CN110479336A - 一种Bi5O7Br/薄层Ti3C2复合型光催化剂的制备方法及其应用 - Google Patents

一种Bi5O7Br/薄层Ti3C2复合型光催化剂的制备方法及其应用 Download PDF

Info

Publication number
CN110479336A
CN110479336A CN201910789272.7A CN201910789272A CN110479336A CN 110479336 A CN110479336 A CN 110479336A CN 201910789272 A CN201910789272 A CN 201910789272A CN 110479336 A CN110479336 A CN 110479336A
Authority
CN
China
Prior art keywords
thin layer
composite photocatalyst
preparation
added
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910789272.7A
Other languages
English (en)
Other versions
CN110479336B (zh
Inventor
李�瑞
刘建新
樊彩梅
官国清
席庆
李亚茹
张小超
王雅文
王韵芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201910789272.7A priority Critical patent/CN110479336B/zh
Publication of CN110479336A publication Critical patent/CN110479336A/zh
Application granted granted Critical
Publication of CN110479336B publication Critical patent/CN110479336B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/399Distribution of the active metal ingredient homogeneously throughout the support particle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)

Abstract

一种Bi5O7Br/薄层Ti3C2复合型光催化剂的制备方法及其应用,属于纳米材料技术领域,目的在于将薄层Ti3C2水溶液直接应用于Bi5O7Br光催化剂的常温制备中,以薄层Ti3C2水溶液为溶剂;以五水硝酸铋和溴酸钠为原料;以氨水为反应液,利用水解法在常温下制得Bi5O7Br/薄层Ti3C2复合型光催化剂。从而在Bi5O7Br和薄层Ti3C2之间建立了电子快速传输通道,加速了光生电子从Bi5O7Br向薄层Ti3C2转移,促进了光生电子‑空穴对的分离,提高了光生电子和空穴参与反应的数量。对环境治理和绿色能源利用具有重要意义。

Description

一种Bi5O7Br/薄层Ti3C2复合型光催化剂的制备方法及其应用
技术领域
本发明属于纳米材料技术领域,具体涉及一种Bi5O7Br/薄层Ti3C2复合型光催化剂的制备方法及其应用,可以用于降解液体中有机污染物及光解水制氢。
背景技术
随着环境污染与能源枯竭危机对人类日常生活的威胁日益增加,越来越多的研究人员关注于环境治理方法与可替代新能源的研究。其中,半导体光催化技术因其利用太阳能、清洁无污染、方法简便、反应彻底等优点,被视为最具潜力的环境治理与能源替代技术。而半导体光催化剂中的关键因素是半导体光催化剂。一方面,半导体光催化剂的带隙宽度决定了其对太阳光的响应能力及利用率;另一方面,半导体光催化剂的价带及导带位置决定了其还原能力及氧化能力的强弱。因此对半导体光催化技术的的研究主要集中于对半导体光催化剂的研究。
BiOBr半导体是一种间接带隙半导体,其晶体结构为四方PbFCl型晶系结构。由于其具有独特的开放式层状结构和间接跃迁模式,使其具有更好的光生电子空穴分离效率,从而与众多光催化剂相比具有更好的光催化活性,因此此类催化剂在众多催化剂中脱颖而出,受到越来越多研究者的关注。在此基础上,通过减少Br的含量,可以得到不同非化学剂量比的BixOyBrz系列催化剂。这类催化剂可以有效降低所制光催化剂的禁带宽度,使光催化剂拥有更好的可见光响应能力。其中Bi5O7Br光催化剂因其适中的能带结构(禁带宽度为2.84 eV,价带位置和导带位置分别为1.41 eV和-1.43eV),不仅满足了光催化分解水制氢的能带要求,而且具有较强的氧化能力和还原能力(Coordination Chemistry Reviews, 2017, 349: 84-101),因此受到了广泛地关注和研究。但光生电子空穴复合率高仍是限制其光催化活性和应用的主要原因。目前众多研究表明,在光催化剂中引入具有强导电能力的载体材料有助于生成的光生电子从光催化剂向载体进行迁移,从而有效地促进光生电子空穴对的分离,进一步提高催化剂的光催化活性(J. Mater. Chem. A, 2018, 6: 16882- 16889)。
MXenes材料是一种具有类石墨烯结构的新型二维层状过渡金属碳(或氮)化物。其通式为M n+1X n T x ,其中M为前过渡金属元素,X为碳或者氮,T为表面吸附的终端基团(-F,-OH,-O)。M-X核心层使MXenes材料展现出较强的导电性,可以快速转移光催化剂生成的光生电子,有效促进光生电子空穴对的分离,提高参与反应的光生电子空穴数量;表面吸附的终端基团(-F,-OH,-O)使MXenes材料展现出优良的亲水性,促进了载流子与水及污染物的接触,为载流子与水或污染物提供了良好的反应场所;更为重要的是剥离后的薄层MXenes材料有较大的表面积,可以为光催化剂的负载以及催化反应提供良好的载体及反应面积,因此MXenes材料可以作为光催化剂材料的优良载体(Acc Chem Res, 2015, 48: 128-135、Adv Mater, 2011, 23: 4248、Adv Electron Mater, 2016, 2:1600255 )。但薄层Ti3C2水溶液与部分溶剂混合会发生团聚而影响其在复合型光催化剂中的分散性,且在高温下反应(如水热反应)会使薄层Ti3C2发生氧化而失去其作用,因此如何将薄层Ti3C2水溶液直接应用于Bi5O7Br光催化剂的常温制备中成为了目前的工作重点。
发明内容
本发明的目的在于将薄层Ti3C2水溶液直接应用于Bi5O7Br光催化剂的常温制备中,提供一种Bi5O7Br/薄层Ti3C2复合型光催化剂的制备方法及其应用,提供一种简单经济环保的复合方法,以制备出一种分散均匀、光生电子-空穴对分离效率高的复合型光催化剂,从而达到对催化剂活性的显著提高和对水体环境中有机污染物的有效降解以及光催化分解水制氢之功效。
本发明采用如下技术方案:
一种Bi5O7Br/薄层Ti3C2复合型光催化剂的制备方法,以薄层Ti3C2水溶液为溶剂;以五水硝酸铋和溴酸钠为原料;以氨水为反应液,利用水解法在常温下制得了分散均匀,光生电子-空穴对分离效率高的Bi5O7Br/薄层Ti3C2复合型光催化剂。
一种Bi5O7Br/薄层Ti3C2复合型光催化剂的制备方法,包括如下步骤:
第一步,薄层Ti3C2溶液的制备:
a. 将1~4 g氟化锂缓慢加入到10~50 mL浓度为9~12 M的浓盐酸中搅拌均匀,再缓慢加入1~3 g钛碳化铝,在30~60℃下持续搅拌24~36 h,得到刻蚀完成后的固体;
b. 将刻蚀完成后的固体进行离心、水洗,洗至离心后上清液的pH≥6,收集固体置于真空干燥箱中,在60℃下干燥24 h,收集到的固体即为多层Ti3C2材料;
c. 取0.2~3 g多层Ti3C2固体加入到50~300 mL去离子水中,在氩气氛围保护下超声1~5 h,在3500 r/min的转速下离心1 h,收集深色上清液即为薄层Ti3C2溶液;
第二步,Bi5O7Br/薄层Ti3C2复合型光催化剂的制备:
a. 称取2.425~7.275 g的五水硝酸铋加入到30~70 mL的薄层Ti3C2混合水溶液中搅拌1.5~3 h,记为A液;
b. 称取0.7283~4.5136 g的溴酸钠加入到20~60 mL去离子水中搅拌1.5~3 h,记为B液;
c. 将B液缓慢加入到A液中,室温下搅拌0.5~2 h;加入2~6 mL氨水,在室温下持续搅拌3~6 h,即可得到沉淀;
d. 对沉淀进行抽滤、洗涤,置于真空干燥箱内60℃下干燥24 h,即得到了分散均匀,氧化还原能力强,促进光生电子空穴对分离,光催化活性得到提升的Bi5O7Br/薄层Ti3C2复合型光催化剂。
第二步中所述五水硝酸铋和溴酸钠的摩尔比为1。
一种Bi5O7Br/薄层Ti3C2复合型光催化剂应用于不同光源照射下矿化磺胺甲恶唑、双酚A和苯酚中任一种有机污染物以及光催化分解水制氢。
反应条件为:常温常压,催化剂用量为0.03~0.1 g,有机污染物的处理量为50~100mL和10~20 mg·L-1,光催化分解水制氢的水溶液(40 vol%甲醇)为40~100 mL,所用光源为氙灯,功率为300 W,照度为120 klx,距离反应界面20 cm。
本发明的原理如下:
将薄层Ti3C2水溶液作为水溶剂,将Bi源加入到薄层Ti3C2水溶液中进行水解,通过静电自组装作用能够将Bi3+紧密地吸附在Ti3C2纳米薄片上,然后将水解后的Br源与其混合均匀再加入氨水溶液,使吸附在Ti3C2纳米薄片上的Bi3+与Br源在Ti3C2纳米薄片上进行反应生成Bi5O7Br,从而使Bi5O7Br均匀的生长在Ti3C2纳米薄片上。
本发明的有益效果如下:
1. 制备得到的薄层Ti3C2水溶液分散均匀,以分散均匀的薄层Ti3C2水溶液为溶剂,在不影响薄层Ti3C2在水溶液中均匀分散的前提下使Bi5O7Br在Ti3C2纳米薄片上生长,因而能使Bi5O7Br均匀的负载在Ti3C2纳米薄片上,使Bi5O7Br与薄层Ti3C2基底在Bi5O7Br/薄层Ti3C2复合型光催化剂中均匀分散;
2. 本发明Bi5O7Br/薄层Ti3C2复合型光催化剂的制备方法利用Ti3C2表面吸附的终端基团(-F,-OH,-O)对铋离子的吸附能力,使Bi3+与Ti3C2以离子键的方式结合,进而促进Bi5O7Br在Ti3C2纳米薄片上的原位生长,由于Bi5O7Br光催化剂的导带主要由Bi 6p轨道电子组成,因此Bi3+与Ti3C2之间离子键的结合方式有利于在两者之间形成新的电子传输通道,加速光生电子的传输与扩散,
进而促进光生电子-空穴对的分离,提高光催化活性。
3. 通过Bi5O7Br在Ti3C2纳米薄片层间与表面的原位生长,在对薄层Ti3C2基底有效利用的同时可防止Ti3C2层间的自发塌缩和堆垛,保证活性位点和反应速率的持续增强。
4. 相对于相同条件下制备的Bi5O7Br光催化剂,本发明制备Bi5O7Br/薄层Ti3C2复合型光催化剂对水体有机污染物表现出更强的光催化降解活性,光催化分解水制氢具有更高的效率,且性能稳定,可循环利用,对环境治理和绿色能源利用具有重要意义。
附图说明
图1为本发明实施例2制备的Bi5O7Br/薄层Ti3C2复合型光催化剂的XRD图谱。
图2为本发明的原理示意图。
具体实施方式
实施例1
将1.6 gLiF缓慢加入到20 mL浓度为9 M的浓HCl中搅拌均匀,再缓慢加入1 gTi3AlC2,在45 oC下持续搅拌24 h;将刻蚀完成后的固体进行离心、水洗,洗至离心后上清液的pH≥6,收集固体置于真空干燥箱中,在60℃下干燥24 h,收集到的固体即为多层Ti3C2材料,记为多层Ti3C2-A;取0.8 g多层Ti3C2-A固体加入到100 mL H2O中,在氩气氛围保护下超声3 h,在3500 r/min的转速下离心1 h,收集深色上清液即为薄层Ti3C2溶液,记为薄层Ti3C2-A。
将0.01 molBi(NO3)3·5H2O加入到50 mL的薄层Ti3C2水溶液中搅拌1.5 h,记为A液;将0.01 mol NaBrO3加入到40 mLH2O中搅拌1.5 h,记为B液;将B液缓慢加入到A液中,室温下搅拌0.5 h;加入2.5 mL氨水,在室温下持续搅拌3 h,即可得到沉淀;将得到的沉淀进行抽滤、洗涤,置于真空干燥箱内60℃下干燥24 h,即得到了引入薄层Ti3C2水溶液体积为50mL的Bi5O7Br/薄层Ti3C2复合型光催化剂,记为TCB5-50A。
所得Bi5O7Br/薄层Ti3C2复合型光催化剂用于模拟太阳光降解磺胺甲恶唑(SMX)溶液及光催化分解水制氢。其反应条件为:常温常压,所用模拟太阳光为氙灯,功率为300 W,照度为120 klx,距离反应界面20 cm。光催化降解磺胺甲恶唑中催化剂用量为0.1 g,有机污染物磺胺甲恶唑的处理量为100 mL和10 mg·L-1。降解过程中首先在避光条件下吸附20min,以期达到吸附平衡;然后打开光源,对磺胺甲恶唑溶液进行光催化降解实验,每隔5min取样一次,利用紫外-可见分光光度法对溶液中剩余待降解物的浓度进行分析并计算其降解率,结果如表1所示。光催化分解水制氢中催化剂用量为0.05 g,水溶液为60 mL(40vol%甲醇)。制氢过程中首先通氩气排气30 min,光照后每隔1 h取样,用气相色谱检测氢气的产量。最终测得TCB5-50A的产氢速率为18 μmol∙h-1∙g-1
实施例2
将3.6 gLiF缓慢加入到40 mL浓度为9 M的浓HCl中搅拌均匀,再缓慢加入2 gTi3AlC2,在60℃下持续搅拌36 h;将刻蚀完成后的固体进行离心、水洗,洗至离心后上清液的pH≥6,收集固体置于真空干燥箱中,在60℃下干燥24 h,收集到的固体即为多层Ti3C2材料,记为多层Ti3C2-B;取1.8 g多层Ti3C2-B固体加入到150 mL H2O中,在氩气氛围保护下超声5 h,在3500 r/min的转速下离心1 h,收集深色上清液即为薄层Ti3C2溶液,记为薄层Ti3C2-B。
将0.02 molBi(NO3)3·5H2O加入到60 ml的薄层Ti3C2水溶液中搅拌2 h,记为A液;将0.02 mol NaBrO3加入到40 mL H2O中搅拌2 h,记为B液;将B液缓慢加入到A液中,室温下搅拌1 h;加入4 mL氨水,在室温下持续搅拌5 h,即可得到沉淀;将得到的沉淀进行抽滤、洗涤,置于真空干燥箱内60℃下干燥24 h,即得到了引入薄层Ti3C2水溶液体积为60 mL的Bi5O7Br/薄层Ti3C2复合型光催化剂,记为TCB5-60B。
所得Bi5O7Br/薄层Ti3C2复合型光催化剂用于模拟太阳光降解磺胺甲恶唑(SMX)溶液及光催化分解水制氢。其反应条件为:常温常压,所用模拟太阳光为氙灯,功率为300 W,照度为120 klx,距离反应界面20 cm。光催化降解磺胺甲恶唑中催化剂用量为0.05 g,有机污染物磺胺甲恶唑的处理量为100 mL和10 mg·L-1。降解过程中首先在避光条件下吸附20min,以期达到吸附平衡;然后打开光源,对磺胺甲恶唑溶液进行光催化降解实验,每隔5min取样一次,利用紫外-可见分光光度法对溶液中剩余待降解物的浓度进行分析并计算其降解率,结果如表1所示。光催化分解水制氢中催化剂用量为0.05 g,水溶液为60 mL(40vol%甲醇)。制氢过程中首先通氩气排气30 min,光照后每隔1 h取样,用气相色谱检测氢气的产量。最终测得TCB5-50A的产氢速率为32 μmol∙h-1∙g-1
从图1中Bi5O7Br和TCB5-60的XRD图中可以得知成功制得了引入薄层Ti3C2材料的Bi5O7Br/薄层Ti3C2复合型光催化剂,且薄层Ti3C2材料的引入不影响Bi5O7Br的晶体结构。
实施例3
将2.5 gLiF缓慢加入到30 mL浓度为12 M的浓HCl中搅拌均匀,再缓慢加入3gTi3AlC2,在60℃下持续搅拌24 h;将刻蚀完成后的固体进行离心、水洗,洗至离心后上清液的pH≥6,收集固体置于真空干燥箱中,在60℃下干燥24 h,收集到的固体即为多层Ti3C2材料,记为多层Ti3C2-C;取2.5g多层Ti3C2-C固体加入到150 mL H2O中,在氩气氛围保护下超声3 h,在3500 r/min的转速下离心1 h,收集深色上清液即为薄层Ti3C2溶液,记为薄层Ti3C2-C。
将0.01 molBi(NO3)3·5H2O加入到70 ml的薄层Ti3C2水溶液中搅拌1.5 h,记为A液;将0.01 mol NaBrO3加入到30 mL H2O中搅拌1.5 h,记为B液;将B液缓慢加入到A液中,室温下搅拌2 h;加入6 mL氨水,在室温下持续搅拌6 h,即可得到沉淀;将得到的沉淀进行抽滤、洗涤,置于真空干燥箱内60℃下干燥24 h,即得到了引入薄层Ti3C2水溶液体积为70 mL的Bi5O7Br/薄层Ti3C2复合型光催化剂,记为TCB5-70C。
所得Bi5O7Br/薄层Ti3C2复合型光催化剂用于模拟太阳光降解磺胺甲恶唑(SMX)溶液及光催化分解水制氢。其反应条件为:常温常压,所用模拟太阳光为氙灯,功率为300 W,照度为120 klx距离反应界面20 cm。光催化降解磺胺甲恶唑中催化剂用量为0.05 g,有机污染物磺胺甲恶唑的处理量为100 mL和10 mg·L-1。降解过程中首先在避光条件下吸附20min,以期达到吸附平衡;然后打开光源,对磺胺甲恶唑溶液进行光催化降解实验,每隔5min取样一次,利用紫外-可见分光光度法对溶液中剩余待降解物的浓度进行分析并计算其降解率,结果如表1所示。光催化分解水制氢中催化剂用量为0.05 g,水溶液为60 mL(40vol%甲醇)。制氢过程中首先通氩气排气30 min,光照后每隔1 h取样,用气相色谱检测氢气的产量。最终测得TCB5-50A的产氢速率为20 μmol∙h-1∙g-1
表1 所制不同Bi5O7Br/薄层Ti3C2复合型光催化剂在可见光下对于磺胺甲恶唑的降解活性

Claims (4)

1.一种Bi5O7Br/薄层Ti3C2复合型光催化剂的制备方法,其特征在于:以薄层Ti3C2水溶液为溶剂;以五水硝酸铋和溴酸钠为原料;以氨水为反应液,利用水解法在常温下制得了分散均匀,光生电子-空穴对分离效率高的Bi5O7Br/薄层Ti3C2复合型光催化剂。
2.根据权利要求1所述的一种Bi5O7Br/薄层Ti3C2复合型光催化剂的制备方法,其特征在于:包括如下步骤:
第一步,薄层Ti3C2溶液的制备:
a. 将1~4 g氟化锂缓慢加入到10~50 mL浓度为9~12 M的浓盐酸中搅拌均匀,再缓慢加入1~3 g钛碳化铝,在30~60℃下持续搅拌24~36 h,得到刻蚀完成后的固体;
b. 将刻蚀完成后的固体进行离心、水洗,洗至离心后上清液的pH≥6,收集固体置于真空干燥箱中,在60℃下干燥24 h,收集到的固体即为多层Ti3C2材料;
c. 取0.2~3 g多层Ti3C2固体加入到50~300 mL去离子水中,在氩气氛围保护下超声1~5h,在3500 r/min的转速下离心1 h,收集深色上清液即为薄层Ti3C2溶液;
第二步,Bi5O7Br/薄层Ti3C2复合型光催化剂的制备:
a. 称取2.425~7.275 g的五水硝酸铋加入到30~70 mL的薄层Ti3C2混合水溶液中搅拌1.5~3 h,记为A液;
b. 称取0.7283~4.5136 g的溴酸钠加入到20~60 mL去离子水中搅拌1.5~3 h,记为B液;
c. 将B液缓慢加入到A液中,室温下搅拌0.5~2 h;加入2~6 mL氨水,在室温下持续搅拌3~6 h,即可得到沉淀;
d. 对沉淀进行抽滤、洗涤,置于真空干燥箱内60℃下干燥24 h,即得到了分散均匀,氧化还原能力强,促进光生电子空穴对分离,光催化活性得到提升的Bi5O7Br/薄层Ti3C2复合型光催化剂。
3.根据权利要求2所述的一种Bi5O7Br/薄层Ti3C2复合型光催化剂的制备方法,其特征在于:第二步中所述五水硝酸铋和溴酸钠的摩尔比为1。
4.一种如权利要求1或2或3所述的Bi5O7Br/薄层Ti3C2复合型光催化剂应用于不同光源照射下矿化磺胺甲恶唑、双酚A和苯酚中任一种有机污染物以及光催化分解水制氢。
CN201910789272.7A 2019-08-26 2019-08-26 一种Bi5O7Br/薄层Ti3C2复合型光催化剂的制备方法及其应用 Active CN110479336B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910789272.7A CN110479336B (zh) 2019-08-26 2019-08-26 一种Bi5O7Br/薄层Ti3C2复合型光催化剂的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910789272.7A CN110479336B (zh) 2019-08-26 2019-08-26 一种Bi5O7Br/薄层Ti3C2复合型光催化剂的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN110479336A true CN110479336A (zh) 2019-11-22
CN110479336B CN110479336B (zh) 2022-06-07

Family

ID=68553875

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910789272.7A Active CN110479336B (zh) 2019-08-26 2019-08-26 一种Bi5O7Br/薄层Ti3C2复合型光催化剂的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN110479336B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111167498A (zh) * 2020-01-19 2020-05-19 河南师范大学 一种多孔g-C3N4/Ti3C2Tx异质结光催化剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103736505A (zh) * 2014-01-22 2014-04-23 玉林师范学院 可见光催化剂Bi5O7Br及其制备方法
CN106450205A (zh) * 2016-11-02 2017-02-22 南京工业大学 二维过渡族金属碳(氮)化物与纳米硫颗粒复合材料及其制备和应用
CN106955721A (zh) * 2017-03-24 2017-07-18 中南民族大学 一种带状结构的Bi5O7Br纳米光催化材料的制备方法
CN110038606A (zh) * 2019-05-20 2019-07-23 西南石油大学 一种用于可见光下氮气转化成氨的碳化钛改性的铋基光催化剂的制备方法及其用途
CN110064424A (zh) * 2019-04-11 2019-07-30 中国计量大学 一种卤氧化铋/碳化钛光催化复合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103736505A (zh) * 2014-01-22 2014-04-23 玉林师范学院 可见光催化剂Bi5O7Br及其制备方法
CN106450205A (zh) * 2016-11-02 2017-02-22 南京工业大学 二维过渡族金属碳(氮)化物与纳米硫颗粒复合材料及其制备和应用
CN106955721A (zh) * 2017-03-24 2017-07-18 中南民族大学 一种带状结构的Bi5O7Br纳米光催化材料的制备方法
CN110064424A (zh) * 2019-04-11 2019-07-30 中国计量大学 一种卤氧化铋/碳化钛光催化复合材料及其制备方法
CN110038606A (zh) * 2019-05-20 2019-07-23 西南石油大学 一种用于可见光下氮气转化成氨的碳化钛改性的铋基光催化剂的制备方法及其用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吴共娟: "铋基半导体及其复合材料的液相合成与光催化性能研究", 《湖南大学博士学位论文》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111167498A (zh) * 2020-01-19 2020-05-19 河南师范大学 一种多孔g-C3N4/Ti3C2Tx异质结光催化剂及其制备方法
CN111167498B (zh) * 2020-01-19 2023-08-25 河南师范大学 一种多孔g-C3N4/Ti3C2Tx异质结光催化剂及其制备方法

Also Published As

Publication number Publication date
CN110479336B (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
Shi et al. Onion-ring-like g-C3N4 modified with Bi3TaO7 quantum dots: A novel 0D/3D S-scheme heterojunction for enhanced photocatalytic hydrogen production under visible light irradiation
Hou et al. Fast preparation of oxygen vacancy-rich 2D/2D bismuth oxyhalides-reduced graphene oxide composite with improved visible-light photocatalytic properties by solvent-free grinding
Gong et al. The synthesis of graphene-TiO 2/gC 3 N 4 super-thin heterojunctions with enhanced visible-light photocatalytic activities
Li et al. Improved photoelectrochemical performance of Z-scheme g-C3N4/Bi2O3/BiPO4 heterostructure and degradation property
Zhang et al. Enhanced photocatalytic reduction of CO2 to methanol by ZnO nanoparticles deposited on ZnSe nanosheet
Wang et al. Synergy of Ti-O-based heterojunction and hierarchical 1D nanobelt/3D microflower heteroarchitectures for enhanced photocatalytic tetracycline degradation and photoelectrochemical water splitting
Shen et al. Enhanced photocatalytic hydrogen evolution over Cu-doped ZnIn2S4 under visible light irradiation
Irfan et al. CoSe as non-noble-metal cocatalyst integrated with heterojunction photosensitizer for inexpensive H2 production under visible light
Mu et al. A review on metal-organic frameworks for photoelectrocatalytic applications
Jiang et al. Preparation of magnetically retrievable flower-like AgBr/BiOBr/NiFe2O4 direct Z-scheme heterojunction photocatalyst with enhanced visible-light photoactivity
Yang et al. Efficient hydrogen generation of vector Z-scheme CaTiO3/Cu/TiO2 photocatalyst assisted by cocatalyst Cu nanoparticles
Yang et al. Constructing 2D/1D heterostructural BiOBr/CdS composites to promote CO2 photoreduction
Chen et al. Exerting charge transfer to stabilize Au nanoclusters for enhanced photocatalytic performance toward selective oxidation of amines
Huang et al. A S-scheme heterojunction of Co9S8 decorated TiO2 for enhanced photocatalytic H2 evolution
Xi et al. Facile synthesis of 2D Bi4O5Br2/2D thin layer-Ti3C2 for improved visible-light photocatalytic hydrogen evolution
Gai et al. 2D-2D heterostructured CdS–CoP photocatalysts for efficient H2 evolution under visible light irradiation
CN111203231B (zh) 硫化铟锌/钒酸铋复合材料及其制备方法和应用
Yu et al. NiO nanoparticles dotted TiO2 nanosheets assembled nanotubes PN heterojunctions for efficient interface charge separation and photocatalytic hydrogen evolution
Yi et al. Crystal phase dependent solar driven hydrogen evolution catalysis over cobalt diselenide
Wang et al. 3D network-like rGO-MoSe2 modified g-C3N4 nanosheets with Z-scheme heterojunction: Morphology control, heterojunction construct, and boosted photocatalytic performances
Dai et al. Magnetic ZnFe2O4@ ZnSe hollow nanospheres for photocatalytic hydrogen production application
CN110523420A (zh) 一种Bi4O5Br2/薄层Ti3C2复合型光催化剂的制备方法及其应用
Wang et al. Construction of octahedral BiFeWOx encapsulated in hierarchical In2S3 core@ shell heterostructure for visible-light-driven CO2 reduction
Zhou et al. Boosting photoelectron transport in Zn0. 5Cd0. 5S/Sn3O4 heterostructure through close interface contact for enhancing photocatalytic H2 generation and degradation of tetracycline hydrochloride
Qi et al. Enhanced photocatalytic degradation of phenol over Ag3PO4-BiOCl1− xBrx composites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Li Rui

Inventor after: Liu Jianxin

Inventor after: Fan Caimei

Inventor after: Xi Qing

Inventor after: Li Yaru

Inventor after: Zhang Xiaochao

Inventor after: Wang Yawen

Inventor after: Wang Yunfang

Inventor before: Li Rui

Inventor before: Liu Jianxin

Inventor before: Fan Caimei

Inventor before: Guan Guo Qing

Inventor before: Xi Qing

Inventor before: Li Yaru

Inventor before: Zhang Xiaochao

Inventor before: Wang Yawen

Inventor before: Wang Yunfang

GR01 Patent grant
GR01 Patent grant