CN110527907B - 一种550级耐磨复合板及其生产方法 - Google Patents

一种550级耐磨复合板及其生产方法 Download PDF

Info

Publication number
CN110527907B
CN110527907B CN201910821785.1A CN201910821785A CN110527907B CN 110527907 B CN110527907 B CN 110527907B CN 201910821785 A CN201910821785 A CN 201910821785A CN 110527907 B CN110527907 B CN 110527907B
Authority
CN
China
Prior art keywords
composite
wear
blank
base material
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910821785.1A
Other languages
English (en)
Other versions
CN110527907A (zh
Inventor
蒋健博
张涛
刘芳芳
韩严法
胡奉雅
王佳骥
傅博
付魁军
及玉梅
林田子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Angang Steel Co Ltd
Original Assignee
Angang Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Angang Steel Co Ltd filed Critical Angang Steel Co Ltd
Priority to CN201910821785.1A priority Critical patent/CN110527907B/zh
Publication of CN110527907A publication Critical patent/CN110527907A/zh
Application granted granted Critical
Publication of CN110527907B publication Critical patent/CN110527907B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/02Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • B21B2001/386Plates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Abstract

本发明公开一种550级耐磨复合板及其生产方法。复合板由基材和复材组成,基材为低碳低合金钢;复材为550级别耐磨钢。将复合坯抽取真空后进行真空电子束密封焊接,焊接工艺为双枪联动,且每条焊缝的进行焊接时,将其分为N段,N≥5,每段长度为200~400mm;复合坯加热时采用“中心加热”方式,使复合坯处于由中心直接受热并向四周传导的方式升温;复合坯在出炉前1~2小时,提高复合坯头尾上表面处火焰口温度40~50℃;成品复合板厚度为20~100mm。复合板复合面抗剪切强度≥502MPa,结合率为100%,复合层布氏硬度≥535,室温冲击功≥118J,应用于易磨损设备上。

Description

一种550级耐磨复合板及其生产方法
技术领域
本发明属于金属材料加工技术领域,特别涉及到一种应用真空复合+轧制技术生产的550级耐磨复合板以及该复合板的制备方法。
背景技术
复合耐磨钢板是一种采用先进复合制造技术生产的耐磨复合材料,是工业领域先进的耐磨复合材料。由于耐磨复合钢板的基板采用塑韧性很好的普碳低合金钢,可在受冲击的过程中吸收能量,因而,耐磨复合钢板较单质耐磨钢具有很强的抗冲击性能和抗裂性能,可以应用的振动、冲击较强的工况条件下。同时,耐磨复合钢板可以制成标准尺寸的钢板,重量轻,加工方便灵活。由于采用软质基板,因而可以向内冷弯成形,可以用等离子弧、碳弧等热源切割。另外,复合钢板虽然因材料和工艺原因价格高于普通钢板,但其使用寿命的大幅提高,使得应用在磨损环境下的设备停机检修时间和维修费用大为减少。据估算,复合钢板的性价比比普通耐磨钢板高约2~4倍,物料处理量越大,设备磨损越严重的企业,使用复合钢板的经济效益越明显。因此,复合耐磨钢板广泛应用在冶金机械、建材机械、电力机械、矿山机械等行业中的各种易磨损设备上。
目前,国内耐磨复合板主要以堆焊法为主,如耐磨焊条堆焊、药芯焊丝堆焊、等离子堆焊。同时,关于粉末法、钎焊法和扩散法等也开展了相关的研发工作。但是,这些工艺都有其各自的局限性,耐磨焊条堆焊采用高Cr高C铸铁焊条进行堆焊,受铸铁焊条长度限制,难以实现自动化焊接;药芯焊丝堆焊层的性能受药芯填充率和***铁皮稀释的影响,强化相含量难以提高,进而影响耐磨板性能;等离子堆焊制备的耐磨板具有硬度和耐磨性高的特点,但是该工艺堆焊效率较低,难以大规模推广。在此背景下,广大学者开展了大量关于耐磨复合板制备技术的研发工作。
CN101774288A公开了一种“金属机件耐磨复合板及其修复工艺”、文献“一种耐磨复合板的制造工艺方法研究”(许可贵,程志国,刘健威等,发表在《焊接》2010年第8期37~40页)和文献“带极堆焊制备耐磨复合板”(陆峰,王元宗,王林彦发表在《第十四届全国耐磨材料大会》2015年390~394页)均采用在基体钢板上堆焊耐磨焊缝的方式进行耐磨复合板的制备,其耐磨性比低碳钢高12~18倍,比不锈钢、高锰钢高5倍,比铸态高铬铁高1倍。但是其生产效率较低,生产成本较高,并不适用于工业化大生产。
CN102212821A公开了“一种强化碳化钨耐磨复合板的制备方法”、CN102212822A公开了“一种金属耐磨复合板的加工方法及其加工装置”、CN102218615A公开了“一种制备加厚耐磨层复合板的方法”,上述三个专利均采用在基体钢板上铺撒相关粉末经加热炉热处理后形成耐磨复合板的方法进行耐磨复合板的制备,其工作层的耐磨合金不仅表面平整、美观,而且可以直接用于要求表面平整的工况(如挡板等)。但是,该工艺制备耐磨复合板耐磨层致密性较差,耐磨性能和使用寿命较低,无法满足日益增长的工程应用的实际需求。
CN107557537A公开了“高韧高耐磨复合板的制备方法”、CN103264259A公开了“一种耐磨耐火砖模具板及其快速制备方法”,上述两个专利均采用加热或添加过渡金属的方式使耐磨板和基体钢板之间形成冶金连接的方式进行耐磨复合板的制备,其耐磨耐腐蚀性高,生产效率高,寿命长,成本低,节能环保。但是,该工艺依靠无压力扩散或钎料连接的方式进行耐磨复合板的制备,其复合界面的抗剪切性能较低,易出现分层、剥落等缺陷,无法满足高负载使用环境下的应用,且使用寿命无可靠保障。
综上所述,目前耐磨复合板的制备工艺仍是以传统的堆焊法为主,其它生产工艺虽然也逐步开展了相关研发工作,但仍存在较多的问题,具有较大的局限性。同时,目前国内市场常用的耐磨复合板为360至450级别,对于450级别以上的耐磨复合板展开的研发工作较少,缺乏大量的研究数据支持,极大的限制了耐磨复合板的应用。在此背景下,面对工程应用领域日益增长的耐磨复合板的需求,特别是高硬度级别的耐磨复合版,迫切需要一种高效、稳定的制备工艺用以生产高级别的耐磨复合板。
轧制法是一种新兴的高效的复合板制备工艺,一般由真空组坯、加热和轧制工艺构成。但是在高级别耐磨复合板的制备过程中,由于耐磨钢和基层钢材的物理化学性能差异,常出现接头失效和板型控制问题。首先,由于耐磨钢含碳量较高,在组坯封焊时易出现焊接裂纹,尤其在大规格的复合坯料封焊时,其焊接形变和焊接应力集中明显,更容易发生接头开裂、失效。其次,在复合坯加热过程中,由于复合坯的加热形变不一致,应力直接作用在焊接接头位置,也容易出现封焊接头开裂失效问题。在采用常规轧制法制备高耐磨复合板的过程中,经常出现复合坯在封焊后或加热过程中封焊接头就开裂失效的情况。另外,在复合坯轧制的过程中,也常出现耐磨钢和基层钢材变形不一致,发生翘曲的问题,甚至由于翘曲过大无法继续轧制。基于上述问题,常规轧制法复合工艺制备高级别耐磨钢复合板的成功率仅为50%左右。
本发明提供了一种高效、稳定的550级耐磨复合板的制备方法,通过优化组坯封焊和加热工艺,调控组坯封焊过程中的应力分布状态和复合坯的温度场分布状态,取得明显的控制效果,大幅度提高制备550级耐磨复合板的成功率。
发明内容
基于上述现有技术的不足,本发明的目的是提供一种高效、稳定的高级别耐磨复合板的制备方法,降低封焊接头的裂纹敏感性,提高高级别耐磨复合板的成功率的同时,采用特殊的组坯封焊和加热工艺使复合面抗剪切强度≥500MPa、耐磨层硬度达到550级别的高级别耐磨复合板,既保证耐磨复合板的成功率,又具备550级的耐磨特性。该方法生产的550级耐磨复合板成功率可达80%以上,板形平整,复合界面性能稳定,且具备优异的耐磨性能。
一种550级耐磨复合板,由低碳低合金钢与550级别耐磨钢复合而成,低碳低合金钢为C含量按质量百分比计为C≤0.22%的低碳低合金钢;550级别耐磨钢,其化学成分按质量百分比计为C:0.25%~0.30%、Si:0.3%~0.5%、Mn:0.40%~1.00%、Cr:0.6%~1.2%、Mo:0.15%~0.4%、Nb:0.01%~0.03%、Ni≤0.50%、Cu≤0.50%、B:0.0005%~0.0022%、Ti:0.025%~0.04%、Als:0.020%~0.045%、P≤0.015%、S≤0.005%、[N]≤0.0080%、[O]≤0.0020%,且Ti/N≥3.4,余量为Fe及不可避免的杂质。
基材成分中碳含量要求在0.22%以下,一方面较低的碳含量可以保证耐磨复合坯封焊接头的质量,降低焊接接头的裂纹倾向;另一方面较低的碳含量可以保证在单面在线超快冷处理的过程中,基层可以具有较好的抗冲击性能。
550级耐磨钢中元素作用机理为:
C:为了保证钢板超高的表面硬度和厚钢板水冷时的淬透性需要相当的碳含量做保证,在一定范围内钢的硬度随碳含量的增加而相应的增加,同时一定的碳含量可以和Nb、Ti、Cr、Mo等形成碳化物析出,增加耐磨性。碳含量过高则塑性韧性降低焊接性能下降,为了保证钢板的高硬度及焊接性能和低温韧性,因此本发明中C含量控制在0.25%~0.30%。
Si:主要作用是固溶强化和脱氧,是非碳化物形成元素,Si含量较多时会抑制碳化物的析出,但过多时会使焊接性能下降,同时影响韧性,因此本发明中Si含量控制在0.3%~0.5%。
Mn:主要作用是固溶强化,含量大于0.4%时可以提高淬透性,提高马氏体中碳的过饱和度,有利于强度和硬度的提高,且成本低廉,但含量高于1.0时易形成中心偏析,会使板坯有易发裂纹的倾向;因此本发明中Mn含量控制在0.4%~1.0%。
Nb:是强碳和氮化合物形成元素,主要作用是通过在钢中形成细小碳氮化物抑制加热时晶粒长大,空冷时又具有一定的析出强化的作用;Nb加入钢中,通过抑制奥氏体晶粒界面运动,从而提高钢板的再结晶温度。钢板中加入适量的Nb,高温奥氏体化时,未溶解的NbC起到钉轧奥氏体晶界的作用,从而阻碍奥氏体晶界过分粗化。溶解在奥氏体中的Nb,在两阶段轧制过程中抑制奥氏体再结晶,细化奥氏体晶粒。但Nb含量过高,则会形成粗大的NbC,影响钢板的力学性能。因此,本发明中Nb的加入量为0.01%~0.03%。
Ti:可以与氮、碳和硫形成化合物,主要作用是通过在钢中形成细小碳氮化物抑制加热时晶粒长大,钛与氮的化合物形成温度较高,碳化钒和碳化铌的析出温度较碳化钛和氮化钛低,加钛时通过控制钛氮的比例(Ti/N≥3.4),使铌主要与碳化合,同时可以阻止钢中的游离N与B形成化合物,提高酸溶硼收得率充分发挥B提高淬透性的作用,但含量过高时会形成粗大的TiN,降低钢板的低温韧性和疲劳性能,因此本发明中Ti的加入量控制在0.025%~0.04%且Ti/N≥3.4。
Mo、Cr:主要作用是降低临界冷却速度,提高钢板的淬透性,形成完全细小的马氏体组织,另外铬、钼在钢中可形成多种碳化物,提高钢板的强度和硬度,保证厚规格钢板的硬度在550HB以上,Mo含量大于0.15%,Cr含量大于0.6%时效果明显,Mo、Cr含量随厚度增加而适当增加,但Mo价格昂贵,Mo、Cr过多加入,还会使焊接性降低,因此本发明控制Cr:0.6%~1.2%、Mo:0.15%~0.4%。
B:钢中加入微量的硼可极大的提高淬火淬透性,由于硼的加入量很小,且在钢液中与氧、氮有较强的亲和力,很容易与其发生化合反应,从而失去提高淬透性的作用。因此冶炼时加硼之前应尽量降低钢水中氧和氮的含量,但B含量过多时(≥0.0025%)易在晶界处富集,会降低晶界结合能,使钢板在受到冲击载荷时更倾向于沿晶断裂,降低钢板的低温冲击吸收功。因此,本发明中B的加入量为0.0005%~0.0022%,且[N]≤0.0080%,[O]≤0.0020%。
Cu、Ni:在大于50mm厚钢板中添加0.3%~0.5%铜,淬火后的自回火过程可形成ε-Cu析出,有效提高钢的强度和硬度,但含Cu钢在加热和热轧过程中易因铜脆而造成边部过烧和表面翘皮等表面质量缺陷。为改善含Cu钢材的表面质量,常向钢中加入高熔点的Ni元素,以形成高熔点的Cu、Ni二元合金相,减少低熔点富Cu相,同时增加Cu在钢中的溶解度。为达到完全抑制含Cu钢铜脆缺陷的目的,一般将Ni:Cu比控制在大于1:2,Ni也是同时提高大于50mm厚规格钢板的硬度和低温韧性的元素,Ni会与Fe形成FeNi化合物,钢板在较低温度下受到低温冲击载荷时,固溶的Ni会提高钢板的低温冲击吸收功,但Ni成本较高,因此本发明中厚规格钢板加入小于等于0.5%的Ni能够保证钢板的力学性能尤其是-40℃低温韧性,并使其具有市场竞争力。
生产方法包括选材、表面处理、复合坯组坯、真空焊接、轧制和表面修磨,所述方法包括以下步骤:
(1)选取基材、复材作为组坯用原料。
基材和复材可以为连铸坯、中间坯、钢板等,基材长度为2~4m,宽度为1~3m,且基材与复材的长度、宽度相同,基材与复材厚度比为1~2,基材厚度为100~150mm,复材厚度为50~100mm。其中,基材和复合的厚度比例一方面限制了复材在复合坯中所占比,保证了在后续热处理过程中既获得复层的高耐磨性能又能获得基层的抗冲击性能,另一方面限制了复合坯的总厚度,既限制了组坯封焊过程中应力幅值又保证了复合坯加热过程中的形变一致性。在结构上降低复合坯封焊接头在焊接和加热过程中的裂纹敏感性。
(2)对基材、复材待接触表面进行加工,通过刨床或铣床等机加工方式对其表面进行打磨,去除待接触面的锈层和氧化层。
采用刨床或铣床等机加工的方法去除基材和复材待复合表面氧化层,加工深度为5~10mm,加工过程无冷却液添加。其中,在组坯之前对坯料待复合表面进行修磨处理,去除锈层和氧化物层,使其在轧制的过程中均以新鲜金属相互接触,有助于两者之间形成冶金结合,提高结合质量,避免夹杂、气孔和未结合等缺陷。
(3)对基材、复材待复合表面进行去油污处理。
采用99.99%高纯度酒精对基材和复材待复合界面进行去油污处理,并采用无纺布进行擦拭。其中,在基材和复材待复合表面机加处理完成后,进一步用高纯度酒精进行去油污处理并用无纺布擦拭可有效提高待复合表面的洁净度,有助于耐磨复合板复合界面间形成良好的冶金结合。
(4)将基材、复材按照由上至下的位置依次居中叠放组坯,形成复合坯。
(5)将组坯后的复合坯抽取真空后进行真空电子束密封焊接,使基材与复材待复合界面处于真空环境。
复合坯所处环境真空度≤4.5×10-2Pa;其中,在真空环境下对复合坯进行真空电子束封装焊接,可最大限度的降低结合面之间的气体含量,避免在轧制后出现气体残留,造成结合率不合。另外,结合面之间气体含量的降低还有助于防止其对结合面表面的二次氧化,有助于结合性能的提高。真空电子束密封焊接的有效熔深为30~40mm,深宽比7~8,且焦点位置向基材侧偏移1~2mm;其中,采用电子束焊接工艺进行封装焊接,可以在较低的热输入情况下完成大熔深的焊接,得到的焊接接头深宽比较大,降低焊接过程对复合坯料组织和性能的影响。同时,无需使用焊材并降低焊接能耗均有利于工业大生产的成本控制。其中,采用向基材侧偏移的焊接工艺,可以对焊接熔池内的化学成分进行调控,避免接头组织进行马氏体区,保证接头强度,降低接头裂纹敏感性。
真空电子束焊接顺序为双枪联动先进行两条长边的密封焊接,后进行两条短边的密封焊接。且每条焊缝的进行焊接时,将其分为N段,N≥5,每段长度为200~400mm,焊接顺序为先进行中间段数的焊接然后以左、右交替的顺序进行剩余段数的焊接。其中,采用双枪联动工艺可以保证复合坯形变的一致性,降低应力集中程度;采用先进行长边焊接后进行短边焊接以及采用先焊中间段数然后以左、右顺序焊接剩余段数可以将焊接形变和应力逐步释放,降低焊接应力的幅值。通过特殊的封焊工艺降低耐磨复合坯在组坯封焊过程中的裂纹敏感性。
(6)将真空处理后的组合坯料加热至1200~1250℃保温,保温时间按照复合坯厚度×1min/mm计算。
复合坯采用火焰室式炉进行加热,加热时采用“中心加热”方式,即加热火焰口处于复合坯长、宽平面的上下中心位置,使复合坯处于由中心直接受热并向四周传导的方式升温。其中,采用火焰室式炉进行中心加热工艺,可以使复合坯由中心开始发生膨胀形变,避免了由于复合坯表层受热,心部升温较慢而引起的形变不一致,封焊接头处发生应力集中,进而开裂失效的情况,降低了复合坯在加热过程中的裂纹敏感性。
复合坯在出炉前1~2小时,提高复合坯头尾上表面处火焰口温度40~50℃。其中,采用头尾上表面加热法可以提高头尾部上表面一定范围内基材的温度,提高其轧制过程中的变形程度,有效避免复合坯在轧制过程中易出现的翘头问题,提高复合坯的轧制成功率。
(7)开轧温度为1180~1200℃,第一道次压下率为15%~20%,总压下率≥50%。复合坯采用基材在上,550耐磨钢在下的形式进行轧制;其中,采用非对称组坯形式进行550级耐磨复合板的轧制,可以有效的简化工业化大生产的工艺复杂性,提高其生产效率,避免了对称组坯的隔离剂涂覆和轧后的分板环节。
(8)轧制后进行在线超快冷处理。采用在线超快冷对550耐磨钢侧进行浇水、冷却,使复层的冷却速度为3~5℃/s,且冷却后在复层进行测温返红温度小于300℃。其中,采用在线超快冷对复层进行浇水、冷却,可以使其获得高硬度马氏体组织,保证其耐磨性能。同时,又有效控制了基层侧的冷却速度,使其获得较高的抗冲击性能。
(9)经矫直、切边、表面修磨后得到目标厚度耐磨复合板,厚度范围为20~100mm。
有益效果:
本发明的550级复合板与现有产品相比:
1、制备的耐磨复合板复合界面抗剪切强度可达500MPa以上,结合率为100%,耐磨层布氏硬度可达到530以上,室温冲击功可达到118J以上;
2、降低耐磨复合坯在组坯封焊和加热过程中的裂纹敏感性并改善其在轧制过程中发生的翘头问题,生产效率由原来的50%左右提高至80%以上。
附图说明
图1为NM550耐磨复合板示意图。
具体实施方式
以下实施例用于具体说明本发明内容,这些实施例仅为本发明内容的一般描述,并不对本发明内容进行限制。
表1为本发明实施例550级耐磨钢的化学成分;表2为本发明实施例550级耐磨钢的原料规格;表3为本发明实施例低碳低合金钢的实际材质及原料规格;表4为本发明实施例复合坯相关信息;表5为实施例轧前工艺及坯料信息;表6为本发明实施例的轧制制度;表7为本发明实施例的性能检验结果。
表1实施例550级耐磨钢的化学成分(wt%)
Figure BDA0002187753830000111
表2实施例550级耐磨钢的原料规格
实施例 钢种 来源 长度/m 宽度/m 厚度/mm
1 NM550 中间坯 4 3 80
2 NM550 板材 3.6 2.8 60
3 NM550 中间坯 3.6 2.8 70
4 NM550 连铸坯 4 3 100
表3实施例低碳低合金钢的实际材质及原料规格
Figure BDA0002187753830000112
表4实施例复合坯相关信息
Figure BDA0002187753830000113
表5实施例轧前工艺及坯料信息
Figure BDA0002187753830000121
表6实施例轧制制度
Figure BDA0002187753830000122
表7实施例力学性能检验结果
Figure BDA0002187753830000123
由实施例可见,根据本发明生产的550级耐磨复合板屈服强度、抗拉强度和伸长率均满足相关标准要求,室温冲击≥118J,复合面抗剪切强度≥502MPa,复合层布氏硬度≥535,超声波检验100%合格,封焊接头在焊接和加热过程中无开裂,复合坯在轧制过程中无翘头问题。

Claims (2)

1.一种550级耐磨复合板,其特征在于,复合板由低碳低合金钢与550级别耐磨钢复合而成,按质量百分比计,要求低碳低合金钢中的C≤0.22%;550级别耐磨钢中按质量百分比计含有C:0.25%~0.28%、Si:0.32%~0.38%、Mn:0.56%~0.98%、Cr:0.84%~0.95%、Mo:0.15%~0.4%、Nb:0.01%~0.03%、Ni≤0.50%、Cu≤0.50%、B:0.0008%~0.0019%、Ti:0.026%~0.038%、Als:0.020%~0.045%、P≤0.015%、S≤0.005%、[N]≤0.0080%、[O]≤0.0020%,且Ti/N≥3.4,余量为Fe及不可避免的杂质,复合板复合面抗剪切强度≥502MPa,结合率为100%,复合层布氏硬度≥535,室温冲击功≥118J;
550级耐磨复合板的制备方法包括选材、表面处理、复合坯组坯、真空焊接、轧制和表面修磨,其中,
(1)选取基材、复材作为组坯用原料;基材为C含量按质量百分比计为C≤0.22%的低碳低合金钢,复材为550级别耐磨钢,基材和复材为连铸坯、中间坯、钢板,基材长度为2~4m,宽度为1~3m,且基材与复材的长度、宽度相同,基材与复材厚度比为1~2,基材厚度为100~150mm,复材厚度为50~100mm;
(2)对基材、复材待接触表面进行加工,去除待接触面的锈层和氧化层,加工深度为7~10mm;
(3)对基材、复材待复合表面进行去油污处理;
(4)将基材、复材按照由上至下的位置居中叠放组坯,形成复合坯;
(5)将组坯后的复合坯抽取真空后进行真空电子束密封焊接,使基材与复材待复合界面处于真空环境;复合坯所处环境真空度为3.0×10-2~4.4×10-2Pa;真空电子束密封焊接的有效熔深为30~36mm,深宽比7~8,且焦点位置向基材侧偏移1~2mm;真空电子束焊接顺序为双枪联动,即先进行两条长边的密封焊接,后进行两条短边的密封焊接,且每条焊缝的进行焊接时,将其分为N段,N≥5,每段长度为200~400mm,焊接顺序为先进行中间段数的焊接然后以左、右交替的顺序进行剩余段数的焊接;
(6)将真空处理后的组合坯料加热至1225~1240℃保温,保温时间按照复合坯厚度×1min/mm计算;复合坯加热时采用“中心加热”方式,即加热火焰口处于复合坯长、宽平面的上下中心位置,使复合坯处于由中心直接受热并向四周传导的方式升温;复合坯在出炉前1~2小时,提高复合坯头尾上表面处火焰口温度40~50℃;
(7)复合坯采用基材在上,550耐磨钢在下的形式进行轧制;开轧温度为1180~1200℃,第一道次压下率为16%~20%,总压下率50%~70%;
(8)轧制后进行在线超快冷处理,采用在线超快冷对550耐磨钢侧进行浇水、冷却,使复层的冷却速度为3~5℃/s,且冷却后在复层进行测温返红温度小于300℃;
(9)经矫直、切边、表面修磨后得到目标厚度耐磨复合板。
2.根据权利要求1所述的550级耐磨复合板,其特征在于,成品复合板厚度为厚度范围为36~100mm。
CN201910821785.1A 2019-09-02 2019-09-02 一种550级耐磨复合板及其生产方法 Active CN110527907B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910821785.1A CN110527907B (zh) 2019-09-02 2019-09-02 一种550级耐磨复合板及其生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910821785.1A CN110527907B (zh) 2019-09-02 2019-09-02 一种550级耐磨复合板及其生产方法

Publications (2)

Publication Number Publication Date
CN110527907A CN110527907A (zh) 2019-12-03
CN110527907B true CN110527907B (zh) 2021-01-08

Family

ID=68666058

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910821785.1A Active CN110527907B (zh) 2019-09-02 2019-09-02 一种550级耐磨复合板及其生产方法

Country Status (1)

Country Link
CN (1) CN110527907B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111085547A (zh) * 2019-12-25 2020-05-01 山东钢铁集团日照有限公司 一种非对称异种材热轧复合卷的制造方法
CN111468898A (zh) * 2020-04-20 2020-07-31 湖南卡密尔新材料科技有限公司 一种复合耐磨钢板的制备方法
CN111570515A (zh) * 2020-05-20 2020-08-25 中国科学院上海应用物理研究所 金属复合板轧制工艺优化方法及设计方法
CN117507506A (zh) * 2022-07-29 2024-02-06 宝山钢铁股份有限公司 一种极寒地带大型矿用自卸车箱体用钢板及其制造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103342020B (zh) * 2013-07-10 2015-03-11 鞍钢股份有限公司 一种耐热耐磨复合钢板及其制造方法
CN105506504A (zh) * 2014-09-26 2016-04-20 鞍钢股份有限公司 一种超高强度耐磨钢板及其生产方法
CN105363780A (zh) * 2015-10-16 2016-03-02 首钢总公司 一种普碳钢与耐磨钢复合钢板及其生产方法
CN105695861B (zh) * 2016-04-22 2018-04-24 柳州凯通新材料科技有限公司 一种耐磨轧制复合钢板
CN109693430B (zh) * 2017-10-20 2021-04-02 鞍钢股份有限公司 一种薄复层双面钛钢复合板及其制备方法
CN109693075A (zh) * 2017-10-20 2019-04-30 鞍钢股份有限公司 以if钢为过渡层高性能双面钛钢复合板及其制备方法
CN109692873B (zh) * 2017-10-20 2021-02-23 鞍钢股份有限公司 一种薄复层钛钢复合板及其制备方法
CN109693072B (zh) * 2017-10-20 2021-02-23 鞍钢股份有限公司 一种825/x70/825双面复合板及其生产方法
CN109694989B (zh) * 2017-10-20 2020-09-01 鞍钢股份有限公司 一种825/x70镍基合金复合板及其生产方法
CN109695000B (zh) * 2017-10-20 2021-01-08 鞍钢股份有限公司 以if钢为过渡层的双面钛钢复合板及其高温制备方法
CN109957729B (zh) * 2017-12-22 2020-09-01 鞍钢股份有限公司 一种有轨电车道岔用耐磨钢板及其生产方法

Also Published As

Publication number Publication date
CN110527907A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
CN110527907B (zh) 一种550级耐磨复合板及其生产方法
CN110592473B (zh) 一种高级别特厚双面耐磨复合板及其生产方法
JP6198937B2 (ja) 超高度の靭性および優れた溶接性を伴うht550鋼板ならびにその製造方法
AU2017364679B2 (en) High-strength corrosion-resistant composite chequered iron and manufacturing method therefor
JP5509923B2 (ja) レーザ溶接用またはレーザ・アークハイブリッド溶接用の引張強さが1100MPa以上の高張力鋼板の製造方法
CN105363780A (zh) 一种普碳钢与耐磨钢复合钢板及其生产方法
CN108995323B (zh) 一种三代核电站高剪切强度特厚复合钢板及其制造方法
CN110076430B (zh) 一种厚度≥40mm的1000MPa钢板的气保护焊接方法
CN109306436A (zh) 一种具有耐腐蚀性的抗酸管线用复合钢板及其制造方法
CN105543710A (zh) 一种碳钢与马氏体不锈钢复合钢板及其生产方法
CN109702382B (zh) 一种适合高温条件长时间服役的焊接材料及其焊接方法
CN110640288A (zh) 一种q235钢板上堆焊高铬合金的堆焊方法
CN110509634B (zh) 一种高级别双面耐磨复合板及其生产方法
CN109693072A (zh) 一种825/x70/825双面复合板及其生产方法
CN108774710A (zh) 一种高强度起重机臂架用钢材及其生产方法
CN109868469B (zh) 一种用于激光制造轧机牌坊和轧辊轴承座复合衬板的粉末材料及其制造方法
JP7047387B2 (ja) 鋼板、突合せ溶接部材、熱間プレス成形品、鋼管、中空状焼入れ成形品、および鋼板の製造方法
CN114427091B (zh) 一种用于热冲压的高耐磨性模具钢制品及其增材制造工艺
CN104785895A (zh) 一种轧机用活套辊的埋弧堆焊制造工艺
CN105420632B (zh) 一种q690cf热轧钢板及其制备方法
CN110527906B (zh) 一种600级耐磨复合板及其生产方法
US11130161B2 (en) High-strength corrosion-resistant composite chequered iron and manufacturing method therefor
JP6634616B2 (ja) 摩擦攪拌接合用鋼及び摩擦攪拌接合方法
JP2001335884A (ja) Ctod特性に優れた高強度厚鋼板及びその製造方法
CN113373381B (zh) 一种大线能量焊接670MPa级钢板及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant