CN110456527B - 基于硅基微环耦合马赫曾德调制器 - Google Patents

基于硅基微环耦合马赫曾德调制器 Download PDF

Info

Publication number
CN110456527B
CN110456527B CN201910629712.2A CN201910629712A CN110456527B CN 110456527 B CN110456527 B CN 110456527B CN 201910629712 A CN201910629712 A CN 201910629712A CN 110456527 B CN110456527 B CN 110456527B
Authority
CN
China
Prior art keywords
mach
micro
zehnder
silicon
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910629712.2A
Other languages
English (en)
Other versions
CN110456527A (zh
Inventor
周林杰
徐喆
陆梁军
陈建平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201910629712.2A priority Critical patent/CN110456527B/zh
Publication of CN110456527A publication Critical patent/CN110456527A/zh
Application granted granted Critical
Publication of CN110456527B publication Critical patent/CN110456527B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0147Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on thermo-optic effects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/0151Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction modulating the refractive index
    • G02F1/0152Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction modulating the refractive index using free carrier effects, e.g. plasma effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种用于产生超宽带脉冲信号的基于硅基微环耦合马赫曾德调制器,一个跑道型的微环谐振器通过一个马赫曾德耦合器与一个马赫曾德干涉器的一臂耦合,在该马赫曾德干涉器的另一臂上分别集成有一个热移相器和一个可调光衰减器,在所述的马赫曾德耦合器的两臂上分别集成第一微加热器和第二微加热器,所述的跑道型的微环谐振器上集成有一段PN结有源区,所述的PN结有源区与高速调制电信号源相连。本发明可以产生不同形状的UWB脉冲,原理简单,易于实现,在微波光子和信号处理领域具有广阔的应用前景。

Description

基于硅基微环耦合马赫曾德调制器
技术领域
本发明涉及电光调制器件,特别是一种用于产生超宽带脉冲信号的基于硅基微环耦合马赫曾德调制器。
背景技术
随着计算机和通信技术的发展,现代社会对信息的需求量呈指数增长。在短距离通信方面,随着芯片尺寸的不断减小,速度不断提高,传统电互连面临寄生效应加剧、传输带宽受限等一系列瓶颈,光互连因其具有不同信号之间传输互不干扰、大带宽等优势,已成为代替金属互连的理想解决方案。电光调制器是这一领域的核心器件之一,研究高调制带宽、高消光比、低功耗、易集成及低成本的电光调制器具有重要现实意义。相较于目前普遍商用的铌酸锂调制器的大体积,以及三五族(如砷化镓、磷化铟等)调制器复杂和高昂的工艺加工,集成硅基光调制器由于其低廉的制造成本、高性能的光电子集成特性以及与传统CMOS工艺的兼容性,具有巨大的研究应用前景。
上世纪70年代以来,随着光学与微波技术的蓬勃发展,出现了一种将微波与光学两门学科的优势结合起来的新兴交叉领域——微波光子学。微波光子学聚焦于光信号和微波信号的相互作用,把光学技术应用于微波***中,利用光学***特有的低损耗和大带宽的优势对微波信号进行传输和处理,同时也把各种微波技术应用到光学***中,促进光通信网络和***的发展。集成硅基调制器对微波光子学的发展发挥着不可或缺的作用。
超宽带(Ultra-wideband,简称为UWB)脉冲信号是一种颇具前景的无线通信技术,广泛应用于短距离大容量的无线通信***和大带宽的传感网络。美国联邦通信委员会(FCC)规定,UWB脉冲的带宽须大于信号中心频率的20%或者不低于500MHz,同时规定在3.1~10.6GHz的频段内,功率谱密度小于-41.3dBm/MHz的UWB脉冲信号使用无需许可。超宽带信号具有传输速率高、带宽极宽、大***容量、低功率谱密度、保密性好和抗多径衰落等优势特点。早先UWB脉冲的产生都是依赖全电域的方法,由于光域信号产生和处理具有轻量级和低损耗等优点,由光域直接产生UWB脉冲信号成为近年来的研究热点。现有的由光域直接产生UWB脉冲的方法可大致可分为以下三类:
(1)基于相位调制转换为幅度调制的UWB脉冲产生方案;
(2)基于微波光子延迟线滤波器的UWB脉冲产生方案;
(3)基于光谱成型和频率时间映射的UWB脉冲产生方案。
这些方案的实现较为复杂,测试***相对庞大,并且较少有通过完全光电子集成芯片产生UWB脉冲信号的方案。
发明内容
本发明是针对传统UWB脉冲产生方案中光学***复杂和难于集成的问题,基于现有的光子学理论和微波光子技术,提出一种产生UWB脉冲信号的基于硅基微环耦合马赫曾德调制器。本调制器可以产生不同形状的UWB脉冲,原理简单,易于实现,在微波光子和信号处理领域具有广阔的应用前景。
本发明的技术解决方案如下:
一种基于硅基微环耦合马赫曾德调制器的超宽带脉冲信号产生芯片,其特点在于,一个跑道型的微环谐振器通过一个马赫曾德耦合器与一个马赫曾德干涉器的一臂耦合,在该马赫曾德干涉器的另一臂上分别集成有一个热移相器和一个可调光衰减器,在所述的马赫曾德耦合器的两臂上分别集成第一微加热器和第二微加热器,所述的跑道型的微环谐振器上集成有一段PN结有源区,所述的PN结有源区与高速调制电信号源相连。
所述微环有源区的PN结在波导截面上呈现L型或者U型。
本发明UWB脉冲信号产生过程如下:
激光器发射连续光信号,经偏振控制器调整偏振态后进入本发明基于硅基微环耦合马赫曾德调制器,与此同时,高速调制电信号加载到器件的有源区,进行电光调制后,在本发明基于硅基微环耦合马赫曾德调制器的输出端输出的信号经过光电探测器转变为电信号后,可在示波器上观察到UWB脉冲信号的时域波形。如果高速调制电信号是方波信号,在信号的上升沿和下降沿将对应产生单阶的超宽带脉冲(monocycle),若方波持续时间足够短,或者调制信号为高斯脉冲,将出现波形对称的二阶超宽带脉冲信号(doublet)。
与现有技术相比,本发明的有益效果是:
1)利用马赫曾德干涉和微环谐振的相互作用,产生了特殊的范诺谐振,通过调制可以实现谐振频谱线型到时域波形的映射,从而得到UWB脉冲;
2)微环谐振器与较大马赫增德调制器之间的耦合系数改变由较小马赫曾德耦合器两臂的相位差调节实现,同时配合大马赫增德调制器另一臂上光相位和幅度的调节,可获得最大的消光比,可调性强,能获得器件最佳的工作点;
3)本发明UWB脉冲产生原理简单,易于集成实现,降低了***复杂度;
4)本发明采用不同高速电信号,同时调整工作波长和电信号幅度,将产生不同阶数的UWB脉冲,能满足多方面应用需求。
附图说明
图1为本发明用于产生UWB脉冲信号的硅基微环耦合马赫曾德调制器实施例的结构示意图。图2为本发明基于硅基微环耦合马赫曾德调制器的实施例产生UWB脉冲信号的传输实验和拟合频谱图。
图3为本发明基于硅基微环耦合马赫曾德调制器实施例原理示意图。
图4为本发明UWB脉冲信号产生过程的实施例示意图。
图5为本发明基于硅基微环谐振器耦合马赫曾德调制器的UWB脉冲信号产生方案的实施例仿真结果图。
图6为本发明基于硅基微环耦合马赫曾德调制器的UWB脉冲信号产生方案的实施例实验结果图。
具体实施方式
下面结合附图和实施例对本发明作详细说明,但本发明的保护范围不限于下述的实施例。
图1为本发明基于硅基微环耦合马赫曾德调制器实施例的结构示意图。由图可见,本发明基于硅基微环耦合马赫曾德调制器的结构包括:一个跑道型的微环谐振器(B)通过一个马赫曾德耦合器(C)与一个马赫曾德干涉器(A)的一臂耦合,所述的马赫曾德耦合器的两臂上分别集成了第一微加热器04、第二微加热器05,利用硅的热光效应,通过加载电压改变较小马赫曾德耦合器两臂的相位差,进而实现器件耦合系数的变化。在大马赫曾德干涉器的另一条臂上集成有一个热移相器01和一个可调光衰减器02,分别用以调节光通过该臂后的相位和强度。所述的微环谐振器上集成了一段PN结有源区03,用以加载高速调制电信号,由于自由载流子色散效应,当高速调制电信号加载到有源区时,硅波导的有效折射率发生变化,光经过该段有源区后的强度和相位也随之变化,从而实现电光幅度调制。该段有源区设计为L型或U型,目的是增大PN结耗尽层与硅波导模式的交叠,提高调制效率。
图2是本发明中产生UWB脉冲信号的硅基耦合马赫曾德调制器的实施例器件传输实验和拟合频谱图。其中,上图(a)为实验测得的器件传输频谱中的一个范诺周期谱线,下图(b)、(c)为选取的形状相反的两段范诺谐振谱线,由数学模型对实验数据进行拟合。当大马赫曾德干涉器两臂的相位差等于π/2或3/2π时,通过干涉与微环的谐振相互作用,产生范诺谐振现象,传输谱线呈现特殊的左右非对称谐振线型。在微环调制有源区加载高速调制电信号后,硅波导折射率随电压变化,输出范诺谐振光谱发生平移,选取该器件传输谱线中的一段范诺谐振作为工作点,基于电光幅度调制的原理,随着电信号电平的变化,传输谱线发生移动,而工作波长固定,因此输出的光功率将随着范诺谐振谱线变化,通过光电探测器,最终产生UWB脉冲电信号。
图3是本发明产生UWB脉冲信号的一个实施例原理示意图。基于电光幅度调制的原理,随着调制电信号电平的变化,传输谱线发生移动,而工作波长固定,因此输出的光功率随着范诺谐振谱线变化,通过光电探测器,最终产生UWB脉冲信号(图3(a))。若高速调制电信号是方波信号,在信号的上升沿和下降沿将对应产生单阶的超宽带脉冲(monocycle),若方波持续时间足够短,或者调制信号为高斯脉冲,将出现波形对称的二阶超宽带脉冲信号(doublet)(图3(c))。选取相反形状的范诺谐振谱线,会产生UWB脉冲形状颠倒的波形(图3(b)、(d))。
图4为本发明UWB脉冲信号产生过程的实施例示意图。激光器发射连续光信号,经偏振控制器调整偏振态后进入本发明硅基耦合马赫曾德调制器,与此同时,高速调制电信号(实施例为方波信号)加载到本发明硅基耦合马赫曾德调制器的有源区,进行电光调制后,输出的光信号经过光电探测器转变为电信号后,可在示波器上观察到UWB脉冲信号的时域波形。
图5为本发明基于硅基微环耦合马赫曾德调制器的UWB脉冲信号的实施例仿真结果图。工作点波长以及调制电信号的幅度范围会影响最终UWB脉冲的形状。此外,改变调制电信号的形状,也会产生不同形状的UWB脉冲。图示仿真实施例中,图5(b)中的单阶UWB脉冲信号(monocycle)采用幅度范围为-9~1v的高速方波电信号(图5(a)),图5(d)中的二阶UWB脉冲信号(doublet)采用幅度范围为-5~1v的高速高斯脉冲电信号(图5(c))。
图6为本发明基于硅基微环耦合马赫曾德调制器的UWB脉冲信号产生方案的实施例实验结果图。基于图4所示的信号产生过程搭建了实验***进行UWB信号产生的测试。这里单阶UWB脉冲产生所用的驱动电信号是梯形脉冲,上升和下降沿均为80ns。延长上升和下降沿的时间相较于标准方波脉冲边沿的陡升陡降而言,能有效减少电信号过冲现象。如图6(a)所示,在波长为1546.163nm和1551.432nm的范诺谐振点进行调制,采用-3.3V~1V的梯形脉冲驱动信号,分别产生了脉宽为9.9ns和11.4ns的一阶UWB脉冲波形。继而将调制电信号换为-1V~6V,脉宽为120ns的高斯脉冲,在与上述相同的两个范诺谐振点产生了脉冲宽度分别为66.7ns和72ns的UWB二阶脉冲波形(图6(b))。在这两个工作波长点的范诺谐振的谱线线型形状相反,因而产生的UWB一阶、二阶脉冲波形也呈现出相反的形状。
本发明基于硅基微环耦合马赫曾德调制器的超宽带(UWB)脉冲信号产生芯片,利用范诺谐振现象和电光幅度调制的原理,将高速调制电信号加载到调制器有源区域,进行电光幅度调制,产生UWB脉冲。本方案中的调制器设计为微环谐振器通过一个马赫曾德耦合器与一个马赫曾德干涉器的一臂耦合,马赫曾德耦合器两臂上分别集成了一个微加热器,耦合系数调节可通过加载电压改变两臂相位差实现。与此同时,在大马赫曾德干涉器的另一条臂上集成有一个热移相器和一个可调光衰减器,分别用以调节光通过该臂后的相位和强度,由此可获得器件最大的消光比,获取最佳工作性能。
本发明融合了马赫曾德结构和微环谐振器的各自优势,利用马赫曾德干涉和微环谐振相互作用产生的范诺谐振,通过电光幅度调制产生UWB脉冲信号。改变高速调制电信号的形状,同时调整工作波长和电信号幅度范围,可以产生不同形状的UWB脉冲。本发明发挥了硅基调制器的固有优势,大大降低了***复杂性,实现了UWB脉冲信号在光域上的直接产生。
最后需要说明的是,以上实施例仅用以说明本发明的实现方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (2)

