017
发明内容
本发明的目的,一方面是要克服蒙特-卡洛和微磁学二方法的经典局限,另一方面则是要大大拓展本人量子SCA方法的应用,尤其是模拟和研究纳米尺度的斯格明子晶格和涡旋晶格,从而为这一具有重要应用前景的热点问题提供理论方法。
量子力学理论的应用,使得本发明能够细致、正确地描述任意温度下和外磁场中***磁结构,特别是磁斯格明子晶格和磁涡旋晶格的变化规律,达到为实验和现代技术应用服务的目的。
根据量子力学理论,磁***的哈密顿量可写为
其中,表示位于第i个格点和第j个格点处的自旋;Jij分别表示之间的海森堡交换作用和DMI作用的强度;KA表示单轴垂直各向异性作用强度;表示第i个格点处磁***表面的单位法向矢量;μB表示波尔磁子;gJ为朗德因子;为外加磁场强度。式(1)中第一项表示Heisenberg交换作用,第二项表示DMI作用,第三项表示单轴垂直各项异性,最后一项为***在外加磁场中的能量。DMI存在于反演对称性破缺的表面或界面上,它具有手性,是形成磁斯格明子和磁涡旋的主要原因。如果(表示第i个自旋到第j个自旋的矢量),则斯格明子为涡旋状的Bloch型;如(表示垂直于表面/界面的单位矢量),则斯格明子为Néel型。
研究中根据需要,还常常计入磁偶极矩之间的长程相互作用:
本人在研究中发现,对于有限尺度的铁磁纳米盘,这种磁偶极矩之间的长程相互作用也可诱发磁涡旋。
为了克服蒙特-卡洛和微磁学的经典局限,根据量子理论,本人在过去的研究工作已采取了以下技术方案:
(1)引入量子理论,磁***哈密顿量中的自旋不再是经典矢量,而是量子力学算符;
(2)采用自洽算法,模拟中不必每一步都计算和比较***的总能量,计算会自发收敛于平衡态;
(3)所有物理量都严格按照量子理论计算。
为模拟磁***中周期的斯格明子/磁涡旋晶格,还采取了以下技术方案:
(4)采用周期性边界条件,而不是自由边界条件,使得模拟无穷大***成为可能;
(5)必要时考虑垂直的外加磁场。
这里必须指出采用周期性边界条件的重要性。实验中观测到,斯格明子的直径可小到10nm。所以,宏观上看来很小的磁性薄膜内部存在数以万计以上的周期分布的斯格明子或磁涡旋。然而,计算机的内存和速度是有限的,要使得模拟可行,就必须采用周期性边界条件。否则,如采用自由边界条件,如在垂直强磁场的作用下,有限尺度的磁性薄膜上可能仅仅出现一个磁涡旋或斯格明子。此外,为使周期性边界条件得到满足,需要在预计算中,初步确定磁结构空间周期的近似量值。
DMI是诱发斯格明子的重要原因。但是,如果此作用甚强,与Heisenberg交换作用竞争的结果却产生螺旋状(helical)的基态磁结构。研究表明,施加适量强度的垂直外磁场,有助于产生周期的斯格明子晶格。
(6)在海森堡交换和DM作用共存的情况下,再考虑Compass型的各向异性作用。此时***的哈密顿量为:
这里不存在外加磁场的作用,<ij>表示相互作用限于相邻自旋之间,第三项表示单自旋各向异性,最后一项即为Compass型各向异性。如使用参量J=1K,,D=1.5K,A1=0.5K和A2=-2K,可模拟出周期的斯格明子阵列,且相邻斯格明子涡旋方向相反。
(7)由于***中各种相互作用的激烈竞争,磁过程变得十分复杂,要模拟出正确的磁结构,需要在***达到平衡态后,再运行数百次,对结果求平均。如此便可消除热扰动造成的偏离,算得的磁结构更加可靠,且具有完好的对称性。
在介绍了以上各点之后,我们在附图一中绘出在某一强度固定的垂直磁场中,模拟***磁结构(如斯格明子)随温度变化的程序设计流程图。现在说明如下:
第一步:考虑量子化的***哈密顿量。
第二步:模拟从高温T=T0开始,初始化磁结构,使得所有自旋取向在空间随机分布。
第三步:采用周期性边界条件。
第四步:根据量子力学公式,逐一计算每个自旋的热平均值。
第五步:计算前后二次循环算出的自旋或***总能量的差值。如果某个相对差值大于给定小量δ,则返回第三步。
第六步:计算和输出***微观磁结构,及其它宏观物理量。
第七步:降低***温度,即令T=T-ΔT。
第八步:判断是否到达最低温度(T≤Tf),否则返回第三步。
第九步:模拟结束。
在以上步骤,可看到权利要求中的各点:
C1、根据量子理论使磁***哈密顿量中的自旋为量子力学算符;
C2、模拟始于高温,产生三个随机数分别赋予自旋的三个分量,模仿初始态的自旋取向随机分布;
C3、采用周期性边界条件以模拟无穷大***的周期性磁结构;
C4、采用自洽算法,量子理论的运用使得运算能自发地收敛于***的平衡态;
C5、判断前后两次循环算出的自旋差是否小于δ,如是,则满足收敛条件,输出磁结构(如周期分布的斯格明子晶格或涡旋晶格);如否,则返回步骤C3。
C6、模拟自高温的顺磁态开始,逐渐降低温度,以保证计算收敛于正确的平衡态;
C7、判断逐渐降低的温度是否为预设的最低温度,如是,则模拟结束,如否,则返回步骤C3。
模拟中采用了前述的技术方案:
本发明的技术方案:所述磁***哈密顿量中的自旋为量子力学算符,而非经典矢量
本发明的技术方案:所述量子力学模拟方法在计算的过程中所有物理量都严格地按照量子理论算出。
本发明的技术方案:所述量子力学模拟方法中因量子理论的引入,采用自洽算法运算便能自发地收敛于***的正确平衡态。
在蒙特-卡洛模拟中,每一步都需要人为地旋转各自旋,计算因旋转引起的能量变化,按照一定的几率确定此旋转操作是否被接受,以期***收敛于最终的平衡态。然而,因量子理论的引入,本发明采用自洽算法,运算能自发地收敛于***的正确平衡态,使得算法更为便捷、灵活。
本发明的技术方案:在海森堡作用和DM作用共存的***中,再考虑Compass型各向异性作用,模拟出近邻涡旋方向相反的斯格明子晶格。
本发明的技术方案:模拟自高温的顺磁态开始,然后逐渐降低至温度;因在高温,各自旋的幅值甚小,大的热能足以使得量子***克服势垒,隧穿至能量的最小点,到达***的平衡态;模拟中逐渐降低温度,便能保证每一温度下都实现正确的收敛。
本发明的技术方案:采用周期性边界条件,以小的***模拟大的、以致无穷的***成为可能。模拟微小尺度的磁***,通常采用自由边界条件;模拟尺度较大的磁***,则需要运用周期边界条件,使得采用小的***模拟大的、以致无穷的***成为可能;否则,边界的影响太大,就模拟不出周期性的磁结构。
本发明的特征是:在磁***中微观结构和宏观物理性质随温度及外加磁场的变化而变化。而微磁学通常仅仅研究零温的特殊情况。
本发明的特征是:所述量子力学模拟方法模拟出的***微观磁结构通常具有严格的周期性和完美的对称性;相较于经典模型,当磁条纹或者斯格明子晶格的周期为数个纳米时,量子模型更能细致、精确地描述磁***。
本发明的有益效果是:由于引入量子理论,本发明克服了微磁学和蒙特-卡洛经典方法的不足,且程序会自发收敛于***平衡态,使得模拟十分灵活、便捷和快速。
特别是:微磁学仅模拟零温的情况,本发明可模拟任意温度下的情况;微磁学把样品中所有点的磁矩大小看作相等,本发明则可细致地算出材料中各点处磁矩的不同幅值及方向。
此外,蒙特-卡洛法无法模拟出无限二维正方结构***中的反铁磁斯格明子阵列[7,8],但利用本发明的方法,却能很容易地算出。
用本法模拟,在临界温度附近需要较多次循环达到如10-6的相对精度;但是运算到较低温区,往往仅经过数次循环,即可达到上述精度。例如最近模拟56×56个自旋构成的二维网格,从高温到低温模拟30温度点,用笔记本ThinkPad T430S,仅需要约1.15个小时。
附图说明
图1是模拟程序设计流程图。
图2是本发明实施例提供的Bloch型(a)铁磁、和(b)反铁磁斯格明子阵列。
图3是本发明实施例提供的Néel型的(a)铁磁、和(b)反铁磁斯格明子阵列。
具体实施方式
首先,要模拟二维正方晶格上的磁斯格明子或涡旋阵列,需采用式(1)给出的力量子哈密顿量。其中,如Jij>0,***为铁磁耦合;当Jij<0时,***为反铁磁耦合。如采用(矢量沿着二自旋连线的方向),可模拟Bloch型斯格明子;如用(矢量在二维平面内,且与二自旋的连线垂直),则可模拟Néel型斯格明子。
以下给出本发明的四个应用实例。模拟中都仅考虑最近邻自旋间的相互作用,且大小处处相等,即Jij=J,Dij=D。
实施例一:Bloch型的铁磁斯格明子阵列(Ferromagnetic Skymion Crystal ofBloch-Type)
模拟中选用30×30的正方格子,每个格点上有一个S=1的自旋。为了用它模拟无穷二维***,采用了周期性边界条件。此处不考虑垂直各向异性的作用,再设J=1K,令D/J=1.02733,以使斯格明子之间的周期距离λ=10。
从模拟结果可以看到:在没有外场的情况下,此二维***的自发基态为沿着[110]方向的条状结构;逐渐增大垂直外加磁场当着0.11Tesla≤B≤0.27Tesla时,便在正方格子内产生正六角密排结构的斯格明子晶格;在弱磁场中,此阵列的空间周期为10,与理论相符;逐渐增大外加磁场,正方格子内的斯格明子数目,从最初的18个逐渐减少到8个,而且,整个晶格形状随之旋转或扭曲;而当B=0.27Tesla,整个阵列又恢复到正六角密排的结构。
图二(a)绘出B=0.11Tesla,T/J=0.1K时产生的六角密排结构的铁磁斯格明子阵列,它具有完美的几何对称性,空间周期为10,与理论和实验的结果完全相符[22]。
外磁场沿着z方向,每个斯格明子中心区域的自旋磁矩的z分量却沿着-z方向,而其周边区域的自旋磁矩的z分量取向相反,所以是严格的铁磁斯格明子。此外,每个斯格明子都是顺时针的,却被四个逆时针涡旋围绕着,从而降低***的总能量,实现稳定的磁结构。
实施例二:Bloch型反铁磁斯格明子阵列(Antiferromagnetic Skymion Crystalof Bloch-Type)
因此例研究反铁磁情况,故取J=-1K,D=1K(于是D/J=-1),KA=0[8]。采用56×56的正方格子,每个格点上有一个5=1的自旋。利用周期边界条件,以模拟无穷大二维***。模拟中发现,当着垂直外加磁场强度满足3.9Tesla≤B≤4.1Tesla时,在T/J<1.6的温区内能够形成反铁磁斯格明子阵列;稍微增大或减弱外加磁场,反铁磁斯格明子图晶格便消失,而被反铁磁结构取代。
图二(b)示出在B=4Tesla,T/J=0.1时模拟出的反铁磁斯格明子晶格。它具有完美的对称性,空间周期λ=7。每个斯格明子中心区域自旋的z分量平均值最小;而沿着[110]或者[-110]方向,二相邻斯格明子中心连线中点处的自旋的z分量值最大;相邻自旋磁矩的xy投影取向相反。这些都赋予斯格明子晶格的“反铁磁”特征。
实例一中B1=0.11Tesla,实例二中B2=4Tesla,且二者D/J的比值相近,但是B2/B1≈36.4。因此,要观测到反铁磁斯格明子阵列,需要施加36倍的强磁场。此外,反铁磁磁斯格明子晶格仅存在于很窄的B区间,因而缺乏很好的稳定性。这些都使得实验观测困难了许多。
有必要指出,为了模拟正方格子上的反铁磁斯格明子,R.Keesman等人令J=-1,D/|J|=1,H/|J|=4,仅在8×8的有限大小的方格子上模拟出单个斯格明子,却模拟不出无限正方***上的反铁磁斯格明子晶格[8]。然而Tretiakov等人的理论研究表明,此种斯格明子存在于非零温度,在外加磁场中会更加稳定[23]。因此,此实例说明了本发明的重要意义,即当着斯格明子很小时,经典理论的描述已不再精确、可靠,需要运用量子理论和方法。
实施例三:Néel型铁磁斯格明子晶格(Ferromagnetic Skymion Crystal of Néel-Type)
模拟图三(a)和图二(a)使用了相同的参数,即J=1K,D/J=1.02733,T/J=0.1,垂直外加磁场B=0.11Tesla。用于模拟的正方格子大小为30×30,每个格点上的自旋S=1,采用周期边界条件以研究无穷大的二维平面***。有趣的是,尽管二种斯格明子分别为Bloch型和Néel型,但二晶格的空间周期都为λ=10,30×30的方格上也出现18个斯格明子,也形成正六角密排结构。在每个斯格明子的中心区域内,各自旋的z分量都沿着-z方向,与外磁场方向相反;其周围区域的各自旋z分量与外场方向相同,所以都是典型的斯格明子。与图二(a)不同之处在于,斯格明子内的自旋的xy投影都收敛于(指向)其中心。
实施例四:N6el型反铁磁斯格明子晶格(Antiferromagnetic Skymion Crystalof Néel-Type)
模拟图三(b)和图二(b)使用了相同的参数,即J=-1K,D/|J|=1,B=4Tesla。尽管二图中的斯格明子分别为Bloch型和Néel型,但二阵列空间的周期都为λ=7,这些斯格明子也都形成正方结构。同样,图三(b)中每个斯格明子中心区域自旋的z分量的平均值最小;而沿着[110]或者[-110]方向,二相邻斯格明子中心连线中点处的自旋的z分量值最大;相邻自旋的xy投影取向相反。这些都使得斯格明子阵列具有“反铁磁”的特征。与图二(b)不同之处在于,除边缘区域外,各斯格明子内的自旋的xy投影都沿着径向反向排列。
有必要再次指出,R.Keesman等人令J=-1,D/|J|=1,H/|J|=4,仅在8×8的有限大小的方格子上模拟出单个反铁磁斯格明子,却未能模拟出无限正方结构***上的反铁磁斯格明子晶格[8]。然而Tretiakov等人的理论研究表明,此种斯格明子存在于非零温度,在外加磁场中会更加稳定[23]。因此,此实例再次说明经典方法的局限性,以及本发明的重要意义。
总的说来,图二(a)与图三(a)具有对偶性,图二(b)也与图三(b)具有对偶性,表明自然规律的完美对称性,也从另一方面说明我们的量子模拟方法和计算结果的正确性。
随着温度和外加磁场强度的变化,斯格明子及其晶格的形状、周期也随之变化。因篇幅所限,这里仅列出四张典型的代表图。更为详细的描述,将在未来发表的论文中给出。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
附注
1.关于量子力学算符
根据量子力学理论,在笛卡尔直角坐标表象中动量三个分量的算符
要求角动量的算符,则只需把此式中动量的三个分量换成算符即可。
同样,动能算符可由动量算符求得,
而能量算符则为
单个粒子的定态哈密顿量
其中表示势函数,其定态薛定谔方程为:
另一方面,如果选取一组正交、归一的完备基矢量,则力学量(动量、角动量、哈密顿量)的算符可以用厄米矩阵表示,它们的本征值为实数。
2.关于力学量平均值的计算
根据量子力学,在状态ψ下,力学量A的平均值
如果采用矩阵表示,则这里Ψ+是波函数Ψ的转置共轭矩阵。例如自旋的三个分量的平均值,就可如此求出。
如考虑温度效应,则需要先计算粒子在温度T下的配分函数
这里εn为单自旋哈密顿量的能量本征值,kB为波尔兹曼常量。状态n对力学量贡献的权重为:
wn=exp(-εn/KBT)/z(T)。
3.关于斯格明子晶格的模拟
用有限大小的格子模拟无限大***,需要采用周期性边界条件。
如果DM作用甚弱,则诱发简单的铁磁或反铁磁结构;如DM作用较强,如不考虑外加磁场,则模拟出螺旋状的条纹。对于铁磁交换作用,垂直外加磁场需满足
才会算出斯格明子晶格。但是,对于正方结构的二维材料,要模拟出反铁磁斯格明子晶格,必须采用本发明的量子方法才能成功。

Claims (10)

1.磁斯格明子晶格和磁涡旋晶格的量子力学模拟方法,所述量子力学模拟方法包括以下步骤:
C1、通过量子理论使磁***哈密顿量中的自旋为量子力学算符;
C2、在笛卡尔坐标系中产生三个随机数分别赋予自旋分量;
C3、采用周期性边界条件以模拟无穷大***的周期性磁结构;
C4、采用自洽算法,量子理论的应用使得计算能自发地收敛于***的平衡态;
C5、判断C4中前后两次循环算出的自旋差是否小于给定的小量δ,如是,则因海森堡交换和强的Dzyaloshinsky-Moriya作用下形成的自发螺旋状条纹,在垂直外加磁场中,变为周期分布的斯格明子晶格或涡旋晶格;如否,则返回步骤C3。
2.根据权利要求1所述的量子力学模拟方法,其特征在于,所述量子力学模拟方法还包括以下步骤:
C6、模拟自高温的顺磁态开始逐渐降低温度,以保证计算收敛于正确的平衡态;
C7、判断是否降至预设的最低温度,如是,则运算结束,如否,则返回步骤C3。
3.根据权利要求2所述的量子力学模拟方法,其特征在于,在计算过程中所有物理量都严格地按照量子理论算出。
4.根据权利要求3所述的量子力学模拟方法,其特征在于,在海森堡作用和DMI作用共存的***中,再考虑Compass型各向异性作用,模拟出近邻涡旋方向相反的斯格明子晶格。
5.根据权利要求4所述的量子力学模拟方法,其特征在于,所述磁***哈密顿量中的自旋为量子力学算符,而非经典矢量。
6.根据权利要求5所述的量子力学模拟方法,其特征在于,***的微观磁结构和宏观物理性质随温度及外加磁场的变化而变化。
7.根据权利要求6所述的量子力学模拟方法,其特征在于,模拟自高温的顺磁态开始,然后逐渐降低至温度;在高温,各自旋的幅值甚小,大的热能足以使得量子***克服能量势垒,隧穿至能量的最小点,到达***的平衡态;模拟中逐渐降低温度,便能保证每一温度下都实现正确的收敛。
8.根据权利要求7所述的量子力学模拟方法,其特征在于,采用周期性边界条件,使得以小的***模拟大的、以致无穷的***成为可能;否则,边界的影响太大,模拟不出周期性的磁结构。
9.根据权利要求8所述的量子力学模拟方法,其特征在于,所述量子力学模拟方法模拟出的***微观磁结构通常具有严格的周期性和完美的***对称性。
10.根据权利要求9所述的量子力学模拟方法,其特征在于,所述量子力学模拟方法中,因量子理论的引入,运算能自发地收敛于***的正确平衡态。
CN201810526044.6A 2018-05-28 2018-05-28 磁斯格明子晶格和磁涡旋晶格的量子力学模拟方法 Active CN110543646B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810526044.6A CN110543646B (zh) 2018-05-28 2018-05-28 磁斯格明子晶格和磁涡旋晶格的量子力学模拟方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810526044.6A CN110543646B (zh) 2018-05-28 2018-05-28 磁斯格明子晶格和磁涡旋晶格的量子力学模拟方法

Publications (2)

Publication Number Publication Date
CN110543646A true CN110543646A (zh) 2019-12-06
CN110543646B CN110543646B (zh) 2023-06-09

Family

ID=68700812

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810526044.6A Active CN110543646B (zh) 2018-05-28 2018-05-28 磁斯格明子晶格和磁涡旋晶格的量子力学模拟方法

Country Status (1)

Country Link
CN (1) CN110543646B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111063799A (zh) * 2020-01-03 2020-04-24 电子科技大学 一种驱动磁斯格明子的方法
CN111162163A (zh) * 2020-01-03 2020-05-15 大连民族大学 一种一维磁涡旋链的构筑方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05267421A (ja) * 1992-03-17 1993-10-15 Hitachi Ltd 半導体デバイスシミュレーション方法
CN104866649A (zh) * 2015-04-27 2015-08-26 北京计算科学研究中心 等离子体器件的光电转换效率多尺度建模和检测方法
CN107368642A (zh) * 2017-07-13 2017-11-21 武汉大学 金属增材制造多尺度多物理场耦合仿真方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05267421A (ja) * 1992-03-17 1993-10-15 Hitachi Ltd 半導体デバイスシミュレーション方法
CN104866649A (zh) * 2015-04-27 2015-08-26 北京计算科学研究中心 等离子体器件的光电转换效率多尺度建模和检测方法
CN107368642A (zh) * 2017-07-13 2017-11-21 武汉大学 金属增材制造多尺度多物理场耦合仿真方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
周琼等: "二维反铁磁海森堡模型的量子蒙特卡洛模拟", 《广西大学学报(自然科学版)》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111063799A (zh) * 2020-01-03 2020-04-24 电子科技大学 一种驱动磁斯格明子的方法
CN111162163A (zh) * 2020-01-03 2020-05-15 大连民族大学 一种一维磁涡旋链的构筑方法
CN111162163B (zh) * 2020-01-03 2023-04-18 大连民族大学 一种一维磁涡旋链的构筑方法

Also Published As

Publication number Publication date
CN110543646B (zh) 2023-06-09

Similar Documents

Publication Publication Date Title
CN109190247B (zh) 优化的量子蒙特-卡洛模拟方法在研究复杂磁***中的应用
Müller et al. Spirit: Multifunctional framework for atomistic spin simulations
Kim et al. Pinning of a Bloch point by an atomic lattice
Wei Micromagnetics and recording materials
Tóbik et al. Dynamics of vortex nucleation in nanomagnets with broken symmetry
Sotnikov et al. Probing the topology of the quantum analog of a classical skyrmion
Levy Magnetic structures of 2d and 3d nanoparticles: properties and applications
CN110543646B (zh) 磁斯格明子晶格和磁涡旋晶格的量子力学模拟方法
Ferona et al. Nonlinear and chaotic magnetization dynamics near bifurcations of the Landau-Lifshitz-Gilbert equation
Bennett et al. Simulating collective magnetic dynamics in nanodisk arrays
Johnson et al. Demagnetization-borne microscale skyrmions
Mironov et al. Control of the magnetic state of arrays of ferromagnetic nanoparticles with the aid of the inhomogeneous field of a magnetic-force-microscope probe
Igarashi et al. First-principles studies of complex magnetism in Mn nanostructures on the Fe (001) surface
Dubitskiy et al. Spin-ice behavior of three-dimensional inverse opal-like magnetic structures: Micromagnetic simulations
Komogortsev et al. Micromagnetism in a planar system with a random magnetic anisotropy and two-dimensional magnetic correlations
Guerra et al. Remanence state and coercivity in 1-D chain of polycrystalline hollow cobalt nanospheres
Potkina et al. Nucleation and collapse of magnetic topological solitons in external magnetic field
Palotás et al. High-resolution tunneling spin transport characteristics of topologically distinct magnetic skyrmionic textures from theoretical calculations
Knittel Micromagnetic simulations of three dimensional core-shell nanostructures
Castro et al. Magnetostatic interaction between two bubble skyrmions
Bessarab et al. Annihilation mechanisms and lifetime of racetrack skyrmions
Solovev et al. Micromagnetic simulation of magnetization reversal processes in thin obliquely deposited films
Vedmedenko et al. Magnetic skyrmions on discrete lattices
Lehmann Toroidal Order in Magnetic Metamaterials
Weber Dynamic cantilever magnetometry of individual ferromagnetic nanotubes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant