CN110459654A - 紫外led外延结构 - Google Patents

紫外led外延结构 Download PDF

Info

Publication number
CN110459654A
CN110459654A CN201910723657.3A CN201910723657A CN110459654A CN 110459654 A CN110459654 A CN 110459654A CN 201910723657 A CN201910723657 A CN 201910723657A CN 110459654 A CN110459654 A CN 110459654A
Authority
CN
China
Prior art keywords
layer
gan
ultraviolet led
led epitaxial
superlattices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910723657.3A
Other languages
English (en)
Inventor
付羿
刘卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JINGNENG PHOTOELECTRIC (JIANGXI) CO Ltd
Lattice Power Jiangxi Corp
Original Assignee
JINGNENG PHOTOELECTRIC (JIANGXI) CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JINGNENG PHOTOELECTRIC (JIANGXI) CO Ltd filed Critical JINGNENG PHOTOELECTRIC (JIANGXI) CO Ltd
Priority to CN201910723657.3A priority Critical patent/CN110459654A/zh
Publication of CN110459654A publication Critical patent/CN110459654A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen characterised by the doping materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Led Devices (AREA)

Abstract

本发明提供了一种紫外LED外延结构,包括:在生长衬底表面依次生长的应力控制层、n型电流扩展层、有源区发光层及p型电流扩展层;其中,有源区发光层为由InaGa1‑aN量子阱层和GaN/InbAl1‑bN超晶格势垒层形成的周期性结构,周期为5~8;GaN/InbAl1‑bN超晶格势垒层为InbAl1‑bN层和GaN层形成的周期性结构,周期为4~8,且0.01<a<0.05,0.16<b<0.18,有效解决现有紫外LED外延结构中出现的界面缺失、AlGaN势垒中存在的晶体缺陷等技术问题。

Description

紫外LED外延结构
技术领域
本发明涉及LED技术领域,尤其是一种紫外LED外延结构。
背景技术
在365nm-370nm波长范围的GaN基紫外LED结构中,有源发光区一般采用多量子阱结构,其中,阱层使用InGaN材料,势垒层使用AlGaN材料,且AlGaN势垒层必须有较高的Al组分(>12%)以把载流子限制在量子阱中,提高多量子阱结构的内量子效率。但高Al组分的AlGaN势垒和InGaN量子阱之间存在较明显的晶格失配的情况,导致产生界面缺陷和粗糙的外延表面。另外,为了防止InGaN量子阱在高温下被破坏,AlGaN势垒层的生长温度一般不能太高,而低温下生长的高Al组分的AlGaN势垒中存在大量点缺陷,制约着低波段紫外LED的内量子效率。
发明内容
为了克服以上不足,本发明提供了一种紫外LED外延结构,有效解决现有紫外LED外延结构中出现的界面缺陷、AlGaN势垒中存在的晶体缺陷等技术问题。
本发明提供的技术方案为:
一种紫外LED外延结构,包括:在生长衬底表面依次生长的应力控制层、n型电流扩展层、有源区发光层及p型电流扩展层;其中,有源区发光层为由InaGa1-aN量子阱层和GaN/InbAl1-bN超晶格势垒层形成的周期性结构,周期为5~8;GaN/InbAl1-bN超晶格势垒层为InbAl1-bN层和GaN层形成的周期性结构,周期为4~8,且0.01<a<0.05,0.16<b<0.18。
进一步优选地,InaGa1-aN量子阱层的厚度为1~5nm,GaN/InbAl1-bN超晶格势垒层的厚度为10~20nm。
进一步优选地,GaN/InbAl1-bN超晶格势垒层掺杂有浓度在5×1016~5×1018cm-2之间的硅。
在本发明提供的紫外LED外延结构,以短周期的GaN/InbAl1-bN超晶格结构取代原高Al组分的AlGaN势垒层,在获得高Al组分的准AlGaN势垒的同时,有效解决了高Al组分与界面缺陷、晶体缺陷和表面形貌之间的矛盾,实现了高晶体质量紫外LED多量子阱结构,减少了紫外LED中高Al组分势垒层本身的晶体缺陷及高Al组分势垒层和InGaN量子阱之间界面缺陷的同时,提高了紫外LED的发光效率。
附图说明
图1为本发明中紫外LED外延结构示意图;
图2为一实例中GaN/InbAl1-bN超晶格势垒层结构示意图;
图3为有源区发光层的表面AFM图片。
附图标记:
1-生长衬底层,2-应力控制层,3-n型电流扩展层,4-有源区发光层,5-p型电流扩展层,41-InaGa1-aN量子阱层,42-GaN/InbAl1-bN超晶格势垒层。
具体实施方式
为了更清楚地说明本发明实施案例或现有技术中的技术方案,下面将对照附图说明本发明的具体实施方式。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,并获得其他的实施方式。
如图1所示为本发明提供的紫外LED(发光波长365-370nm)外延结构示意图,从图中看出,该紫外LED外延结构中包括:在生长衬底(图示中,为硅衬底层1)表面依次生长的应力控制层2、n型电流扩展层3、有源区发光层4及p型电流扩展层5;其中,有源区发光层4为由InaGa1-aN量子阱层41和GaN/InbAl1-bN超晶格势垒层42形成的周期性结构,周期为5~8;GaN/InbAl1-bN超晶格势垒层为InbAl1-bN层和GaN层形成的周期性结构,周期为4~8,且0.01<a<0.05(根据需求的发光波长进行调整),0.16<b<0.18(实现和GaN的晶格匹配)。在该结构中,InaGa1-aN量子阱层41的厚度为1~5nm,GaN/InbAl1-bN超晶格势垒层42的厚度为10~20nm,且GaN/InbAl1-bN超晶格势垒层掺杂有浓度在5×1016~5×1018cm-2之间的硅。在一实例中,如图2所示,GaN/InbAl1-bN超晶格势垒层为由4个周期的InbAl1-bN层和GaN层形成的周期结构。
在一实例中,使用MOCVD生长设备、选用Si(111)衬底为硅衬底层1、非掺杂AlN/AlGaN层为应力控制层2,Si掺杂的AlGaN层作为n型电流扩展层3,InaGa1-aN量子阱层和GaN/InbAl1-bN超晶格势垒层组成的多量子阱结构作为有源区发光层4,Mg掺杂的AlGaN层作为p型电流扩展层5,具体:
首先,将硅衬底层1放置到MOCVD反应室中,升温到1100℃,并通入H2进行高温表面清洁处理。
随后,将反应室温度设定在800~1200℃,往反应室中通入三甲基铝(TMAl)、氨气(NH3),在H2作为载气的条件下生长一层AlN,相同条件下在AlN上通过三甲基铝(TMAl)、三甲基镓(TMGa)、氨气(NH3)生长一层AlGaN,形成应力控制层2。
紧接着,以硅烷(SiH4)作为掺杂剂,掺杂浓度为8×1018cm-3,生长温度在900~1100℃,实现n型电流扩展层3的生长,生长出来的n型电流扩展层3为Al组分7%的n型Al0.07Ga0.93N层,厚度3000nm。
之后,反应室温度为750℃,以氮气(N2)作为载气,通入三甲基铟(TMIn)、三乙基镓(TEGa)、氨气(NH3)生长厚度为3nm的In0.02Ga0.98N量子阱层;接着将反应室温度升高到850℃,通入三甲基铝(TMAl)、三甲基铟(TMIn)、氨气(NH3)生长厚度为1.5nm的In0.17Al0.83N层,之后在相同温度下通入三乙基镓(TEGa)、氨气(NH3)生长1nm的GaN层,In0.17Al0.83N层和GaN层中均通入硅烷(SiH4)进行掺杂,掺杂浓度2×1018cm-3。重复生长6个周期制备得到GaN/In0.17Al0.83N超晶格势垒层,及重复生长5个周期的In0.02Ga0.98N量子阱层和GaN/In0.17Al0.83N超晶格势垒层得到有源区发光层4。该量子阱结构的发光波长365nm,属于近紫外波段。
最后,以H2或者N2作为载气,通入TMAl、TMGa及NH3,且以二茂镁(Cp2Mg)作为掺杂剂在外延生长温度为900℃~1000℃的条件下生长p型电流扩展层5,厚度为80nm。
如图3所示为有源区发光层4的表面AFM图片,其中,图3(a)为本实例中由InaGa1-aN量子阱层和GaN/InbAl1-bN超晶格势垒层形成的有源区发光层的表面AFM图片;图3(b)为现有技术中高组分AlGaN势垒层形成的有源区发光层的表面AFM图片,从图中可以看出,图3(a)相比于图3(b)表面形貌有了很明显的改。
将紫外LED芯片(包括本实例中LED芯片和高Al组分LED芯片)切割成1.125*1.125mm大小,在350mA电流下进行光功率测量,本实例中LED芯片的光功率为422mW,高Al组分LED芯片的光功率为403mW,可见,使用本发明方法制备得到的紫外LED芯片的光功率得到了提升。
应当说明的是,上述实施例均可根据需要自由组合。以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (3)

1.一种紫外LED外延结构,其特征在于,包括:在生长衬底表面依次生长的应力控制层、n型电流扩展层、有源区发光层及p型电流扩展层;其中,有源区发光层为由InaGa1-aN量子阱层和GaN/InbAl1-bN超晶格势垒层形成的周期性结构,周期为5~8;GaN/InbAl1-bN超晶格势垒层为InbAl1-bN层和GaN层形成的周期性结构,周期为4~8,且0.01<a<0.05,0.16<b<0.18。
2.如权利要求1所述的紫外LED外延结构,其特征在于,InaGa1-aN量子阱层的厚度为1~5nm,GaN/InbAl1-bN超晶格势垒层的厚度为10~20nm。
3.如权利要求1或2所述的紫外LED外延结构,其特征在于,GaN/InbAl1-bN超晶格势垒层掺杂有浓度在5×1016~5×1018cm-2之间的硅。
CN201910723657.3A 2019-08-07 2019-08-07 紫外led外延结构 Pending CN110459654A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910723657.3A CN110459654A (zh) 2019-08-07 2019-08-07 紫外led外延结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910723657.3A CN110459654A (zh) 2019-08-07 2019-08-07 紫外led外延结构

Publications (1)

Publication Number Publication Date
CN110459654A true CN110459654A (zh) 2019-11-15

Family

ID=68485061

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910723657.3A Pending CN110459654A (zh) 2019-08-07 2019-08-07 紫外led外延结构

Country Status (1)

Country Link
CN (1) CN110459654A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111933757A (zh) * 2020-06-28 2020-11-13 北京大学 一种AlGaN基深紫外量子阱及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090065762A1 (en) * 2007-09-10 2009-03-12 Seoul Opto Device Co., Ltd. Light emitting diode with improved structure
CN105070805A (zh) * 2015-08-17 2015-11-18 晶能光电(常州)有限公司 一种硅基氮化物紫外led外延结构及其实现方法
CN108682719A (zh) * 2018-04-24 2018-10-19 河源市众拓光电科技有限公司 一种多量子阱层、led外延结构及其制备方法
CN109786522A (zh) * 2019-01-07 2019-05-21 华灿光电(浙江)有限公司 一种GaN基发光二极管外延片及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090065762A1 (en) * 2007-09-10 2009-03-12 Seoul Opto Device Co., Ltd. Light emitting diode with improved structure
CN105070805A (zh) * 2015-08-17 2015-11-18 晶能光电(常州)有限公司 一种硅基氮化物紫外led外延结构及其实现方法
CN108682719A (zh) * 2018-04-24 2018-10-19 河源市众拓光电科技有限公司 一种多量子阱层、led外延结构及其制备方法
CN109786522A (zh) * 2019-01-07 2019-05-21 华灿光电(浙江)有限公司 一种GaN基发光二极管外延片及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111933757A (zh) * 2020-06-28 2020-11-13 北京大学 一种AlGaN基深紫外量子阱及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN104919604B (zh) 氮化物半导体发光元件
JP3778344B2 (ja) 発光半導体デバイスの製造方法
CN101488550B (zh) 高In组分多InGaN/GaN量子阱结构的LED的制造方法
CN115458650B (zh) 发光二极管外延片及其制备方法、发光二极管
JP6587673B2 (ja) 発光素子
CN104362233A (zh) 一种GaN基发光二极管的外延片及其制备方法
CN101488548A (zh) 一种高In组分多InGaN/GaN量子阱结构的LED
CN110148652B (zh) 发光二极管的外延片的制备方法及外延片
CN104810445A (zh) 一种发光二极管的外延片及其制备方法
CN111063772A (zh) 高光效紫外led外延结构
CN103456852B (zh) 一种led外延片及制备方法
CN106229397B (zh) 一种发光二极管外延片的生长方法
US9601654B2 (en) Method of producing group III nitride semiconductor light-emitting device
CN107863421A (zh) 发光器件及其制造方法
CN110459654A (zh) 紫外led外延结构
CN110473940A (zh) 紫外led的外延结构
CN115863503A (zh) 深紫外led外延片及其制备方法、深紫外led
KR100728132B1 (ko) 전류 확산층을 이용한 발광 다이오드
CN113571607B (zh) 高发光效率的发光二极管外延片及其制造方法
CN104966767A (zh) 一种GaN基发光二极管外延片的生长方法
CN115377260A (zh) 一种led外延片、制备方法及电子设备
CN111129243B (zh) GaN基紫外LED外延结构
KR20090030652A (ko) 질화물계 발광소자
KR100925164B1 (ko) p형 질화물 반도체층 형성 방법 및 그것을 갖는 발광 소자
KR100881053B1 (ko) 질화물계 발광소자

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 330096 No. 699, Aixi Hubei Road, Nanchang High-tech Development Zone, Jiangxi Province

Applicant after: Jingneng optoelectronics Co.,Ltd.

Address before: 330096 No. 699, Aixi Hubei Road, Nanchang High-tech Development Zone, Jiangxi Province

Applicant before: LATTICE POWER (JIANGXI) Corp.

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191115