1.一种用于产生超宽带脉冲信号的基于硅基微环耦合马赫曾德调制器,特征在于其构成包括一个跑道型的微环谐振器(B)通过第二马赫曾德耦合器(C)与第一马赫曾德干涉器(A)的一臂耦合,在该第一马赫曾德干涉器(A)的另一臂上分别集成有一个热移相器(01)和一个可调光衰减器(02),在所述的第二马赫曾德耦合器(C)的两臂上分别集成第一微加热器(04)和第二微加热器(05),所述的跑道型的微环谐振器(B)上集成有一段PN结有源区(03),所述的PN结有源区(03)与高速调制电信号源相连;
激光器发射连续光信号,经偏振控制器调整偏振态后进入所述硅基微环耦合马赫曾德调制器,与此同时,高速调制电信号加载到器件的有源区,进行电光调制后,在所述硅基微环耦合马赫曾德调制器的输出端输出的信号经过光电探测器转变为电信号后,在示波器上观察到UWB脉冲信号的时域波形;当高速调制电信号是方波信号,在信号的上升沿和下降沿将对应产生单阶的超宽带脉冲,若方波持续时间足够短,或者调制信号为高斯脉冲,将出现波形对称的二阶超宽带脉冲信号;
采用不同高速电信号,同时调整工作波长和电信号幅度,将产生不同阶数的UWB脉冲;
所述马赫曾德耦合器、所述热移相器和所述可调光衰减器配置为相互配合调节以优化所述超宽带脉冲信号质量。
2.根据权利要求1所述的硅基微环耦合马赫曾德调制器,其特征在于,所述PN结有源区(03)的PN结在波导截面上呈现L型或者U型。
CN201910629712.2A 2019-07-12 2019-07-12 基于硅基微环耦合马赫曾德调制器 Active CN110456527B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910629712.2A CN110456527B (zh) 2019-07-12 2019-07-12 基于硅基微环耦合马赫曾德调制器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910629712.2A CN110456527B (zh) 2019-07-12 2019-07-12 基于硅基微环耦合马赫曾德调制器

Publications (2)

Publication Number Publication Date
CN110456527A CN110456527A (zh) 2019-11-15
CN110456527B true CN110456527B (zh) 2021-03-30

Family

ID=68482804

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910629712.2A Active CN110456527B (zh) 2019-07-12 2019-07-12 基于硅基微环耦合马赫曾德调制器

Country Status (1)

Country Link
CN (1) CN110456527B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112379539B (zh) * 2020-11-18 2024-06-11 联合微电子中心有限责任公司 一种硅基微环调制器及其调制方法
CN116400456A (zh) * 2023-03-24 2023-07-07 雨树光科(深圳)有限公司 可调光功率分光器、控制方法及光纤陀螺仪

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1727978A (zh) * 2005-07-28 2006-02-01 浙江大学 采用非均衡耦合结构的带微环马赫-曾德尔光强度调制器
CN102638313A (zh) * 2012-03-28 2012-08-15 上海交通大学 归零码电光调制信号的产生装置和产生方法
CN103226252A (zh) * 2013-05-06 2013-07-31 中国科学院半导体研究所 一种提高耗尽型硅基电光调制器调制效率的掺杂结构
CN106249354A (zh) * 2016-09-27 2016-12-21 华中科技大学 一种基于微环与马赫曾德尔干涉结构的微波光子带阻滤波器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9941973B2 (en) * 2016-08-29 2018-04-10 Ciena Corporation Phase modulator with reduced residual amplitude modulation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1727978A (zh) * 2005-07-28 2006-02-01 浙江大学 采用非均衡耦合结构的带微环马赫-曾德尔光强度调制器
CN102638313A (zh) * 2012-03-28 2012-08-15 上海交通大学 归零码电光调制信号的产生装置和产生方法
CN103226252A (zh) * 2013-05-06 2013-07-31 中国科学院半导体研究所 一种提高耗尽型硅基电光调制器调制效率的掺杂结构
CN106249354A (zh) * 2016-09-27 2016-12-21 华中科技大学 一种基于微环与马赫曾德尔干涉结构的微波光子带阻滤波器

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Fano resonance-based electrically reconfigurable add–drop filters in silicon microring resonator-coupled Mach–Zehnder interferometers;Linjie Zhou等;《OPTICS LETTERS》;20070401;第32卷(第7期);全文 *
Silicon Mach-Zehnder modulator using a highly-efficient L-shape PN junction;Zhou,Gangqiang等;《PROCEEDINGS OF SPIE》;20181115;第10964卷;全文 *
Tunable asymmetrical Fano resonance andbistability in a microcavity-resonator-coupled Mach–Zehnder interferometer;Ying Lu等;《OPTICS LETTERS》;20051115;第30卷(第22期);参见第3069-3071页,附图1-3 *
Tunable Fano resonances based on microring resonator with feedback coupled waveguide;GUOLIN ZHAO等;《OPTICS EXPRESS》;20160823;第24卷(第18期);参见20187-20195页,附图1-5 *
UWB doublet generation using nonlinearlybiased electro-optic intensity modulator;Q.Wang等;《ELECTRONICS LETTERS》;20061026;第42卷(第22期);参见第1-2页,附图1-3 *

Also Published As

Publication number Publication date
CN110456527A (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
CN101848011B (zh) 双极性超宽带单周期脉冲的产生装置
CN103219632B (zh) 一种倍频光电振荡器
Pan et al. Performance evaluation of UWB signal transmission over optical fiber
CN110456527B (zh) 基于硅基微环耦合马赫曾德调制器
Yu et al. UWB monocycle generation and bi-phase modulation based on Mach–Zehnder modulator and semiconductor optical amplifier
CN111447013A (zh) 基于微波光子学的四阶超宽带信号产生方法及装置
CN103401615B (zh) 全光超宽带脉冲信号产生装置和方法
CN202586962U (zh) 超宽带高阶高斯脉冲光学发生装置
Hu et al. Filter-free optically switchable and tunable ultrawideband monocycle generation based on wavelength conversion and fiber dispersion
Yu et al. Photonic generation of millimeter-wave ultra-wideband signal using phase modulation to intensity modulation conversion and frequency up-conversion
CN102710287B (zh) 基于微波光子技术的可调谐超宽带微波信号发生器
Liu et al. Optical frequency comb generation and microwave synthesis with integrated cascaded silicon modulators
CN202488450U (zh) 一种超宽带脉冲序列光学发生装置
CN102694576A (zh) 基于电带通滤波器的超宽带信号发生器
Mohamed et al. Ultra high speed semiconductor electrooptic modulator devices for gigahertz operation in optical communication systems
CN202586980U (zh) 基于硅基环形谐振腔的高阶高斯脉冲光学发生装置
Wang et al. A Frequency Hopping Communication System Using Directly Modulated Laser Based Optical Heterodyne Technique
CN109270765A (zh) 一种单一波长全光可调的一阶超宽带信号产生方法及装置
Du et al. Photonic generation of millimeter-wave ultra-wideband monocycle signal using up-conversion based on stimulated Brillouin scattering effect
Khulbe et al. Photonic circuits for different coding schemes used in high speed Terabit communication
Mu et al. Photonic generation of power-efficient UWB pulses adaptable to multiple modulation formats using a dual-drive Mach-Zehnder modulator
Luo et al. All-optical millimeter-wave ultrawideband signal generation using a nonlinear optical loop mirror
CN109981177B (zh) 一种单一波长全光可调的二阶超宽带信号产生方法及装置
Xu UWB Signal Generation and Modulation Based on Photonic Approaches
Beltran et al. Photonic generation and frequency up-conversion of impulse-radio UWB signals

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant