CN110429146A - 一种非极性面氮化物量子阱红外探测器及其制备方法 - Google Patents

一种非极性面氮化物量子阱红外探测器及其制备方法 Download PDF

Info

Publication number
CN110429146A
CN110429146A CN201910724212.7A CN201910724212A CN110429146A CN 110429146 A CN110429146 A CN 110429146A CN 201910724212 A CN201910724212 A CN 201910724212A CN 110429146 A CN110429146 A CN 110429146A
Authority
CN
China
Prior art keywords
nitride
polar plane
infrared
layer
contact layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910724212.7A
Other languages
English (en)
Other versions
CN110429146B (zh
Inventor
荣新
王新强
沈波
陈宇翔
朱尧峥
刘放
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201910724212.7A priority Critical patent/CN110429146B/zh
Publication of CN110429146A publication Critical patent/CN110429146A/zh
Application granted granted Critical
Publication of CN110429146B publication Critical patent/CN110429146B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/28Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using photoemissive or photovoltaic cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/28Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using photoemissive or photovoltaic cells
    • G01J5/30Electrical features thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种非极性面氮化物量子阱红外探测器及其制备方法。本发明针对当前常见的c面氮化物QWIP存在极化电场的问题,提出采用非极性面氮化物多量子阱结构制备红外探测器,该结构不存在极化电场,易于载流子纵向输运;非极性面氮化物多量子阱为生长面应力补偿结构,有效缓解了非极性面生长的应力弛豫各向异性,提高制备非极性面氮化物材料的晶体质量;匹配电路中包括惠斯通电桥,根据红外光敏元件的电阻的大小设置相应的匹配电阻的大小,没有红外光照时电压截止元件处于非导通状态,通过电压截止元件抑制背景噪声,提高器件信噪比;采用第三代氮化物半导体材料制备,具有室温工作、紫外集成、红外光谱范围广等优势。

Description

一种非极性面氮化物量子阱红外探测器及其制备方法
技术领域
本发明涉及半导体光电子器件技术领域,具体涉及一种非极性面氮化物量子阱红外探测器及其制备方法。
背景技术
20世纪40年代,红外探测器的研究受红外夜视成像的巨大需求驱动而快速发展。早期的红外探测器是利用红外线的热效应进行红外探测的,称为红外热探测器,目前该探测器已经基本由红外光电探测器取代,成为一类重要的半导体光电子器件。目前商用的红外探测器主要有铟镓砷(IGA)和碲镉汞(MCT)探测器等。红外探测器的响应波长分为近红外、中红外、远红外和太赫兹(THz)波等,波长越长的红外光其光子能量越小,因此探测难度也随之增大。量子阱红外探测器(QWIP)是一类重要的红外探测器,目前已有30年的研究历史,其原理是在半导体多量子阱结构中对量子阱层掺杂并基于量子阱的子带间跃迁(ISBT)制成的红外探测器,其量子阱的材料主要有GaAs基或GaN基材料等。GaN基QWIP具有易于紫外集成、响应速度快、红外调制波长范围广、室温工作和抗辐射等优点,应用于目标追踪、预警和红外成像等军用和民用领域。
GaN材料有不同的晶相,常见的热稳定相是纤锌矿六方晶体结构。纤锌矿结构的晶胞形状为正六棱柱,其底面边长和侧棱的长度分别为晶格常数a和c,纤锌矿结构有多种晶面,如c面(0001)与c轴垂直为极性面,a面(11-20)和m面(1-100)与c轴平行为非极性面,r面(1-102)与c轴相交为半极性面。当前GaN基QWIP主要在c面上制备,c面GaN更易获得大面积基底、晶体质量好、生长成熟、并且成本较低,但c面是极性面存在极化电场,在QWIP应用中,极化电场不利于载流子的纵向输运,在很大程度上限制了器件性能的进一步提高。解决该问题的一种方法是采用非极性面氮化物QWIP,主要在m面或a面GaN上制备,由于无极化电场易于载流子纵向输运,在器件性能方面有较大潜力。当前,高质量非极性面GaN基材料的制备仍然具有一定难度,主要生长方法是分子束外延(MBE)或金属有机物化学气相沉积(MOCVD),在非极性面的生长存在较大的各向异性,原子表面迁移势垒大,如在m面GaN衬底上生长时,要同时控制a轴和c轴两个方向原子的迁移及其应力状态。目前非极性面氮化物QWIP主要难点是高质量非极性面氮化物多量子阱结构制备,以及器件工艺、提高红外探测的信噪比等。
发明内容
针对以上现有技术中存在的问题,本发明提出了一种非极性面氮化物量子阱红外探测器及其制备方法。
本发明的一个目的在于提出一种非极性面氮化物量子阱红外探测器。
本发明的非极性面氮化物量子阱红外探测器包括:红外光敏元件和匹配电路;其中,红外光敏元件包括衬底、氮化物模板、底电极接触层、非极性面氮化物多量子阱、顶电极接触层、顶电极、底电极和钝化层;在衬底上生长氮化物模板,氮化物模板的晶格常数为a0和c0;在氮化物模板上生长底电极接触层;在底电极接触层的一部分上依次为非极性面氮化物多量子阱、顶电极接触层和顶电极;在底电极接触层的一部分上为底电极;在顶电极和底电极的侧面覆盖有钝化层;非极性面氮化物多量子阱包括周期***替生长的第一氮化物层和第二氮化物层,第一和第二氮化物层的材料分别为Alx(1)Iny(1)Ga[1-x(1)-y(1)]N和Alx(2)Iny(2)Ga[1-x(2)-y(2)]N,x(1)和x(2)分别为第一和第二氮化物层的材料中Al的原子组分,y(1)和y(2)分别为第一和第二氮化物层的材料中In的原子组分;第一氮化物层的晶格常数为a1和c1,弹性系数为c11(1)、c12(1)和c13(1),第二氮化物层的晶格常数为a2和c2,弹性系数为c11(2)、c12(2)和c13(2),满足生长面应力补偿结构要求(c11(i)+c12(i))(a0-ai)/ai+c13(i)(c0-ci)/ci=0,i=1,2,并且,第一和第二氮化物层的材料与氮化物模板的晶格常数满足|(a0-ai)/ai|<0.3%,|(c0-ci)/ci|<1%,i=1,2,以及(a0-a1)(a0-a2)<0,(c0-c1)(c0-c2)<0,从而非极性面氮化物多量子阱为生长面应力补偿结构;红外光敏元件的顶电极和底电极连接至匹配电路中;匹配电路包括匹配电阻、第一和第二定值电阻、取样电阻、电压截止元件、开关和电源;红外光敏元件与匹配电阻、第一和第二定值电阻共同构成惠斯通电桥;惠斯通电桥的一对相对的接头通过开关连接至电源,形成闭合回路;惠斯通电桥的另一对相对的接头之间连接串联的电压截止元件和取样电阻;调节匹配电阻的大小,使得红外光敏元件在有红外光照射和无红外光照射时电压截止元件的两端电压分别对应大于导通电压和小于导通电压;测量取样电阻两端的电压,从而得到红外光敏元件的探测信号。
衬底采用适宜生长非极性面氮化物的衬底,采用m面GaN衬底或a面GaN衬底。
氮化物模板采用晶格弛豫的非极性面氮化物厚膜,厚度不少于300nm。
非极性面氮化物多量子阱的势阱进行n型掺杂,其掺杂浓度不低于3×1018cm-3。第一和第二氮化物层的晶胞形状为正六棱柱,正六棱柱的底面边长分别为晶格常数a1和a2,正六棱柱的侧棱长分别为晶格常数c1和c2
第一和第二氮化物层中Al和In的原子组分x(1)、x(2)、y(1)和y(2)均在[0,1]区间。第一和第二氮化物层的周期数不少于10。根据红外探测器的响应波段范围,通过薛定谔-泊松方程确定量子阱的势垒高度和势阱宽度,进而在满足生长面应力补偿结构的条件下确定第一和第二氮化物层中Al和In的原子组分以及第一和第二氮化物层的厚度。
底电极接触层和顶电极接触层为n型掺杂的非极性面氮化物材料,其掺杂浓度不低于5×1018cm-3。顶电极和底电极为欧姆接触电极。钝化层选取绝缘材料。电压截止元件采用稳压二极管、pn结二极管、肖特基二极管、场效应晶体管中的一种或者多种单组合构成的复合元件。
进一步,在匹配电路中还包括可调电阻,采用滑动变阻器,与惠斯通电桥、开关和电源串联在闭合回路中,以调节负载反馈。
本发明的另一个目的在于提供一种非极性面氮化物量子阱红外探测器的制备方法。
本发明的非极性面氮化物量子阱红外探测器的制备方法,包括以下步骤:
1)设计结构参数:根据红外探测器的响应波段范围,通过薛定谔-泊松方程自洽求解的方法进行模拟计算,得到红外光敏元件的结构参数;红外光敏元件包括衬底、氮化物模板、底电极接触层、非极性面氮化物多量子阱、顶电极接触层、顶电极、底电极和钝化层;氮化物模板的晶格常数为a0和c0;非极性面氮化物多量子阱包括周期***替生长的第一氮化物层和第二氮化物层,第一和第二氮化物层的材料分别为Alx(1)Iny(1)Ga[1-x(1)-y(1)]N和Alx(2)Iny(2)Ga[1-x(2)-y(2)]N,x(1)和x(2)分别为第一和第二氮化物层的材料中Al的原子组分,y(1)和y(2)分别为第一和第二氮化物层的材料中In的原子组分;第一氮化物层的晶格常数为a1和c1,弹性系数为c11(1)、c12(1)和c13(1),第二氮化物层的晶格常数为a2和c2,弹性系数为c11(2)、c12(2)和c13(2),满足生长面应力补偿结构要求(c11(i)+c12(i))(a0-ai)/ai+c13(i)(c0-ci)/ci=0,i=1,2,并且,第一和第二氮化物层的材料与氮化物模板的晶格常数满足|(a0-ai)/ai|<0.3%,|(c0-ci)/ci|<1%,i=1,2,以及(a0-a1)(a0-a2)<0,(c0-c1)(c0-c2)<0,从而非极性面氮化物多量子阱为生长面应力补偿结构;
2)生长外延晶片:按照步骤1)中的结构参数采用精细外延设备生长高质量外延晶片,清洗衬底使表面洁净以用于外延生长,在衬底上通过缓冲层技术生长不少于300nm的晶格应力弛豫的氮化物模板,在氮化物模板上依次生长底电极接触层、非极性面氮化物多量子阱和顶电极接触层得到外延晶片,生长过程采用原位表征手段进行监测;
3)晶片测试反馈:分别利用X射线衍射、原子力显微镜AFM、透射电子显微镜TEM对外延晶片的多量子阱晶格应力弛豫情况、表面形貌以及界面情况进行测试反馈,利用傅立叶变换红外光谱仪FTIR测试外延晶片的光吸收谱,确定光响应波段范围,TEM测试界面清晰,AFM测试表面粗糙度不大于1nm,FTIR光响应波段满足设计要求;如果外延晶片的性能不满足需要,则返回步骤1)重新优化结构参数和生长条件,直到获得符合要求的外延晶片,进入步骤4);
4)制备红外光敏元件:通过紫外光刻和等离子体刻蚀对外延晶片进行台面刻蚀以露出底电极接触层的表面,通过电子束蒸发进行电极蒸镀并快速退火使电极与相应电极接触层形成良好欧姆接触,顶电极选取透明电极或环形电极,采用绝缘材料进行侧边钝化抑制台面侧边的暗电流通路;
5)将红外光敏元件的顶电极和底电极分别接入匹配电路,与匹配电阻、第一和第二定值电阻共同构成惠斯通电桥;惠斯通电桥的一对相对的接头通过开关连接至电源,形成闭合回路;惠斯通电桥的另一对相对的接头之间连接串联的电压截止元件和取样电阻;
6)调节匹配电阻的大小,使得红外光敏元件在有红外光照射和无红外光照射时电压截止元件的两端电压分别对应大于导通电压和小于导通电压;
7)测量取样电阻两端的电压,从而得到红外光敏元件的探测信号。
在步骤1)中,结构参数包括:衬底的材料、氮化物模板的材料和厚度、非极性面氮化物多量子阱的势垒和势阱的材料、厚度和周期数、势阱材料的掺杂浓度、底电极接触层和顶电极接触层的材料、厚度和掺杂浓度,非极性面氮化物多量子阱是生长面应力补偿结构,其周期数不少于10;底电极接触层和顶电极接触层的材料和n型掺杂浓度相同,其掺杂浓度不低于5×1018cm-3
本发明的优点:
(1)本发明针对当前常见的c面氮化物QWIP存在极化电场的问题,提出采用非极性面氮化物多量子阱结构制备红外探测器,该结构不存在极化电场,易于载流子纵向输运;
(2)本发明的非极性面氮化物多量子阱为生长面应力补偿结构,有效缓解了非极性面生长的应力弛豫各向异性,提高制备非极性面氮化物材料的晶体质量;
(3)本发明的匹配电路中包括惠斯通电桥,根据红外光敏元件的电阻的大小设置相应的匹配电阻的大小,没有红外光照时电压截止元件处于非导通状态,通过电压截止元件抑制背景噪声,提高器件信噪比;
(4)本发明的红外探测器采用第三代氮化物半导体材料制备,具有室温工作、紫外集成、红外光谱范围广等优势。
附图说明
图1为本发明的非极性面氮化物量子阱红外探测器的一个实施例的示意图;
图2为本发明的非极性面氮化物量子阱红外探测器的一个实施例的匹配电路的电路图;
图3为本发明的非极性面氮化物量子阱红外探测器的一个实施例的外延晶片的剖面图;
图4为本发明的非极性面氮化物量子阱红外探测器的光谱测试装置图。
具体实施方式
下面结合附图,通过具体实施例,进一步阐述本发明。
如图1所示,本实施例的非极性面氮化物量子阱红外探测器包括:红外光敏元件和匹配电路9;其中,红外光敏元件包括衬底1、氮化物模板2、底电极接触层3、非极性面氮化物多量子阱4、顶电极接触层5、顶电极6、底电极7和钝化层8;在衬底1上生长氮化物模板2,在氮化物模板2上生长底电极接触层3;在底电极接触层3的一部分上依次为非极性面氮化物多量子阱4、顶电极接触层5和顶电极6;在底电极接触层3的一部分上为底电极7;在顶电极6和底电极7的侧面覆盖有钝化层8;红外光敏元件的顶电极6和底电极7连接至匹配电路9中。
如图2所示,匹配电路包括匹配电阻91、第一和第二定值电阻92和93、取样电阻94、电压截止元件95、可调电阻96、开关97和电源98;红外光敏元件与匹配电阻、第一和第二定值电阻共同构成惠斯通电桥;惠斯通电桥的一对相对的接头串联可调电阻96和开关97连接至电源98,形成闭合回路;惠斯通电桥的另一对相对的接头之间连接串联的电压截止元件95和取样电阻94;电压截止元件采用稳压二极管。
在本实施例中,衬底1为m面GaN衬底;氮化物模板2为晶格弛豫的m面Al0.33In0.08Ga0.59N厚膜,其介于衬底和底电极接触层之间,厚度为500nm;非极性面氮化物多量子阱4为m面Al0.4In0.1Ga0.5N/GaN多量子阱,其为生长面应力补偿结构,其势阱GaN进行Si掺杂,掺杂浓度为5×1018cm-3;底电极接触层3和顶电极接触层5为Si掺杂的m面Al0.33In0.08Ga0.59N,其掺杂浓度为8×1018cm-3;顶电极6和底电极7通过依次蒸镀Ti(20nm)/Al(175nm)/Ni(45nm)/Au(500nm)形成欧姆接触,顶电极6为环形电极;钝化层8为厚度500nm的SiO2
本实施例的非极性面氮化物量子阱红外探测器的制备方法,包括以下步骤:
1)设计结构参数:根据3~5μm红外大气窗口的响应波段范围,通过薛定谔-泊松方程自洽求解的方法进行模拟计算,得到红外光敏元件的结构参数:衬底1材料为m面GaN;氮化物模板2为500nm的Al0.33In0.08Ga0.59N厚膜;非极性面氮化物多量子阱4为Al0.4In0.1Ga0.5N/GaN多量子阱,厚度依次为10nm和2.1nm,共20周期,其为生长面应力补偿结构,其势阱GaN进行Si掺杂,掺杂浓度为5×1018cm-3;底电极接触层3和顶电极接触层5为Si掺杂的m面Al0.33In0.08Ga0.59N,厚度依次为500nm和50nm,其掺杂浓度为8×1018cm-3
2)生长外延晶片:将清洗干净的衬底1传入MBE设备中,按步骤1)中设计的参数生长外延晶片。对衬底1在500℃下进行烘烤除气,随后升温至生长温度进行外延生长。如图3所示,在衬底1上生长AlN/GaN短周期超晶格缓冲层,在缓冲层上生长500nm应力弛豫的氮化物模板2,在氮化物模板2上依次生长底电极接触层3、非极性面氮化物多量子阱4和顶电极接触层5,得到外延晶片。生长晶体的表面状态通过反射高能电子衍射仪(RHEED)进行原位监测,生长厚度通过激光干涉仪原位监测,优化生长条件使RHEED条纹清晰,激光干涉强度均匀振荡。
3)晶片测试反馈:分别利用X射线衍射、原子力显微镜AFM、透射电子显微镜TEM对外延晶片的多量子阱晶格应力弛豫情况、表面形貌以及界面情况进行测试反馈,利用傅立叶变换红外光谱仪FTIR测试外延晶片的光吸收谱,确定光响应波段范围,TEM测试界面互扩散小,界面清晰无互扩散层,AFM测试表面粗糙度不大于1nm,FTIR光响应波段满足设计要求;如果外延晶片的性能不满足需要,则返回步骤1)重新优化结构参数和生长条件,直到获得符合要求的外延晶片,进入步骤4)。
4)制备红外光敏元件:通过紫外光刻和等离子体刻蚀对外延晶片进行台面刻蚀以露出底电极接触层的表面,形成如图1所示的台面结构,台面大小为200μm×200μm,刻蚀深度为500nm,通过电子束蒸发依次蒸镀Ti(20nm)/Al(175nm)/Ni(45nm)/Au(500nm)形成顶电极6和底电极7,并在800℃下快速退火使电极与相应电极接触层形成良好欧姆接触,顶电极6为环形电极,中间镂空可使被探测光透过,采用500nm的SiO2钝化层8抑制台面侧边的暗电流通路。
5)将红外光敏元件的顶电极6和底电极7分别接入匹配电路,与匹配电阻、第一和第二定值电阻共同构成惠斯通电桥;惠斯通电桥的一对相对的接头通过开关97连接至电源98,形成闭合回路;惠斯通电桥的另一对相对的接头之间连接串联的稳压二极管95和取样电阻94。
6)调节匹配电阻91的大小,使得红外光敏元件在有红外光照射和无红外光照射时稳压二极管95的两端电压分别对应大于导通电压和小于导通电压。
7)取样电阻94两端通过引线形成正负极输出端99,通过测量其电压得到红外光敏元件的探测信号。
如图4所示,对由上述方法制备得到的红外探测器进行性能测试,FTIR的外置输出红外光通过一组反射镜M形成汇聚光束,依次通过红外偏振片P和斩波器C入射到红外探测器的顶电极6上,斩波器与锁相放大器LIA相连,红外探测器的正负极输出端99接入锁相放大器的输入接口,通过输出接口输出至FTIR的I/O端口,FTIR采用动镜步进扫描模式。在一定的测试配置条件下,可以测试到3~5μm范围的红外响应谱,表明本发明的非极性面氮化物量子阱红外探测器具有广阔的应用前景。
最后需要注意的是,公布实施例的目的在于帮助进一步理解本发明,但是本领域的技术人员可以理解:在不脱离本发明及所附的权利要求的精神和范围内,各种替换和修改都是可能的。因此,本发明不应局限于实施例所公开的内容,本发明要求保护的范围以权利要求书界定的范围为准。

Claims (10)

1.一种非极性面氮化物量子阱红外探测器,其特征在于,所述非极性面氮化物量子阱红外探测器包括:红外光敏元件和匹配电路;其中,红外光敏元件包括衬底、氮化物模板、底电极接触层、非极性面氮化物多量子阱、顶电极接触层、顶电极、底电极和钝化层;在衬底上生长氮化物模板,氮化物模板的晶格常数为a0和c0;在氮化物模板上生长底电极接触层;在底电极接触层的一部分上依次为非极性面氮化物多量子阱、顶电极接触层和顶电极;在底电极接触层的一部分上为底电极;在顶电极和底电极的侧面覆盖有钝化层;非极性面氮化物多量子阱包括周期***替生长的第一氮化物层和第二氮化物层,第一和第二氮化物层的材料分别为Alx(1)Iny(1)Ga[1-x(1)-y(1)]N和Alx(2)Iny(2)Ga[1-x(2)-y(2)]N,x(1)和x(2)分别为第一和第二氮化物层的材料中Al的原子组分,y(1)和y(2)分别为第一和第二氮化物层的材料中In的原子组分;第一氮化物层的晶格常数为a1和c1,弹性系数为c11(1)、c12(1)和c13(1),第二氮化物层的晶格常数为a2和c2,弹性系数为c11(2)、c12(2)和c13(2),满足生长面应力补偿结构要求(c11(i)+c12(i))(a0-ai)/ai+c13(i)(c0-ci)/ci=0,i=1,2,并且,第一和第二氮化物层的材料与氮化物模板的晶格常数满足|(a0-ai)/ai|<0.3%,|(c0-ci)/ci|<1%,i=1,2,以及(a0-a1)(a0-a2)<0,(c0-c1)(c0-c2)<0,从而非极性面氮化物多量子阱为生长面应力补偿结构;红外光敏元件的顶电极和底电极连接至匹配电路中;匹配电路包括匹配电阻、第一和第二定值电阻、取样电阻、电压截止元件、开关和电源;红外光敏元件与匹配电阻、第一和第二定值电阻共同构成惠斯通电桥;惠斯通电桥的一对相对的接头通过开关连接至电源,形成闭合回路;惠斯通电桥的另一对相对的接头之间连接串联的电压截止元件和取样电阻;调节匹配电阻的大小,使得红外光敏元件在有红外光照射和无红外光照射时电压截止元件的两端电压分别对应大于导通电压和小于导通电压;测量取样电阻两端的电压,从而得到红外光敏元件的探测信号。
2.如权利要求1所述的非极性面氮化物量子阱红外探测器,其特征在于,所述衬底采用m面GaN衬底或a面GaN衬底。
3.如权利要求1所述的非极性面氮化物量子阱红外探测器,其特征在于,所述氮化物模板采用晶格弛豫的非极性面氮化物厚膜,厚度不少于300nm。
4.如权利要求1所述的非极性面氮化物量子阱红外探测器,其特征在于,所述非极性面氮化物多量子阱的势阱进行n型掺杂,其掺杂浓度不低于3×1018cm-3
5.如权利要求1所述的非极性面氮化物量子阱红外探测器,其特征在于,所述第一和第二氮化物层中Al和In的原子组分x(1)、x(2)、y(1)和y(2)均在[0,1]区间;所述第一和第二氮化物层的周期数不少于10。
6.如权利要求1所述的非极性面氮化物量子阱红外探测器,其特征在于,所述底电极接触层和顶电极接触层为n型掺杂的非极性面氮化物材料,其掺杂浓度不低于5×1018cm-3
7.如权利要求1所述的非极性面氮化物量子阱红外探测器,其特征在于,所述电压截止元件采用稳压二极管、pn结二极管、肖特基二极管、场效应晶体管中的一种或者多种单组合构成的复合元件。
8.如权利要求1所述的非极性面氮化物量子阱红外探测器,其特征在于,还包括可调电阻,所述可调电阻与惠斯通电桥、开关和电源串联在闭合回路中。
9.一种非极性面氮化物量子阱红外探测器的制备方法,其特征在于,所述制备方法包括以下步骤:
1)设计结构参数:根据红外探测器的响应波段范围,通过薛定谔-泊松方程自洽求解的方法进行模拟计算,得到红外光敏元件的结构参数;红外光敏元件包括衬底、氮化物模板、底电极接触层、非极性面氮化物多量子阱、顶电极接触层、顶电极、底电极和钝化层;氮化物模板的晶格常数为a0和c0;非极性面氮化物多量子阱包括周期***替生长的第一氮化物层和第二氮化物层,第一和第二氮化物层的材料分别为Alx(1)Iny(1)Ga[1-x(1)-y(1)]N和Alx(2)Iny(2)Ga[1-x(2)-y(2)]N,x(1)和x(2)分别为第一和第二氮化物层的材料中Al的原子组分,y(1)和y(2)分别为第一和第二氮化物层的材料中In的原子组分;第一氮化物层的晶格常数为a1和c1,弹性系数为c11(1)、c12(1)和c13(1),第二氮化物层的晶格常数为a2和c2,弹性系数为c11(2)、c12(2)和c13(2),满足生长面应力补偿结构要求(c11(i)+c12(i))(a0-ai)/ai+c13(i)(c0-ci)/ci=0,i=1,2,并且,第一和第二氮化物层的材料与氮化物模板的晶格常数满足|(a0-ai)/ai|<0.3%,|(c0-ci)/ci|<1%,i=1,2,以及(a0-a1)(a0-a2)<0,(c0-c1)(c0-c2)<0,从而非极性面氮化物多量子阱为生长面应力补偿结构;
2)生长外延晶片:按照步骤1)中的结构参数采用精细外延设备生长高质量外延晶片,清洗衬底使表面洁净以用于外延生长,在衬底上通过缓冲层技术生长不少于300nm的晶格应力弛豫的氮化物模板,在氮化物模板上依次生长底电极接触层、非极性面氮化物多量子阱和顶电极接触层得到外延晶片,生长过程采用原位表征手段进行监测;
3)晶片测试反馈:分别利用X射线衍射、原子力显微镜AFM、透射电子显微镜TEM对外延晶片的多量子阱晶格应力弛豫情况、表面形貌以及界面情况进行测试反馈,利用傅立叶变换红外光谱仪FTIR测试外延晶片的光吸收谱,确定光响应波段范围,TEM测试界面清晰,AFM测试表面粗糙度不大于1nm,FTIR光响应波段满足设计要求;如果外延晶片的性能不满足需要,则返回步骤1)重新优化结构参数和生长条件,直到获得符合要求的外延晶片,进入步骤4);
4)制备红外光敏元件:通过紫外光刻和等离子体刻蚀对外延晶片进行台面刻蚀以露出底电极接触层的表面,通过电子束蒸发进行电极蒸镀并快速退火使电极与相应电极接触层形成良好欧姆接触,顶电极选取透明电极或环形电极,采用绝缘材料进行侧边钝化抑制台面侧边的暗电流通路;
5)将红外光敏元件的顶电极和底电极分别接入匹配电路,与匹配电阻、第一和第二定值电阻共同构成惠斯通电桥;惠斯通电桥的一对相对的接头通过开关连接至电源,形成闭合回路;惠斯通电桥的另一对相对的接头之间连接串联的电压截止元件和取样电阻;
6)调节匹配电阻的大小,使得红外光敏元件在有红外光照射和无红外光照射时电压截止元件的两端电压分别对应大于导通电压和小于导通电压;
7)测量取样电阻两端的电压,从而得到红外光敏元件的探测信号。
10.如权利要求9所述的制备方法,其特征在于,在步骤1)中,结构参数包括:衬底的材料、氮化物模板的材料和厚度、非极性面氮化物多量子阱的势垒和势阱的材料、厚度和周期数、势阱材料的掺杂浓度、底电极接触层和顶电极接触层的材料、厚度和掺杂浓度,非极性面氮化物多量子阱是生长面应力补偿结构,其周期数不少于10;底电极接触层和顶电极接触层的材料和n型掺杂浓度相同,其掺杂浓度不低于5×1018cm-3
CN201910724212.7A 2019-08-07 2019-08-07 一种非极性面氮化物量子阱红外探测器及其制备方法 Active CN110429146B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910724212.7A CN110429146B (zh) 2019-08-07 2019-08-07 一种非极性面氮化物量子阱红外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910724212.7A CN110429146B (zh) 2019-08-07 2019-08-07 一种非极性面氮化物量子阱红外探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN110429146A true CN110429146A (zh) 2019-11-08
CN110429146B CN110429146B (zh) 2020-11-03

Family

ID=68412935

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910724212.7A Active CN110429146B (zh) 2019-08-07 2019-08-07 一种非极性面氮化物量子阱红外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN110429146B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112285825A (zh) * 2020-10-19 2021-01-29 东南大学 一种光耦合芯片及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5493906A (en) * 1994-06-01 1996-02-27 Peking University Automatic offset control for constant temperature anemometer
JPH11317543A (ja) * 1999-01-08 1999-11-16 Toyoda Gosei Co Ltd 半導体素子
JP2000323744A (ja) * 1999-05-07 2000-11-24 Fujitsu Ltd フォトセンサおよびイメージセンサ
CN104733561A (zh) * 2015-03-23 2015-06-24 北京大学 一种新型氮化物量子阱红外探测器及其制备方法
CN107240615A (zh) * 2017-05-15 2017-10-10 东南大学 一种具有非极性吸收层的紫外探测器
CN107393983A (zh) * 2017-08-30 2017-11-24 中国工程物理研究院电子工程研究所 含极化调控层的氮化物量子阱红外探测器及其制备方法
CN107579432A (zh) * 2017-08-25 2018-01-12 华南师范大学 InGaN/AlInN量子阱激光器及其制作方法
CN110071197A (zh) * 2019-03-27 2019-07-30 北京大学 一种基于非极性面氮化镓的高极化度自旋led及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5493906A (en) * 1994-06-01 1996-02-27 Peking University Automatic offset control for constant temperature anemometer
JPH11317543A (ja) * 1999-01-08 1999-11-16 Toyoda Gosei Co Ltd 半導体素子
JP2000323744A (ja) * 1999-05-07 2000-11-24 Fujitsu Ltd フォトセンサおよびイメージセンサ
CN104733561A (zh) * 2015-03-23 2015-06-24 北京大学 一种新型氮化物量子阱红外探测器及其制备方法
CN107240615A (zh) * 2017-05-15 2017-10-10 东南大学 一种具有非极性吸收层的紫外探测器
CN107579432A (zh) * 2017-08-25 2018-01-12 华南师范大学 InGaN/AlInN量子阱激光器及其制作方法
CN107393983A (zh) * 2017-08-30 2017-11-24 中国工程物理研究院电子工程研究所 含极化调控层的氮化物量子阱红外探测器及其制备方法
CN110071197A (zh) * 2019-03-27 2019-07-30 北京大学 一种基于非极性面氮化镓的高极化度自旋led及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
S.PIMPUTKAR等: "Surface morphology study of basic ammonothermal GaN grown on non-polar GaN seed crystals of varying surface orientations from m-plane to a-plane", 《JOURNAL OF CRYSTAL GROWTH》 *
张家鑫 等: "单轴应力对量子阱红外探测器吸收波长的影响", 《光学学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112285825A (zh) * 2020-10-19 2021-01-29 东南大学 一种光耦合芯片及其制备方法

Also Published As

Publication number Publication date
CN110429146B (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
US6447938B1 (en) Gallium nitride collector grid solar cell
JP4164563B2 (ja) 酸化物半導体pn接合デバイス及びその製造方法
Kimukin et al. High-speed InSb photodetectors on GaAs for mid-IR applications
Sun et al. GaAsSb: a novel material for near infrared photodetectors on GaAs substrates
CN104733561A (zh) 一种新型氮化物量子阱红外探测器及其制备方法
Rehm et al. InAs/(GaIn) Sb short-period superlattices for focal plane arrays
CN110429146A (zh) 一种非极性面氮化物量子阱红外探测器及其制备方法
Vonsovici et al. Room temperature photocurrent spectroscopy of SiGe/Si pin photodiodes grown by selective epitaxy
CN104409556B (zh) 一种氮化物复合势垒量子阱红外探测器及其制备方法
CN117747685A (zh) 提高量子效率的长波红外探测器
Khai et al. Room Temperature 3.5-$\mu\text {m} $ Mid-Infrared InAs Photovoltaic Detector on a Si Substrate
Besikci et al. Characteristics of InAs0. 8Sb0. 2 photodetectors on GaAs substrates
CA1149497A (en) Iii-v quaternary alloy photodiode
Pau et al. Solar-blind AlGaN-based UV photodetectors grown on Si (111) substrates
Kumar et al. Mid-Infrared Photodetectors-based on Lattice Matched SiGeSn/GeSn Heterojunction Bipolar Transistor with an i-GeSn Absorber Layer
RU220600U1 (ru) Гетероструктурный фотодиод для ближнего и среднего ИК-диапазона на основе нитевидных нанокристаллов арсенида-фосфида-висмутида индия на подложках кремния
Plis et al. Room temperature operation of InAs/GaSb SLS infrared photovoltaic detectors with cut-off wavelength~ 5 µm
Odetoran Temperature-Dependent IV Characteristics of Core-Shell GaAsSb pin Junction Nanowires on Silicon
Şaşmaz Molecular beam epitaxial growth and characterization of extended short wavelength infrared mercury cadmium telluride detectors
Brill et al. Material characteristics of HgCdSe grown on GaSb and ZnTe/Si substrates by MBE
Prineas et al. Processes limiting the performance of InAs/GaSb superlattice mid-infrared PIN mesa photodiodes
Boguski et al. High operating temperature LWIR and VLWIR InAs1-xSbx optically immersed photodetectors grown on GaAs substrates
Rutkowski et al. HgCdTe photodiode passivated with a wide-bandgap epitaxial layer
Bandara et al. GaAs/AlGaAs multi-quantum-well based far infrared detectors for astronomy application
Rodriguez et al. Si substrate based GaAs/AlGaAs quantum well infrared photodetector with Ge buffer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant