CN110482644A - 一种利用光辅助纳米银形成过程降解呫吨类荧光染料的方法 - Google Patents

一种利用光辅助纳米银形成过程降解呫吨类荧光染料的方法 Download PDF

Info

Publication number
CN110482644A
CN110482644A CN201910864883.3A CN201910864883A CN110482644A CN 110482644 A CN110482644 A CN 110482644A CN 201910864883 A CN201910864883 A CN 201910864883A CN 110482644 A CN110482644 A CN 110482644A
Authority
CN
China
Prior art keywords
nano silver
degradation
xanthene
silver
forming process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910864883.3A
Other languages
English (en)
Inventor
王学川
刘轩
韩庆新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201910864883.3A priority Critical patent/CN110482644A/zh
Publication of CN110482644A publication Critical patent/CN110482644A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及染料降解处于领域,特别涉及一种通过光辅助作用原位清洁制备银纳米粒子的方法以及利用该银纳米粒子的形成过程降解呫吨类荧光染料的方法。该方法就是室温下,银离子溶液在395 nm紫外灯下光照5分钟形成的银纳米颗粒过程中能高效降解溶液中的呫吨类荧光染料,生成的银纳米粒子也能在光照下降解染料。本方法制备简单清洁,整个过程没有加入任何有害的化学物质,从而对环境不会造成二次污染,生成的银纳米粒子可重复使用。此外,该方法还可利用银离子在光照下形成银纳米粒子而实现水溶液中银离子的富集这一特性用于回收环境中的银资源。

Description

一种利用光辅助纳米银形成过程降解呫吨类荧光染料的方法
技术领域
本发明用于降解荧光染料技术领域,一种利用光辅助纳米银形成过程降解呫吨类荧光染料的方法。
背景技术
荧光染料废水是一类具有一定的荧光强度,具有刺鼻性气味,废水中含有大量的带有氨基、硝基和磺酸基等取代基的苯及其衍生物的染料废水,多种有机物使得废水生物毒性增强。此外,废水中含有大量的难生物降解物质,可生化性非常差。同时,该类废水中盐分含量高,对常规处理中生化部分的微生物活性造成不利影响,增加了其处理难度。综合以上因素,该类废水采用传统方法处理难以取得理想效果。呫吨荧光染料被广泛运用皮革制造业、造纸行业、渗漏污水***、某些特种标志及军事追踪、细胞荧光染色剂制造等行业。这些行业会产生出大量的荧光染料废水,如果不妥善处理,会对人类生活环境造成大的危害。本发明中,利用硝酸银在395 nm紫外灯下生成的银纳米簇过程中与荧光染料反应,对呫吨类荧光染料溶液进行降解和荧光猝灭。
发明内容
本发明目的是提供一种以商用硝酸银为原料,在395 nm紫外光照射下形成银纳米颗粒,对罗丹明类和荧光素类染料快速降解的方法。以罗丹明类、荧光素和曙红Y等呫吨类荧光染料为原料,向其中加入一定量的硝酸银溶液,研究染料在395 nm紫外光(20 W)下经过5分钟,生成银纳米颗粒过程中对荧光染料进行降解,降解效果在两分钟内达到85%以上。
一种利用光辅助清洁作用制备银纳米粒子的方法,并将其应用于呫吨类荧光染料的降解。包括,含有银离子的水溶液在用395 nm紫外光(20 W)照射5分钟后生成银纳米颗粒。
具体步骤如下:配置银离子储存液并将其避光储存;然后量取一定浓度的银离子储存液加入到含有呫吨类荧光染料的水溶液中,通过395 nm紫外光的辅助作用对溶液中的呫吨类荧光染料进行降解。
具体的,以罗丹明6G为例,取10 μL罗丹明6G的储备液(0.001 mol/L)加入到10 ml水中,然后再加入40 μL硝酸银储备液(0.01 mol/L),取3毫升上述混合溶液置于4 ml石英比色皿中用395 nm的紫外光源照射,每隔1分钟用紫外-可见光谱仪和荧光光谱仪测量溶液的紫外-可见吸收光谱和荧光光谱,计算罗丹明6G的降解效率。
所述罗丹明B溶液的浓度为0.48 g/L;罗丹明6G溶液的浓度为0.46 g/L;荧光素溶液的浓度为0.33 g/L;香豆素溶液的浓度为0.15 g/L;曙红Y溶液的浓度为0.65 g/L。
所述溶液中银离子与荧光染料的物质的量之比为:40 : 1;
将银离子加入到含有荧光染料的水溶液中,在光照条件下原位制备银纳米粒子,并利用该过程对溶液中的荧光染料进行降解,利用0.05 -0.22 μm的水性滤膜回收溶液的银纳米粒子,银纳米粒子通过超声与水性滤膜分离,向银纳米粒子的分散液中再次荧光染料后光照,用紫外-可见光谱仪和荧光光谱仪测量溶液的紫外-可见吸收光谱和荧光光谱,计算罗丹明6G的降解效率。
本发明以罗丹明类和荧光素等呫吨荧光染料作为目标降解物,研究光辅助生成硝酸银纳米颗粒过程中对荧光染料降解性能。硝酸银溶液经395 nm紫外光照射,在形成过程中对罗丹明类和荧光素类荧光染料进行降解。其能使染料颜色消退、荧光淬灭。然后用紫外可见光分光光度计测定其吸收光谱,并计算其降解率。染料的降解率 Y按下列公式计算:
其中:C为t时间染料浓度;C0为染料初始浓度。
通过以下步骤实现:
(1)将0.0170 g硝酸银溶解10 ml水中,将溶液放置暗处。
(2)称取罗丹明B 0.0048 g、罗丹明6G 0.0048 g、荧光素0.0033 g、香豆素0.0015g、曙红Y 0.0065 g分别溶解在10 ml去离子水中。
(3)取各染料溶液10 μL溶解在10 ml去离子水中,随后向各样品瓶中加入40 μL配置好的硝酸银溶液。
(4)取混合溶液3 ml至4 ml石英池中,每隔1分钟测量紫外-可见吸光度和荧光光谱。
本发明的有益效果为:
1、本发明提供的方法可以高效降解溶液中的呫吨类荧光染料;
2、生成的银纳米颗粒可以继续降解呫吨类荧光染料,只不过降解效率有所降低;
3、所生成的银纳米粒子可以作为银纳米离子进行回收。
附图说明
图1为通过透射电子显微镜观察得到银纳米颗粒;
图2为紫外光辅助纳米银形成过程降解罗丹明6G时间-吸光度曲线;
图3为不光照银离子和不加银离子对解罗丹明6G降解影响的时间-吸光度曲线;其中,(a)不光照条件下罗丹明6G降解情况;(b)不加银离子条件下罗丹明6G降解情况。
图4为不同当量的硝酸银溶液对降解罗丹明6G的影响;其中,(a)相同时间不同当量硝酸银溶液对吸光度影响;(b)不同当量硝酸银溶液降解罗丹明6G的时间-吸光度曲线;
图5为pH对紫外光辅助纳米银形成过程降解罗丹明6G的影响;
图6为pH=7条件下,对不同荧光染料进行降解结果;
图7为罗丹明6G与紫外光辅助纳米银形成过程降解的罗丹明6G分别在自然光、紫外光、白光下的照片;其中,(a)自然光,(b)紫外光,(c)白光。
具体实施方式
实施例1 生成硝酸银纳米颗粒实验
(1)配制浓度为1.7 g/L的硝酸银溶液,将配好的溶液置于暗处。
(2)取40 μL配置好的硝酸银溶液溶于10 ml超纯水中,用395 nm紫外光缘与透明玻璃瓶保持4 cm在室温下照射5分钟。
(3)如图1通过透射电子显微镜观察得到银纳米颗粒。
实施例2 紫外光降解罗丹明6G时间的测定
(1)配制浓度为0.48 g/L的罗丹明6G溶液,将配好的溶液置于暗处。
(2)取10微升配置好的罗丹明6G溶液溶于10 ml超纯水中,取3 ml溶液移入4 ml石英池中测量其紫外可见光吸光度;再取40 μL配置好的硝酸银溶加入到罗丹明6G溶液中,测量其紫外可见光吸光度;用395 nm紫外光缘与装有样品的石英池保持4 cm进行照射,每隔1分钟测量其吸光度,保持在室温。
(3)如图2所示就是所得到效果图。
实施例3 不光照银离子和不加银离子是否降解罗丹明6G
测量实施例2中罗丹明6G稀释溶液的紫外可见光吸光度;将实施例1中配置好的硝酸银溶液取40 μL加入到实施例2中的罗丹明6G 的稀释溶液中每隔1 分钟测量其紫外可见光吸光度,不光照则不会降解罗丹明6G如图3a所示;在不加银离子情况下,仅仅只将染料溶液放置在20 W、395 nm紫外光下,每隔一分钟测量其紫外可见光吸光度,罗丹明6G下降幅度很有限。如图3b所示。
实施例4 光照不同当量的硝酸银溶液降解罗丹明6G
如图4所示,向实施例2中稀释的罗丹明6G溶液中加入5 μL、10 μL、20 μL、30 μL、40 μL、50 μL、70 μL、100 μL实施例1中配置好的硝酸银溶液,用395 nm紫外灯进行照射3分钟,测量其紫外可见光吸光度如图4a所示。同等条件下向罗丹明6G溶液中加入5 μL、10 μL、20μL、25 μL、30 μL、40 μL、50 μL硝酸银储备液,用395 nm紫外灯进行照射3分钟,测量其荧光光谱如图4b所示。
实施例5 光照不同pH 的溶液体系
如图5所示,取实施例2中的罗丹明6G溶液10 μL分别溶于pH=3、4、5、6、7、8、9、10、11、12超纯水溶液中,再取实施例1中硝酸银溶液40 μL加入各样品体系中,用395 nm紫外光照3分钟,测量其紫外可见光吸光度。酸性条件下,降解效果会更理想,碱性条件下当pH在11和12之间会有明显的区别。如图5所示。
实施例6 在pH=7条件下,对不同荧光染料进行降解
称取0.0033 g荧光素溶于10 ml去离子水中;称取0.0048 g罗丹明B溶于10 ml去离子水中;分别取各制备液10微升溶于10 ml去离子水中;称取香豆素0.0015 g溶于10 ml去离子水中、称取曙红Y 0.0065 g溶于10 ml 去离子水中,再向各样品瓶中加入40 μL硝酸银溶液,用395 nm紫外光进行照射不同时间,测量各样品紫外可见光吸光度,降解效果达到85%左右。如图6所示,罗丹明6G由血红色变为无色;罗丹明B由深红色变为浅粉色;香豆素由赤红色变为无色;曙红素有棕红色变为无色;罗丹明-NH2衍生物由橙色变为无色。
实施例7 罗丹明6G在自然光下,紫外光下,白光下的降解区别
移取40 μL实施例1中的硝酸银溶液和10 μL实施例2中的染料溶液至10 ml水中,在20W 395 nm紫外光下光照3分钟,并且在自然光,紫外光,白光下观察到染料溶液褪色并且荧光猝灭,特别的在白光下有明显的丁达尔现象。分别如图7 a、b、c所示。其中a左边是未加入银离子溶液的样品瓶,光照后不变色,右边是加入银离子溶液样品瓶光照后变为透明色;b左边是未加入银离子溶液的样品瓶,光照后荧光不猝灭,右边是加入银离子溶液样品瓶光照后荧光猝灭;c左边是未加入银离子溶液的样品瓶,光照后在白光下不产生丁达尔现象且,右边是加入银离子溶液样品瓶光照后染料颜色消失且产生丁达尔现象。

Claims (7)

1.一种利用光辅助纳米银形成过程降解呫吨类荧光染料的方法,其特征在于,包括如下步骤:
在待降解体系中加入光诱导纳米银前驱体,然后通过光诱导法产生纳米银,通过光辅助纳米银形成过程降解待降解体系中的呫吨类荧光染料。
2.根据权利要求1所述的一种利用光辅助纳米银形成过程降解呫吨类荧光染料的方法,其特征在于,光诱导纳米银前驱体为银离子。
3.根据权利要求2所述的一种利用光辅助纳米银形成过程降解呫吨类荧光染料的方法,其特征在于,光诱导纳米银前驱体为硝酸银。
4.根据权利要求3所述的一种利用光辅助纳米银形成过程降解呫吨类荧光染料的方法,其特征在于,银离子与呫吨类荧光染料的物质的量之比为:40 : 1。
5.根据权利要求1所述的一种利用光辅助纳米银形成过程降解呫吨类荧光染料的方法,其特征在于,所述呫吨类荧光染料为罗丹明B、罗丹明6G、荧光素、香豆素或曙红Y。
6.根据权利要求1所述的一种利用光辅助纳米银形成过程降解呫吨类荧光染料的方法,其特征在于,采用395 nm紫外光进行光诱导反应。
7.根据权利要求1所述的一种利用光辅助纳米银形成过程降解呫吨类荧光染料的方法,其特征在于,具体步骤包括:取10 μL的0.001 mol/L呫吨类荧光染料的储备液加入到10ml水中,然后再加入40 μL的0.01 mol/L硝酸银储备液,取3毫升上述混合溶液置于4 ml石英比色皿中用395 nm的紫外光源照射,通过395 nm的紫外光降解体系中的呫吨类荧光染料。
CN201910864883.3A 2019-09-09 2019-09-09 一种利用光辅助纳米银形成过程降解呫吨类荧光染料的方法 Pending CN110482644A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910864883.3A CN110482644A (zh) 2019-09-09 2019-09-09 一种利用光辅助纳米银形成过程降解呫吨类荧光染料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910864883.3A CN110482644A (zh) 2019-09-09 2019-09-09 一种利用光辅助纳米银形成过程降解呫吨类荧光染料的方法

Publications (1)

Publication Number Publication Date
CN110482644A true CN110482644A (zh) 2019-11-22

Family

ID=68557842

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910864883.3A Pending CN110482644A (zh) 2019-09-09 2019-09-09 一种利用光辅助纳米银形成过程降解呫吨类荧光染料的方法

Country Status (1)

Country Link
CN (1) CN110482644A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111896507A (zh) * 2020-06-30 2020-11-06 陕西科技大学 一种利用罗丹明类化合物在水溶液中特异性检测银离子的方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101791704A (zh) * 2010-03-25 2010-08-04 江苏大学 一种制备纳米银的方法
US20160059228A1 (en) * 2013-05-24 2016-03-03 Council Of Scientific & Industrial Research Semiconductor-oxides nanotubes-based composite particles useful for dye-removal and process thereof
CN108147495A (zh) * 2017-12-15 2018-06-12 蚌埠学院 一种利用硝酸根离子使染料降解褪色的方法
CN109574133A (zh) * 2018-12-29 2019-04-05 重庆科技学院 有机废水光降解方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101791704A (zh) * 2010-03-25 2010-08-04 江苏大学 一种制备纳米银的方法
US20160059228A1 (en) * 2013-05-24 2016-03-03 Council Of Scientific & Industrial Research Semiconductor-oxides nanotubes-based composite particles useful for dye-removal and process thereof
CN108147495A (zh) * 2017-12-15 2018-06-12 蚌埠学院 一种利用硝酸根离子使染料降解褪色的方法
CN109574133A (zh) * 2018-12-29 2019-04-05 重庆科技学院 有机废水光降解方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S.R. KAVITHA ETC.: "Fluorescence quenching and photocatalytic degradation of textile dyeing", 《SPECTROCHIMICA ACTA PART A: MOLECULAR AND BIOMOLECULAR SPECTROSCOPY》 *
王向宇: "《环境工程中的纳米零价铁水处理技术》", 31 October 2016, 冶金工业出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111896507A (zh) * 2020-06-30 2020-11-06 陕西科技大学 一种利用罗丹明类化合物在水溶液中特异性检测银离子的方法及其应用

Similar Documents

Publication Publication Date Title
Xia et al. An ICT-based ratiometric fluorescent probe for hydrazine detection and its application in living cells and in vivo
Parker et al. Influence of ionic strength on triplet-state natural organic matter loss by energy transfer and electron transfer pathways
Bo et al. A new determining method of copper (II) ions at ng ml− 1 levels based on quenching of the water-soluble nanocrystals fluorescence
Cottrell et al. Photochemistry of excited-state species in natural waters: A role for particulate organic matter
Yang et al. Interactions between algal (AOM) and natural organic matter (NOM): Impacts on their photodegradation in surface waters
Machado et al. Use of ozonization for the treatment of dye wastewaters containing rhodamine B in the agate industry
Cao et al. Optical characterization of dissolved organic matter in the Amazon River plume and the Adjacent Ocean: Examining the relative role of mixing, photochemistry, and microbial alterations
Zhang et al. Spectroscopic insights into photochemical transformation of effluent organic matter from biological wastewater treatment plants
Reynolds et al. Acute growth inhibition & toxicity analysis of nano-polystyrene spheres on Raphidocelis subcapitata
Wu et al. Algal extracellular organic matter mediated photocatalytic degradation of estrogens
Duan et al. Indirect photodegradation of sulfisoxazole: Effects of environmental factors (CDOM, pH, salinity, HCO3−, metal ions, halogen ions and NO3−)
Sun et al. Singlet oxygen probes made simple: Anthracenylmethyl substituted fluorophores as reaction-based probes for detection and imaging of cellular 1O2
Li et al. A robust gold nanocluster-peroxyoxalate chemiluminescence system for highly sensitive detection of cyanide in environmental water
CN110482644A (zh) 一种利用光辅助纳米银形成过程降解呫吨类荧光染料的方法
Liu et al. Effect of factors on decolorization of azo dye methyl orange by oxone/natural sunlight in aqueous solution
Sadeghi et al. Ternary deep eutectic solvent modified cadmium selenide quantum dots as a selective fluorescent probe for sensing of uranyl ions in water samples
Rocher et al. Effectiveness of Disinfecting Wastewater Treatment Plant Discharges: Case of chemical disinfection using performic acid
CN113310960B (zh) 硫量子点的合成方法及基于硫量子点测定Fe2+和H2O2的方法
Liu et al. Indirect photodegradation of ofloxacin in simulated seawater: Important roles of DOM and environmental factors
Ahmed et al. Silver nanoparticles: green synthesis, characterization, and their usage in determination of mercury contamination in seafoods
Chen et al. Catalytic kinetic methods for photometric or fluorometric determination of heavy metal ions
Liu et al. A fluorescence sensing method for brilliant blue with gold nanoclusters based on the inner filter effect
Mei et al. Synthesis of intrinsic dual-emission type N, S-doped carbon dots for ratiometric fluorescence detection of Cr (VI) and application in cellular imaging
He et al. Heterogeneity of molecular-level and photochemical of dissolved organic matter derived from decomposing submerged macrophyte and algae
Schafer et al. Abiotic mineralization of dissolved organic phosphorus for improved nutrient retention in a large-scale treatment wetland system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Wang Xuechuan

Inventor after: Liu Xuan

Inventor after: Han Qingxin

Inventor before: Wang Xuechuan

Inventor before: Liu Xuan

Inventor before: Han Qingxin

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191122