CN110449761A - 一种冲击式转轮3d堆焊方法及结构 - Google Patents

一种冲击式转轮3d堆焊方法及结构 Download PDF

Info

Publication number
CN110449761A
CN110449761A CN201910641394.1A CN201910641394A CN110449761A CN 110449761 A CN110449761 A CN 110449761A CN 201910641394 A CN201910641394 A CN 201910641394A CN 110449761 A CN110449761 A CN 110449761A
Authority
CN
China
Prior art keywords
interface
built
welding
disk
forging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910641394.1A
Other languages
English (en)
Inventor
施旭明
金小锋
庄文进
花雷生
马建峰
熊建军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Fuchunjiang Hydroelectric Equipment Co Ltd
Original Assignee
Zhejiang Fuchunjiang Hydroelectric Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Fuchunjiang Hydroelectric Equipment Co Ltd filed Critical Zhejiang Fuchunjiang Hydroelectric Equipment Co Ltd
Priority to CN201910641394.1A priority Critical patent/CN110449761A/zh
Publication of CN110449761A publication Critical patent/CN110449761A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B1/00Engines of impulse type, i.e. turbines with jets of high-velocity liquid impinging on blades or like rotors, e.g. Pelton wheels; Parts or details peculiar thereto
    • F03B1/02Buckets; Bucket-carrying rotors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Turbines (AREA)

Abstract

本发明公开了一种冲击式转轮3D堆焊方法及结构,方法包括以下步骤:a.找出水斗和圆盘之间应力较低的区域,在低应力区绘制出堆焊分界线;b.通过锻造生产圆盘并进行验收;c.根据堆焊和热处理可能产生的变形量大小,预留出圆盘的加工余量,根据堆焊分界线在锻造圆盘边缘加工形成堆焊分界面;d.在锻造圆盘边缘的堆焊分界面上进行3D堆焊制造出所有水斗;e.堆焊出全部水斗后,进行整体去应力热处理,探伤合格后进行精加工。本发明旨在提供一种降低锻造难度、满足目前锻造设备制造能力要求的冲击式转轮3D堆焊方法及结构。

Description

一种冲击式转轮3D堆焊方法及结构
技术领域
本发明属于水轮机领域,尤其涉及一种冲击式转轮3D堆焊方法及结构。
背景技术
冲击式转轮受交变应力幅值较大,容易产生疲劳破坏,历史上多个电站铸造水斗出现断斗事故。现阶段冲击机组转轮的主要生产方式为锻造加数控加工成型,这种加工方式基本没有材料缺陷,电站运行反馈良好,已是现在冲击转轮生产的主要方式。
转轮材料为不锈钢材质,锻造阻抗太大,国内最大锻造业绩锻件毛坯重量不到40吨,直径不超过4米。目前国内最大冲击式水轮机的单机容量为10几万千瓦,对应转轮最大直径不到4米,可满足现阶段机组生产要求。然而,随着技术的发展和国内电站的需求,急需冲击机组单机扩展到百万千瓦级别,对应整锻毛坯重量将达到200多吨,直径达到6米以上。目前国内最大的自由锻压机(18500吨压力机)理论最大不锈钢锻件生产能力为100吨,产品实际需求已经远远超过设备制造能力。
发明内容
本发明是为了克服现有技术中的上述不足,提供了一种降低锻造难度、满足目前锻造设备制造能力要求的冲击式转轮3D堆焊方法及结构。
为了实现上述目的,本发明采用以下技术方案:
一种冲击式转轮3D堆焊方法,包括以下步骤:
a. 找出水斗和圆盘之间应力较低的区域,在低应力区绘制出堆焊分界线;
b.通过锻造生产圆盘并进行验收;
c. 根据堆焊和热处理可能产生的变形量大小,预留出圆盘的加工余量,根据堆焊分界线在锻造圆盘边缘加工形成堆焊分界面;
d. 在锻造圆盘边缘的堆焊分界面上进行3D堆焊制造出所有水斗;
e. 堆焊出全部水斗后,进行整体去应力热处理,探伤合格后进行精加工。
这样,高应力区的圆盘采用锻造成型,低应力区的水斗采用3D堆焊成型,极大地扩展了转轮的生产能力,使得百万千瓦冲击转轮的生产成为可能。此外由于整锻转轮锻件毛坯和最终转轮的质量比接近3,造成了较大的材料浪费,而采用3D堆焊结构,可有效避免水斗间大量材料的浪费。
作为优选,步骤a中,对转轮进行有限元计算,根据有限元计算结果,找出应力较低的区域。
作为优选,步骤a中,根据锻造厂的制造能力和经济性,确定堆焊分界线的线型,分别为“I”型、“U”型和“V”型。
作为优选,当堆焊分界线选择为“I”型时,步骤c中,在锻造圆盘外边缘加工平行于圆盘轴线的堆焊分界面;步骤d中,在锻造圆盘的堆焊分界面沿平行于堆焊分界面依次向外分层堆焊出水斗结构。
作为优选,当堆焊分界线选择为“U”型时,步骤c中,在锻造圆盘外边缘加工出平行于圆盘轴线的外分界面,在锻造圆盘外边缘的上下两侧加工出垂直于外分界面的上分界面和下分界面;步骤d中,先在上分界面和下分界面进行分层堆焊,直至上分界面和下分界面的堆焊区外侧面与外分界面平齐,之后在堆焊区外侧面和外分界面上向外分层堆焊出水斗结构。
作为优选,当堆焊分界线选择为“V”型时,步骤c中,在锻造圆盘外边缘加工出平行于圆盘轴线的外分界面,在锻造圆盘外边缘的上下两侧加工出相对外分界面倾斜的上分界斜面和下分界斜面;步骤d中,先在上分界斜面和下分界斜面进行分层堆焊,直至上分界斜面和下分界斜面的堆焊区外侧面与外分界面平齐,之后在堆焊区外侧面和外分界面上向外分层堆焊出水斗结构。
一种冲击式转轮3D堆焊结构,包括圆盘,所述圆盘的外缘设有围绕圆盘外圆周等角度排列的水斗连接部,所述水斗连接部的外端设有堆焊分界面,所述堆焊分界面上设有分层堆焊的水斗部,所述水斗部与水斗连接部连接为一体。
作为优选,所述堆焊分界面呈I形,所述堆焊分界面平行于所述圆盘的轴线。
作为优选,所述堆焊分界面呈U形,包括位于水斗连接部外端的外分界面以及位于水斗连接部外端上下两侧的上分界面和下分界面,所述上分界面和下分界面分别垂直于外分界面。
作为优选,所述堆焊分界面呈V形,包括位于水斗连接部外端的外分界面以及位于水斗连接部外端上下两侧的上分界斜面和下分界斜面,所述上分界斜面和下分界斜面分别倾斜于外分界面。
本发明的有益效果是:(1)通过锻造圆盘并在圆盘上堆焊形成水斗结构,将锻造圆盘重量减少到80多吨,符合锻造设备的制造能力要求,降低生产难度;(2)堆焊位置位于低应力区,有效提高水斗根部强度,保证转轮整体可靠性;(3)采用3D堆焊结构,降低水斗成型所需材料,节约生产成本。
附图说明
图1是本发明堆焊分界线选择为“I”型的工艺流程图;
图2是本发明堆焊分界线选择为“U”型的工艺流程图;
图3是本发明堆焊分界线选择为“V”型的工艺流程图;
图4是本发明的一种结构示意图;
图5是本发明实施例1的结构截面图;
图6是本发明实施例1圆盘的结构截面图;
图7是本发明实施例2的结构截面图;
图8是本发明实施例2圆盘的结构截面图;
图9是本发明实施例3的结构截面图;
图10是本发明实施例3圆盘的结构截面图。
图中:圆盘1,水斗连接部1a,堆焊分界面11,上分界面11a,外分界面11b,下分界面11c,上分界斜面111,下分界斜面112,水斗部2。
具体实施方式
下面结合附图和具体实施方式对本发明做进一步的描述。
一种冲击式转轮3D堆焊方法,包括以下步骤:
a. 找出水斗和圆盘之间应力较低的区域,在低应力区绘制出堆焊分界线。可根据CFD计算压力分布结果,结合实际如模型试验水压测试数据,对转轮进行有限元计算,找出应力较低的区域。确定堆焊分界线的线型,分别为“I”型、“U”型和“V”型,可根据锻造厂的制造能力和经济性来进行选择。
b. 通过锻造生产圆盘并进行验收;
c. 根据堆焊和热处理可能产生的变形量大小,预留出圆盘的加工余量,根据堆焊分界线在锻造圆盘边缘加工形成堆焊分界面;
d. 在锻造圆盘边缘的堆焊分界面上进行3D堆焊制造出所有水斗。3D堆焊利用机器人***并采用CMT(Cold Metal Transfer)冷金属过渡焊接技术,相对于传统的MIG/MAG焊接过程而言,热输入小、变形小、无焊渣飞溅、搭桥能力好、焊缝均匀一致、焊接速度高、运行成本低,提高了堆焊质量、减少了加工余量;
e. 堆焊出全部水斗后,进行整体去应力热处理,探伤合格后进行精加工。
当堆焊分界线选择为“I”型时,如图1所示,步骤c中,在锻造圆盘外边缘加工平行于圆盘轴线的堆焊分界面;步骤d中,在锻造圆盘的堆焊分界面沿平行于堆焊分界面依次向外分层堆焊出水斗结构。堆焊时采用卧式双轴承回转工作台与机器人***联合配合进行轨迹插补,堆焊路径平行于堆焊分界面,逐层堆焊出带加工余量的水斗形状,堆焊时焊接位置始终处于顶部,焊接时可有效减少流挂现象产生,有效保证焊接质量和成型效果。
当堆焊分界线选择为“U”型时,如图2所示,步骤c中,在锻造圆盘外边缘加工出平行于圆盘轴线的外分界面,在锻造圆盘外边缘的上下两侧加工出垂直于外分界面的上分界面和下分界面;步骤d中,先在上分界面和下分界面进行分层堆焊,直至上分界面和下分界面的堆焊区外侧面与外分界面平齐,之后在堆焊区外侧面和外分界面上向外分层堆焊出水斗结构。上述各阶段堆焊时利用变位机的回转使焊接位置始终处于顶部,可有效减少流挂现象产生。
当堆焊分界线选择为“V”型时,如图3所示,步骤c中,在锻造圆盘外边缘加工出平行于圆盘轴线的外分界面,在锻造圆盘外边缘的上下两侧加工出相对外分界面倾斜的上分界斜面和下分界斜面;步骤d中,先在上分界斜面和下分界斜面进行分层堆焊,直至上分界斜面和下分界斜面的堆焊区外侧面与外分界面平齐,之后在堆焊区外侧面和外分界面上向外分层堆焊出水斗结构。上述各阶段堆焊时利用变位机的回转使焊接位置始终处于顶部,可有效减少流挂现象产生。
实施例1:
如图4所示的实施例中,一种冲击式转轮3D堆焊结构,包括圆盘1,结合图5、图6所示圆盘1的外缘设有围绕圆盘1外圆周等角度排列的水斗连接部1a,水斗连接部1a凸出于圆盘1的外周,水斗连接部1a的外端设有堆焊分界面11,堆焊分界面11呈I形,堆焊分界面11平行于圆盘1的轴线。堆焊分界面11上设有分层堆焊的水斗部,水斗部与水斗连接部1a连接为一体。
实施例2
实施例2与实施例1的不同之处在于,如图7、图8所示,堆焊分界面11呈U形,包括位于水斗连接部1a外端的外分界面11b以及位于水斗连接部1a外端上下两侧的上分界面11a和下分界面11c,上分界面11a和下分界面11c分别垂直于外分界面11b。
实施例3
实施例3与实施例1的不同之处在于,如图9、图10所示,堆焊分界面11呈V形,包括位于水斗连接部1a外端的外分界面11b以及位于水斗连接部1a外端上下两侧的上分界斜面111和下分界斜面112,上分界斜面111和下分界斜面112分别倾斜于外分界面11b。

Claims (10)

1.一种冲击式转轮3D堆焊方法,包括以下步骤:
a. 找出水斗和圆盘之间应力较低的区域,在低应力区绘制出堆焊分界线;
b.通过锻造生产圆盘并进行验收;
c. 根据堆焊和热处理可能产生的变形量大小,预留出圆盘的加工余量,根据堆焊分界线在锻造圆盘边缘加工形成堆焊分界面;
d. 在锻造圆盘边缘的堆焊分界面上进行3D堆焊制造出所有水斗;
e. 堆焊出全部水斗后,进行整体去应力热处理,探伤合格后进行精加工。
2.根据权利要求1所述的一种冲击式转轮3D堆焊方法,其特征是,步骤a中,对转轮进行有限元计算,根据有限元计算结果,找出应力较低的区域。
3.根据权利要求1或2所述的一种冲击式转轮3D堆焊方法,其特征是,步骤a中,根据锻造厂的制造能力和经济性,确定堆焊分界线的线型,分别为“I”型、“U”型和“V”型。
4.根据权利要求3所述的一种冲击式转轮3D堆焊方法,其特征是,当堆焊分界线选择为“I”型时,步骤c中,在锻造圆盘外边缘加工平行于圆盘轴线的堆焊分界面;步骤d中,在锻造圆盘的堆焊分界面沿平行于堆焊分界面依次向外分层堆焊出水斗结构。
5.根据权利要求3所述的一种冲击式转轮3D堆焊方法,其特征是,当堆焊分界线选择为“U”型时,步骤c中,在锻造圆盘外边缘加工出平行于圆盘轴线的外分界面,在锻造圆盘外边缘的上下两侧加工出垂直于外分界面的上分界面和下分界面;步骤d中,先在上分界面和下分界面进行分层堆焊,直至上分界面和下分界面的堆焊区外侧面与外分界面平齐,之后在堆焊区外侧面和外分界面上向外分层堆焊出水斗结构。
6.根据权利要求3所述的一种冲击式转轮3D堆焊方法,其特征是,当堆焊分界线选择为“V”型时,步骤c中,在锻造圆盘外边缘加工出平行于圆盘轴线的外分界面,在锻造圆盘外边缘的上下两侧加工出相对外分界面倾斜的上分界斜面和下分界斜面;步骤d中,先在上分界斜面和下分界斜面进行分层堆焊,直至上分界斜面和下分界斜面的堆焊区外侧面与外分界面平齐,之后在堆焊区外侧面和外分界面上向外分层堆焊出水斗结构。
7.一种冲击式转轮3D堆焊结构,其特征是,包括圆盘(1),所述圆盘(1)的外缘设有围绕圆盘(1)外圆周等角度排列的水斗连接部(1a),所述水斗连接部(1a)的外端设有堆焊分界面(11),所述堆焊分界面(11)上设有分层堆焊的水斗部,所述水斗部与水斗连接部(1a)连接为一体。
8.根据权利要求7所述的一种冲击式转轮3D堆焊结构,其特征是,所述堆焊分界面(11)呈I形,所述堆焊分界面(11)平行于所述圆盘(1)的轴线。
9.根据权利要求7所述的一种冲击式转轮3D堆焊结构,其特征是,所述堆焊分界面(11)呈U形,包括位于水斗连接部(1a)外端的外分界面(11b)以及位于水斗连接部(1a)外端上下两侧的上分界面(11a)和下分界面(11c),所述上分界面(11a)和下分界面(11c)分别垂直于外分界面(11b)。
10.根据权利要求7所述的一种冲击式转轮3D堆焊结构,其特征是,所述堆焊分界面(11)呈V形,包括位于水斗连接部(1a)外端的外分界面(11b)以及位于水斗连接部(1a)外端上下两侧的上分界斜面(111)和下分界斜面(112),所述上分界斜面(111)和下分界斜面(112)分别倾斜于外分界面(11b)。
CN201910641394.1A 2019-07-16 2019-07-16 一种冲击式转轮3d堆焊方法及结构 Pending CN110449761A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910641394.1A CN110449761A (zh) 2019-07-16 2019-07-16 一种冲击式转轮3d堆焊方法及结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910641394.1A CN110449761A (zh) 2019-07-16 2019-07-16 一种冲击式转轮3d堆焊方法及结构

Publications (1)

Publication Number Publication Date
CN110449761A true CN110449761A (zh) 2019-11-15

Family

ID=68481323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910641394.1A Pending CN110449761A (zh) 2019-07-16 2019-07-16 一种冲击式转轮3d堆焊方法及结构

Country Status (1)

Country Link
CN (1) CN110449761A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111545993A (zh) * 2020-04-14 2020-08-18 哈动国家水力发电设备工程技术研究中心有限公司 一种冲击式水轮机转轮中斗叶的制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0892173A1 (en) * 1997-07-18 1999-01-20 Voith Riva Hydro S.p.A. Process for manufacturing hydraulic turbine wheels and the wheels obtained thereby
CN102218578A (zh) * 2011-05-26 2011-10-19 东南大学 基于径向偏置的机器人堆焊复杂外形工件的轨迹规划方法
CN104625650A (zh) * 2015-01-21 2015-05-20 重庆科技学院 冲击式水轮机转轮的制造工艺
CN107091263A (zh) * 2016-02-18 2017-08-25 安德里茨水电有限公司 水斗式转轮
CN108942107A (zh) * 2018-08-15 2018-12-07 哈尔滨电机厂有限责任公司 一种冲击式水轮机转轮的制造方法
CN210509457U (zh) * 2019-07-16 2020-05-12 浙江富春江水电设备有限公司 一种冲击式转轮3d堆焊结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0892173A1 (en) * 1997-07-18 1999-01-20 Voith Riva Hydro S.p.A. Process for manufacturing hydraulic turbine wheels and the wheels obtained thereby
CN102218578A (zh) * 2011-05-26 2011-10-19 东南大学 基于径向偏置的机器人堆焊复杂外形工件的轨迹规划方法
CN104625650A (zh) * 2015-01-21 2015-05-20 重庆科技学院 冲击式水轮机转轮的制造工艺
CN107091263A (zh) * 2016-02-18 2017-08-25 安德里茨水电有限公司 水斗式转轮
CN108942107A (zh) * 2018-08-15 2018-12-07 哈尔滨电机厂有限责任公司 一种冲击式水轮机转轮的制造方法
CN210509457U (zh) * 2019-07-16 2020-05-12 浙江富春江水电设备有限公司 一种冲击式转轮3d堆焊结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C_卡尔特拉洛等: "冲击式水轮机转轮制造的最新发展", 《水利水电快报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111545993A (zh) * 2020-04-14 2020-08-18 哈动国家水力发电设备工程技术研究中心有限公司 一种冲击式水轮机转轮中斗叶的制造方法
CN111545993B (zh) * 2020-04-14 2022-01-04 哈动国家水力发电设备工程技术研究中心有限公司 一种冲击式水轮机转轮中斗叶的制造方法

Similar Documents

Publication Publication Date Title
CN104625650B (zh) 冲击式水轮机转轮的制造工艺
CN110449760A (zh) 一种冲击式转轮精焊方法及结构
CN102218578B (zh) 基于径向偏置的机器人堆焊复杂外形工件的轨迹规划方法
Shi et al. Electric hot incremental forming of low carbon steel sheet: accuracy improvement
CN102266876B (zh) 无缝叉形管成型工艺及成型模具
CN106077901A (zh) 基于热作模具失效部位的电弧增材制造方法
EP3682982A1 (en) Manufacturing process for large annular forged piece
CN104785690B (zh) 高温合金gh4169圆棒的锻造方法
CN108942107A (zh) 一种冲击式水轮机转轮的制造方法
CN102430893A (zh) 一种小内径空心主轴的制造方法
CN110449832A (zh) 一种冲击式水斗精焊分瓣方法及结构
CN107520584A (zh) 异形金属构筑成形方法
CN104822489A (zh) 涡轮叶片的制造方法和制造装置
CN110449761A (zh) 一种冲击式转轮3d堆焊方法及结构
US20110255976A1 (en) Manufacturing method for closed vane wheels
CN106925631A (zh) 一种大型双层薄壁d型截面真空室扇形段内外壳成形工艺方法
Kafle et al. A review on casting technology with the prospects on its application for hydro turbines
CN109202459A (zh) 一种钛合金空心叶片增材制造装置及制造方法
CN103042090A (zh) 水轮机转轮叶片模压成型方法
CN208288905U (zh) 核电蒸发器封头整体成型冲头
Akgerman et al. Application of CAD/CAM in forging turbine and compressor blades
CN107414001A (zh) 特大型钛合金桨毂锻件分步锻造成形方法
CN104525814B (zh) 一种核电主管道用直管锻坯的模具工装以及锻造方法
CN210509457U (zh) 一种冲击式转轮3d堆焊结构
CN104624892B (zh) 一种细化ap1000核电站主管道锻件管嘴部位晶粒的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20191115

RJ01 Rejection of invention patent application after publication