CN110540419A - 一种堇青石蜂窝陶瓷载体及其制备方法 - Google Patents

一种堇青石蜂窝陶瓷载体及其制备方法 Download PDF

Info

Publication number
CN110540419A
CN110540419A CN201910894085.5A CN201910894085A CN110540419A CN 110540419 A CN110540419 A CN 110540419A CN 201910894085 A CN201910894085 A CN 201910894085A CN 110540419 A CN110540419 A CN 110540419A
Authority
CN
China
Prior art keywords
honeycomb ceramic
ceramic carrier
component
cordierite honeycomb
printing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910894085.5A
Other languages
English (en)
Other versions
CN110540419B (zh
Inventor
李勃
王荣
朱朋飞
潘瑜辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen International Graduate School of Tsinghua University
Original Assignee
Shenzhen International Graduate School of Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen International Graduate School of Tsinghua University filed Critical Shenzhen International Graduate School of Tsinghua University
Priority to CN201910894085.5A priority Critical patent/CN110540419B/zh
Publication of CN110540419A publication Critical patent/CN110540419A/zh
Application granted granted Critical
Publication of CN110540419B publication Critical patent/CN110540419B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

本发明公开了一种堇青石蜂窝陶瓷载体的制备方法及其制备方法,该制备方法包括:采用包括组分A、组分B和硅胶粘结剂的原料配制3D打印浆料,而后采用3D打印浆料进行直写3D打印,制得成型坯体,再将成型坯体进行烧结处理;其中,组分A为氧化镁和/或氢氧化镁,组分B为三氧化二铝和/或氢氧化铝,两者的粒径为30μm以下。通过以上方式,本发明通过3D打印浆料的调配,以及根据目标蜂窝陶瓷载体的参数要求,确定打印参数进行直写3D打印成型,可实现不同孔型、不同孔壁厚和不同孔密度的蜂窝陶瓷载体的快速成型;制备方法简单,易于实施,可制备高孔密度的堇青石蜂窝陶瓷载体,所得堇青石蜂窝陶瓷载体性能良好。

Description

一种堇青石蜂窝陶瓷载体及其制备方法
技术领域
本发明涉及多孔蜂窝陶瓷技术领域,具体涉及一种堇青石蜂窝陶瓷载体及其制备方法。
背景技术
蜂窝陶瓷作为燃烧催化载体,广泛应用于工业去除VOCs污染、帮助回收利用热能;同时,也可以应用于家用燃气炉灶,可以提高煤气燃烧的热效率,降低有害物质排放。研究显示,提高蜂窝陶瓷的比表面积可以显著提高催化效率,而蜂窝陶瓷的比表面积随着单位孔数量的增加而增加。目前的蜂窝陶瓷孔密度多集中在62~93孔/cm2之间;美国、日本已经研制出了93~140孔/cm2甚至高达186孔/cm2的高密度孔蜂窝陶瓷;相对来讲,中国蜂窝陶瓷的制备工艺相对落后,目前已经可以生产62孔/cm2的模具,93孔/cm2挤出成形模具的研究也取得了初步成功。
蜂窝陶瓷目前的主要发展方向是近零膨胀系数、更高的孔密度、更薄的间壁(厚度可小于人的头发直径)等方向发展,但是随着孔密度加大其制备成本增加,制备过程也更复杂。堇青石蜂窝陶瓷具有热膨胀系数低、热稳定性好、吸附性能好等优点,是一种性能优良的蜂窝陶瓷载体。但是传统加工工艺所制备的堇石青孔密度较小,限进了其性能的进一步提升。因此,有必要开发出一种新型适于制造高孔密度的堇青石蜂窝陶瓷的方法。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种堇青石蜂窝陶瓷载体及其制备方法。
本发明所采用的技术方案是:
本发明的第一方面,提供一种堇青石蜂窝陶瓷载体的制备方法,包括以下步骤:
S1、采用堇青石蜂窝陶瓷载体的原料配制3D打印浆料;
S2、采用所述3D打印浆料进行直写3D打印,制得成型坯体;
S3、将所述成型坯体进行烧结处理,制得堇青石蜂窝陶瓷载体;
步骤S1中,所述堇青石蜂窝陶瓷载体的原料包括组分A、组分B和硅胶粘结剂;所述组分A为氧化镁和/或氢氧化镁,所述组分B为三氧化二铝和/或氢氧化铝,所述组分A和所述组分B的粒径为30μm以下;所述组分A、所述组分B和所述硅胶粘结剂的质量比为1:(0.1~10):(0.1~10)。
直写3D打印是一种以挤出方式成型的3D打印技术,其成型的关键在于对浆料流变学性质的调控。浆料需具备合适的黏度、模量和剪切变稀特性,且足够均匀,使其能够持续顺滑地从较细的针头流出而不堵塞针头,而且在成型之后具备足够的强度保证结构不坍塌。步骤S1中配制3D打印浆料采用硅胶粘结剂为原料,是由于硅胶的流变学性质可满足直写3D打印技术的要求,适合直写3D打印成型,以其为原料与以上组分A和组分B混合配制3D打印浆料,浆料的流变学性质可满足直写3D打印技术的要求;另外,硅胶在高温下分解为二氧化硅,是合成堇青石的主要原料之一,以硅胶作为硅源合成堇青石,将堇青石合成和3D打印成型一体化,两者合二为一,可简化成型的步骤。根据本发明的一些实施例,步骤S1中,所述硅胶粘结剂选自聚二甲基硅氧烷、玻璃胶、室温硫化硅橡胶(即RTV有机硅胶)中的至少一种。
3D打印浆料的原料中,硅胶粘结剂是直写3D打印能够挤出成型的关键,而掺入的组分A和组分B的粒径大小决定了所选用的打印针头的内径大小,而打印针头内径大小又决定了堇青石蜂窝陶瓷载体中通孔的最小壁厚和最大孔密度,原料的粒径越小,可对应选择小内径的打印针头,以适用于制备高孔密度的蜂窝陶瓷载体。
堇青石蜂窝陶瓷载体的原料中,组分A和组分B的粒径一般为30μm以下。若要实现达到1000孔/cm2以上的超高孔密度,一般要求用原料粒径在10μm以下,打印针头的内径在200μm以下。若掺入组分A和组分B的粉体粒径过大,如30~50μm,则需采用400μm~1mm的针头打印,所形成的堇青石蜂窝陶瓷载体的孔密度在100孔/cm2以下。
根据本发明的一些实施例,步骤S1中,所述组分A为氧化镁,所述组分B为三氧化二铝,所述硅胶粘结剂为聚二甲基硅氧烷;所述组分A、所述组分B和所述硅胶粘结剂的质量比为1:2.53:4.60;按照该比例混合配制3D打印浆料,经直写3D打印成型和烧结后,可得到纯相的堇青石蜂窝陶瓷载体。
步骤S2中的直写3D打印具体包括:可先用计算机辅助建模获得堇青石蜂窝陶瓷载体结构的三维模型,再用切片软件生成可打印的G代码程序,或者直接编写G代码程序;然后将3D打印浆料装到3D打印设备的料筒中,按照G代码所设定的路径进行三维蜂窝陶瓷载体结构的直写3D打印。
获取G代码程序具体可通过先计算机辅助建模获得堇青石蜂窝陶瓷载体结构的三维模型,而后通过切片软件进行二维切片处理,获得二维切片数据,然后生成G代码程序。直接编写G代码程序具体可通过先根据堇青石蜂窝陶瓷载体结构的预设要求(包括孔型、孔尺寸、通孔密度、壁厚等),获取其宏观结构模型,然后根据宏观结构模型设计打印路径并编写G代码程序。通过堇青石蜂窝陶瓷载体的孔型、孔尺寸、壁厚等基本参数以及排列方式可以计算出堇青石蜂窝陶瓷载体的孔密度、比表面积和通孔率。
根据本发明的一些实施例,步骤S2中,所述直写3D打印采用的打印针头的内径为10~200μm,挤出压力为10~100psi,移动速度为0.3~30mm/s。
根据本发明的一些实施例,步骤S3中,所述烧结处理的烧结温度为1300℃~1400℃。烧结时间一般为2~12h。
根据本发明的一些实施例,步骤S3中,将所述成型坯体进行烧结处理之前,先对所述成型坯体进行排胶处理。
根据本发明的一些实施例,所述排胶处理具体为在500℃~600℃保温排胶。排胶时间一般为2~4h。
本发明的第二方面,提供一种堇青石蜂窝陶瓷载体,其由本发明第一方面所提供的任一种堇青石蜂窝陶瓷载体的制备方法制得。
本发明实施例的有益技术效果是:
本发明实施例提供一种堇青石蜂窝陶瓷载体的制备方法,其可通过3D打印浆料的调配,以及根据目标蜂窝陶瓷载体的参数要求,确定打印参数进行直写3D打印成型,可实现不同孔型、不同孔壁厚和不同孔密度的蜂窝陶瓷载体的快速成型;制备方法简单,易于实施,可制备高孔密度的堇青石蜂窝陶瓷载体,所得堇青石蜂窝陶瓷载体性能良好。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
一种堇青石蜂窝陶瓷载体,其具体制备方法包括以下步骤:
S1、浆料配制:称取粒径1~5μm的1.088g氧化镁粉和2.754g三氧化二铝粉,以及4.55g PDMS硅胶预聚物A,通过机械搅拌、研磨或球磨等方式将三者充分混合均匀后,再加入0.45g PDMS硅胶交联剂B,并搅拌均匀,得3D打印浆料;然后将所得3D打印浆料装入10mL料筒中待打印。其中,PDMS硅胶为直接市面购买,其包括PDMS硅胶预聚物A和PDMS硅胶交联剂B,且使用时按质量比10:1混合。考虑到硅胶会慢慢固化,所制备的3D打印浆料需在5h内完成成型过程。
S2、直写3D打印成型:编写方形孔结构的G代码程序,孔边长尺寸设置为250μm;选取内径为100μm的玻璃针头,设置挤出压力为70~90psi,移动速度为5~10mm/s;按照G代码所设定的路径进行直写3D打印,制得方形孔蜂窝结构陶瓷载体坯体;
S3、烧结:将打印好的方形孔蜂窝结构陶瓷载体坯体进行多步保温烧结。具体先以1℃/min速率升温至600℃,并保温4h,使PDMS硅胶充分分解为二氧化硅;然后以2℃/min速率升温至1350℃,并保温10h,进行充分的固相烧结反应,制得方形孔堇青石蜂窝陶瓷载体。所得的方形孔堇青石蜂窝陶瓷载体的孔壁厚约为100μm,孔密度达到1600孔/cm2
实施例2
一种堇青石蜂窝陶瓷载体,其具体制备方法包括以下步骤:
S1、浆料配制:称取粒径小于10μm的1.575g氢氧化镁粉和2.754g三氧化二铝粉,以及4.55g PDMS硅胶预聚物A,通过机械搅拌、研磨或球磨等方式将三者充分混合均匀后,再加入0.45g PDMS硅胶交联剂B,并搅拌均匀,得3D打印浆料;然后将所得3D打印浆料装入10mL料筒中待打印。其中,PDMS硅胶为直接市面购买,其包括PDMS硅胶预聚物A和PDMS硅胶交联剂B,且使用时按质量比10:1混合。考虑到硅胶会慢慢固化,所制备的3D打印浆料需在5h内完成成型过程。
S2、直写3D打印成型:编写三角形孔结构的G代码程序,三角形孔边长设置为450μm;选取内径为160μm的塑料针头,设置挤出压力为40~60psi,移动速度为10~15mm/s;按照G代码所设定的路径进行直写3D打印,制得三角形孔蜂窝结构陶瓷载体坯体;
S3、烧结:将打印好的三角形孔蜂窝结构陶瓷载体坯体进行多步保温烧结。具体先以1℃/min速率升温至600℃,并保温4h,使PDMS硅胶充分分解为二氧化硅;然后以2℃/min速率升温至1350℃,并保温10h,进行充分的固相烧结反应,制得三角形孔堇青石蜂窝陶瓷载体。所得的三角形孔堇青石蜂窝陶瓷载体的孔壁厚约为160μm,孔密度达到1140孔/cm2
对比例1
一种堇青石蜂窝陶瓷载体,其具体制备方法包括以下步骤:
S1、浆料配制:称取粒径为30~50μm的1.088g氧化镁粉和2.754g三氧化二铝粉,以及4.55g PDMS硅胶预聚物A,通过机械搅拌、研磨或球磨等方式将三者充分混合均匀后,再加入0.45g PDMS硅胶交联剂B,并搅拌均匀,得3D打印浆料;然后将所得3D打印浆料装入10mL料筒中待打印。其中,PDMS硅胶为直接市面购买,其包括PDMS硅胶预聚物A和PDMS硅胶交联剂B,且使用时按质量比10:1混合。
S2、3D打印成型:编写方形孔结构的G代码程序,孔边长尺寸设置为1.5mm;选取内径为600μm的塑料针头,设置挤出压力30~40psi和移动速度15~20mm/s;按G代码所设定的路径进行直写3D打印,制得方形孔蜂窝结构陶瓷载体坯体;
S3、烧结:将打印好的方形孔蜂窝结构陶瓷载体坯体进行多步保温烧结。具体先以1℃/min速率升温至600℃,并保温4h,使PDMS硅胶充分分解为二氧化硅;然后以2℃/min速率升温至1350℃,并保温10h,进行充分的固相烧结反应,制得方形孔堇青石蜂窝陶瓷载体。所得方形孔堇青石蜂窝陶瓷载体的孔壁厚约为600μm,孔密度为44孔/cm2
分别对实施例1、实施例2和对比例1所制得的堇青石蜂窝陶瓷载体进行扫描电子显微镜(SEM)观察和比表面积(BET)测试。测试结果表明:相比于对比例1堇青石蜂窝陶瓷载体,实施例1和实施例2所制得的堇青石蜂窝陶瓷载体通孔尺寸更小,孔密度更高,比表面积更大。而比表面积是影响蜂窝陶瓷载体燃烧催化性能的关键因素之一,实施例1和实施例2所制得的更高密度和更大比表面积的堇青石蜂窝陶瓷载体能显著提高其负载催化剂后燃烧催化的效率。
尽管结合优选实施方案具体展示和介绍了本发明,但所属领域的技术人员应该明白,在不脱离所述权利要求书所限定的本发明的精神和范围内,在形式上和细节上可以对本发明做出各种变化,均为本发明的保护范围。

Claims (8)

1.一种堇青石蜂窝陶瓷载体的制备方法,其特征在于,包括以下步骤:
S1、采用堇青石蜂窝陶瓷载体的原料配制3D打印浆料;
S2、采用所述3D打印浆料进行直写3D打印,制得成型坯体;
S3、将所述成型坯体进行烧结处理,制得堇青石蜂窝陶瓷载体;
步骤S1中,所述堇青石蜂窝陶瓷载体的原料包括组分A、组分B和硅胶粘结剂;所述组分A为氧化镁和/或氢氧化镁,所述组分B为三氧化二铝和/或氢氧化铝,所述组分A和所述组分B的粒径为30μm以下;所述组分A、所述组分B和所述硅胶粘结剂的质量比为1:(0.1~10):(0.1~10)。
2.根据权利要求1所述的堇青石蜂窝陶瓷载体的制备方法,其特征在于,所述硅胶粘结剂选自聚二甲基硅氧烷、玻璃胶、室温硫化硅橡胶中的至少一种。
3.根据权利要求2所述的堇青石蜂窝陶瓷载体的制备方法,其特征在于,步骤S1中,所述组分A为氧化镁,所述组分B为三氧化二铝,所述硅胶粘结剂为聚二甲基硅氧烷;所述组分A、所述组分B和所述硅胶粘结剂的质量比为1:2.53:4.60。
4.根据权利要求1所述的堇青石蜂窝陶瓷载体的制备方法,其特征在于,步骤S2中,所述直写3D打印采用的打印针头的内径为10~200μm,挤出压力为10~100psi,移动速度为0.3~30mm/s。
5.根据权利要求1所述的堇青石蜂窝陶瓷载体的制备方法,其特征在于,步骤S3中,所述烧结处理的烧结温度为1300℃~1400℃。
6.根据权利要求5所述的堇青石蜂窝陶瓷载体的制备方法,其特征在于,步骤S3中,将所述成型坯体进行烧结处理之前,先对所述成型坯体进行排胶处理。
7.根据权利要求6所述的堇青石蜂窝陶瓷载体的制备方法,其特征在于,所述排胶处理具体为在500℃~600℃保温排胶。
8.一种堇青石蜂窝陶瓷载体,其特征在于,由权利要求1至7中任一项所述的堇青石蜂窝陶瓷载体的制备方法。
CN201910894085.5A 2019-09-20 2019-09-20 一种堇青石蜂窝陶瓷载体及其制备方法 Active CN110540419B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910894085.5A CN110540419B (zh) 2019-09-20 2019-09-20 一种堇青石蜂窝陶瓷载体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910894085.5A CN110540419B (zh) 2019-09-20 2019-09-20 一种堇青石蜂窝陶瓷载体及其制备方法

Publications (2)

Publication Number Publication Date
CN110540419A true CN110540419A (zh) 2019-12-06
CN110540419B CN110540419B (zh) 2022-01-07

Family

ID=68714360

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910894085.5A Active CN110540419B (zh) 2019-09-20 2019-09-20 一种堇青石蜂窝陶瓷载体及其制备方法

Country Status (1)

Country Link
CN (1) CN110540419B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112058317A (zh) * 2020-09-24 2020-12-11 西安交通大学 一种3d打印整体式催化剂的方法
CN113334758A (zh) * 2021-05-11 2021-09-03 清华大学深圳国际研究生院 一种柔性负泊松比构件及其制备方法和应用
CN113526975A (zh) * 2020-04-16 2021-10-22 中国石油天然气股份有限公司 一种具有梯度结构的氧化铝载体材料及其3d打印成型方法
CN113548882A (zh) * 2020-04-24 2021-10-26 中国科学院宁波材料技术与工程研究所 一种堇青石陶瓷器件及其制备方法与应用
CN116459843A (zh) * 2023-04-27 2023-07-21 江苏大学 一种3D打印NiMo/Al2O3-MMT复合整体式加氢催化剂及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110244198A1 (en) * 2010-03-31 2011-10-06 Ibiden Co., Ltd. Holding sealing material
CN104030720A (zh) * 2014-06-24 2014-09-10 北京奥福(临邑)精细陶瓷有限公司 一种零烧成收缩的堇青石蜂窝陶瓷载体及其制备方法
US20150299054A1 (en) * 2012-12-28 2015-10-22 Corning Incorporated Shaped articles and method for making the same
CN107056320A (zh) * 2017-04-12 2017-08-18 广东工业大学 一种堇青石蜂窝陶瓷及其应用
CN107098717A (zh) * 2017-04-07 2017-08-29 武汉理工大学 一种过滤用多孔陶瓷的三维打印成型制备方法
CN108558437A (zh) * 2017-12-20 2018-09-21 北京交通大学 堇青石泡沫陶瓷材料及其制备方法以及过滤器
CN108724428A (zh) * 2018-04-27 2018-11-02 昆明理工大学 一种3d打印汽车用蜂窝陶瓷载体的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110244198A1 (en) * 2010-03-31 2011-10-06 Ibiden Co., Ltd. Holding sealing material
US20150299054A1 (en) * 2012-12-28 2015-10-22 Corning Incorporated Shaped articles and method for making the same
CN104030720A (zh) * 2014-06-24 2014-09-10 北京奥福(临邑)精细陶瓷有限公司 一种零烧成收缩的堇青石蜂窝陶瓷载体及其制备方法
CN107098717A (zh) * 2017-04-07 2017-08-29 武汉理工大学 一种过滤用多孔陶瓷的三维打印成型制备方法
CN107056320A (zh) * 2017-04-12 2017-08-18 广东工业大学 一种堇青石蜂窝陶瓷及其应用
CN108558437A (zh) * 2017-12-20 2018-09-21 北京交通大学 堇青石泡沫陶瓷材料及其制备方法以及过滤器
CN108724428A (zh) * 2018-04-27 2018-11-02 昆明理工大学 一种3d打印汽车用蜂窝陶瓷载体的方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113526975A (zh) * 2020-04-16 2021-10-22 中国石油天然气股份有限公司 一种具有梯度结构的氧化铝载体材料及其3d打印成型方法
CN113548882A (zh) * 2020-04-24 2021-10-26 中国科学院宁波材料技术与工程研究所 一种堇青石陶瓷器件及其制备方法与应用
CN112058317A (zh) * 2020-09-24 2020-12-11 西安交通大学 一种3d打印整体式催化剂的方法
CN112058317B (zh) * 2020-09-24 2021-09-03 西安交通大学 一种3d打印整体式催化剂的方法
CN113334758A (zh) * 2021-05-11 2021-09-03 清华大学深圳国际研究生院 一种柔性负泊松比构件及其制备方法和应用
CN116459843A (zh) * 2023-04-27 2023-07-21 江苏大学 一种3D打印NiMo/Al2O3-MMT复合整体式加氢催化剂及其制备方法与应用
CN116459843B (zh) * 2023-04-27 2024-03-05 江苏大学 一种3D打印NiMo/Al2O3-MMT复合整体式加氢催化剂及其制备方法与应用

Also Published As

Publication number Publication date
CN110540419B (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
CN110540419B (zh) 一种堇青石蜂窝陶瓷载体及其制备方法
CN106242507B (zh) 一种直接成型3d陶瓷打印用粘土泥料及其制备方法和应用
US5171720A (en) Porous ceramic sinter and process for producing same
EP1452512B1 (en) Method for producing porous ceramic article
CN107098717A (zh) 一种过滤用多孔陶瓷的三维打印成型制备方法
CN112058317B (zh) 一种3d打印整体式催化剂的方法
CN102584329B (zh) 一种高孔隙率多孔陶瓷的制备方法
CN109627011B (zh) 一种具有同心孔的多孔陶瓷的制备方法及多孔陶瓷
US20090159853A1 (en) Colloidal templating process for manufacture of highly porous ceramics
CN110950651A (zh) 一种基于墨水直书写3d打印技术制备多级多孔陶瓷的方法
CN107915216A (zh) 一种孔结构可控的介孔/大孔碳材料3d打印成型的方法
CN110743626B (zh) 一种3d打印多孔催化器件的方法及一种多孔催化器件
EP3315478B1 (en) Precursor material for additive manufacturing of ceramic parts and methods of producing the same
CN105294111A (zh) 一种氮化硅多孔陶瓷的凝胶注模成型方法
CN109553420A (zh) 一种高孔隙率碳化硅基多孔陶瓷材料的制备方法
CN104163650A (zh) 一种多孔陶瓷及其制备方法
CN107914333A (zh) 利用凝胶注模成型工艺制作氧化锆陶瓷手机后盖的方法
JP2000510807A (ja) 焼結発泡体の安定化及び開気胞焼結発泡体の製造
CN114213142A (zh) 一种挤出3d打印硅铝氧化物陶瓷气凝胶的制备方法
CN113165207B (zh) 陶瓷制品的制造方法及陶瓷制品
CN105948781A (zh) 一种高开孔率多孔碳化硅陶瓷材料的制备方法
CN108000684A (zh) 一种粉末注射成型用粘结剂制备方法及其应用
CN1454871A (zh) 有机泡沫微球作为成孔剂的热压铸多孔陶瓷的制备方法
CN105921100A (zh) 一种可控通孔蒙脱土多孔材料吸附剂及其制备方法
CN102471172A (zh) 生产用作催化剂床基质的具有增强机械强度的多孔陶瓷的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant