CN110407164A - 一种碳纳米管聚合物复合膜的制备方法及应用 - Google Patents

一种碳纳米管聚合物复合膜的制备方法及应用 Download PDF

Info

Publication number
CN110407164A
CN110407164A CN201910547990.3A CN201910547990A CN110407164A CN 110407164 A CN110407164 A CN 110407164A CN 201910547990 A CN201910547990 A CN 201910547990A CN 110407164 A CN110407164 A CN 110407164A
Authority
CN
China
Prior art keywords
carbon nanotube
composite membrane
polymer composite
preparation
nanotube polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910547990.3A
Other languages
English (en)
Inventor
刘天西
高继升
张超
刘志崇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
National Dong Hwa University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201910547990.3A priority Critical patent/CN110407164A/zh
Publication of CN110407164A publication Critical patent/CN110407164A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • B82B3/0023Forming specific nanostructures comprising flexible or deformable elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/18Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in resistance

Abstract

本发明公开了一种碳纳米管聚合物复合膜的制备方法,其特征在于,包括以下步骤:步骤1:将碳纳米管溶于有机溶剂中,超声分散,然后抽滤制得碳纳米管膜;步骤2:将SEBS通过热压处理制得SEBS片;步骤3:将步骤1得到的碳纳米管膜放在步骤2得到的SEBS片表面进行热压处理,然后在溶剂中超声,干燥,得到碳纳米管聚合物复合薄膜。该发明本发明制备方法简单、灵敏度高、线性度好、循环稳定性优异,本发明利用热压法,使聚合物熔体渗透进碳纳米管中,最终得到应力传感性能良好的碳纳米管聚合物复合薄膜。

Description

一种碳纳米管聚合物复合膜的制备方法及应用
技术领域
本发明属于电子设备技术领域,特别涉及一种碳纳米管聚合物复合膜的制备方法及其应用。
背景技术
柔性传感器、微电子学以及人造皮肤越来越引起研究人员的关注。可拉伸电阻式应变传感材料已经得到了广泛的开发,并用于可穿戴设备。电阻式应变传感器面临的问题是实现大的应变并在应变条件下有良好的线性度。传统的电阻式金属应变传感器测量范围小,因为它们在大的形变下不能恢复。通常通过把导电纳米粒子与弹性体混合制成的导电复合物材料有好的灵敏度和大的形变,然而它的电阻和应变之间并没有良好的线性关系。基于此,设计一种大形变、高灵敏度并且具有良好线性关系的应变传感器就显得极为重要了。
碳纳米管(CNT),是主要由呈六边形排列的碳原子构成的具有特殊结构的一维量子材料,其直径在0.3纳米到几十纳米之间,长度可达数微米。碳纳米管与钢相比,其密度只有钢的1/6,但是理论强度约为钢的100倍,可以耐受温度达3593℃,并且具有卓越的导热性和延展性。单层或多层的碳纳米管被称为单壁碳纳米管(SWNT)和多壁碳纳米管(MWNT),单壁碳纳米管从外观上看是空心圆柱体,是由石墨按二维方式排列组成的平面卷曲形成的,由于与石墨排列的方式不同,形成了不同结构的单壁碳纳米管,而圆柱体两侧面则是由碳原子呈曲线排列而形成的曲面。如果将不同结构大小的单壁碳纳米管由小到大同心套迭,其每相邻层片间距离约为0.36纳米,则可以形成多壁碳纳米管。碳纳米管内的电子不是随意运动的,而是受到量子限域因素的限制,这些电子通常只能沿碳纳米管轴向进行运动,且不能在不同石墨片层中交叉运动。
SEBS是以聚苯乙烯为末端段,以聚丁二烯加氢得到的乙烯-丁烯共聚物为中间弹性嵌段的线性三嵌共聚物。SEBS不含不饱和双键,因此具有良好的稳定性和耐老化性。
发明内容
本发明所要解决的技术问题是提供一种碳纳米管聚合物复合膜的制备方法及其应用。
为了解决上述技术问题,本发明提供了一种碳纳米管聚合物复合膜的制备方法,其特征在于,包括以下步骤:
步骤1:将碳纳米管溶于有机溶剂中,超声分散,然后抽滤制得碳纳米管膜;
步骤2:将SEBS通过热压处理制得SEBS片;
步骤3:将步骤1得到的碳纳米管膜放在步骤2得到的SEBS片表面进行热压处理,然后在溶剂中超声清洗,干燥,得到碳纳米管聚合物复合薄膜。
优选地,所述步骤1中有机溶剂为乙醇,四氢呋喃或N-甲基吡咯烷酮中的一种。
优选地,所述步骤1中碳纳米管与有机溶剂的固液比为2~10mg/mL,超声功率为300~500W,时间为30~60min。
优选地,所述步骤2中热压时间为5~20min,温度为180~210℃,压力为5~15MPa。
优选地,所述步骤3中热压时间为10~180min,温度为180~210℃,压力为4~6MPa。
优选地,所述步骤3中碳纳米管膜与SEBS片的质量比为(20~100):(3000~5000)。
所述步骤3中溶剂为水、乙醇或N-甲基吡咯烷酮中的一种,干燥温度为50~80℃,干燥时间为1~10h。
本发明还提供了上述方法制备的碳纳米管聚合物复合膜在应变传感器中的应用。
与现有技术相比,本发明的有益效果在于:
(1)本发明制备方法简单,操作容易,利用简单热压的方法使聚合物熔体在压力的作用下渗透到碳纳米管中,碳纳米管部分嵌入薄膜内部,部分镶嵌在薄膜表面,形成类似“地毯”的结构,赋予薄膜导电性。
(2)本发明实验设计巧妙,通过调整热压时间可以调控聚合物熔体渗透进碳纳米管中的厚度。
(3)本发明制备的碳纳米管聚合物复合薄膜具备优异导电性,可测量大形变,并且具有高灵敏度、良好线性关系和优异的循环稳定性,适合可拉伸应变传感材料。应变可达80%,在小形变下灵敏因子为18.5,大形变下灵敏因子为12.5,循环1000次之后还保持优异的传感性能。
附图说明
图1是实施例1制得的碳纳米管聚合物复合膜表面SEM图;
图2a是实施例1制得的碳纳米管聚合物复合膜T-10截面SEM图;
图2b是实施例2制得的碳纳米管聚合物复合膜T-30截面SEM图;
图2c是实施例3制得的碳纳米管聚合物复合膜T-60截面SEM图;
图3是实施例1制得的碳纳米管聚合物复合膜T-10相对电阻与应变的响应曲线;
图4是实施例1制得的碳纳米管聚合物复合膜T-10在40%应变条件下循环稳定性曲线。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
使用扫描电子显微镜(SEM)、万能拉伸机、数字源表来表征碳纳米管聚合物复合薄膜形貌及应变传感性能。使用具有绝缘橡胶层的夹具固定复合膜(50×5×1mm3),夹具之间的原始标距为20mm。在测试过程中,电子万能试验机控制试样的拉伸速率及应变范围,同时完成时间、应力、应变等验数据的记录。当复合膜发生应变,电极随夹具同步运动,与此同时,数字万用表原位记录试样在拉伸过程中的瞬时电阻值。
实施例1
本实施例提供了一种碳纳米管聚合物复合膜的制备方法,具体步骤如下:
步骤1:取20mg碳纳米管溶于10mL N-甲基吡咯烷酮中,在超声机中超声1h,超声功率500W,制得碳纳米管分散液,将分散液抽滤制得碳纳米管膜,将碳纳米管薄膜放入烘箱中干燥备用;
步骤2:取4gSEBS,在200℃,10MPa,10min条件下热压,得到SEBS片;
步骤3:将碳纳米管膜放在SEB片上,在200℃,4MPa,10min条件下热压,制得碳纳米管聚合物复合薄膜,将碳纳米管聚合物复合薄膜在乙醇中超声2h,然后放入70℃烘箱中干燥1h,终所获得的碳纳米管聚合物复合膜记为T-10。
如图1所示,SEM测试结果表明:碳纳米管均匀附着在复合薄膜的表面。
如图3所示,传感性能测试表明:T-10测试范围大,可达到应变的80%左右灵敏度高,在低应变范围内灵敏因子为18.5,在高应变范围内,灵敏因子为12.5。
如图4所示,T-10循环稳定性优异,40%应变条件下循环1000次之后传感性能还保持稳定。
实施例2
本实施例与实施例1的区别在于,步骤3中热压时间改为30min,其余均同实施例1,最终所获得的碳纳米管聚合物复合膜记为T-30。
实施例3
本实施例与实施例1的区别在于,步骤3中热压时间改为60min,其余均同实施例1,最终所获得的碳纳米管聚合物复合膜记为T-60。
图2a是实施例1制得的碳纳米管聚合物复合膜T-10截面SEM图;
图2b是实施例2制得的碳纳米管聚合物复合膜T-30截面SEM图;
图2c是实施例3制得的碳纳米管聚合物复合膜T-60截面SEM图;
如图2a,图2b,图2c所示,当热压时间从10min增加60min时,复合涂层厚度逐渐增加从69μm增加到198μm。

Claims (8)

1.一种碳纳米管聚合物复合膜的制备方法,其特征在于,包括以下步骤:
步骤1:将碳纳米管溶于有机溶剂中,超声分散,然后抽滤制得碳纳米管膜;
步骤2:将SEBS通过热压处理制得SEBS片;
步骤3:将步骤1得到的碳纳米管膜放在步骤2得到的SEBS片表面进行热压处理,然后在溶剂中超声,干燥,得到碳纳米管聚合物复合薄膜。
2.如权利要求1所述碳纳米管聚合物复合膜的制备方法,其特征在于,所述步骤1中有机溶剂为乙醇,四氢呋喃或N-甲基吡咯烷酮中的一种。
3.如权利要求1所述碳纳米管聚合物复合膜的制备方法,其特征在于,所述步骤1中碳纳米管与有机溶剂的固液比为2~10mg/mL,超声功率为300~500W,时间为30~60min。
4.如权利要求1所述碳纳米管聚合物复合膜的制备方法,其特征在于,所述步骤2中热压时间为5~20min,温度为180~210℃,压力为5~15MPa。
5.如权利要求1所述碳纳米管聚合物复合膜的制备方法,其特征在于,所述步骤3中热压时间为10~180min,温度为180~210℃,压力为4~6MPa。
6.如权利要求1所述碳纳米管聚合物复合膜的制备方法,其特征在于,所述步骤3中碳纳米管膜与SEBS片的质量比为(20~100):(3000~5000)。
7.如权利要求1所述碳纳米管聚合物复合膜的制备方法,其特征在于,所述步骤3中溶剂为水、乙醇或N-甲基吡咯烷酮中的一种,干燥温度为50~80℃,干燥时间为1~10h。
8.权利要求1~7任一项所述方法制备的碳纳米管聚合物复合膜在应变传感器中的应用。
CN201910547990.3A 2019-06-24 2019-06-24 一种碳纳米管聚合物复合膜的制备方法及应用 Pending CN110407164A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910547990.3A CN110407164A (zh) 2019-06-24 2019-06-24 一种碳纳米管聚合物复合膜的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910547990.3A CN110407164A (zh) 2019-06-24 2019-06-24 一种碳纳米管聚合物复合膜的制备方法及应用

Publications (1)

Publication Number Publication Date
CN110407164A true CN110407164A (zh) 2019-11-05

Family

ID=68359557

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910547990.3A Pending CN110407164A (zh) 2019-06-24 2019-06-24 一种碳纳米管聚合物复合膜的制备方法及应用

Country Status (1)

Country Link
CN (1) CN110407164A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111336912A (zh) * 2020-03-04 2020-06-26 东北大学 一种传感性能可调的柔性应变传感器的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030133865A1 (en) * 2001-07-06 2003-07-17 William Marsh Rice University Single-wall carbon nanotube alewives, process for making, and compositions thereof
US20080206559A1 (en) * 2007-02-26 2008-08-28 Yunjun Li Lubricant enhanced nanocomposites
US20090118420A1 (en) * 2007-10-10 2009-05-07 University Of Central Florida Research Foundation, Inc. Dispersions of carbon nanotubes in copolymer solutions and functional composite materials and coatings therefrom
CN101462391A (zh) * 2007-12-21 2009-06-24 清华大学 碳纳米管复合材料的制备方法
CN101691280A (zh) * 2009-10-30 2010-04-07 上海交通大学 碳纳米管薄膜的制备方法
CN109387307A (zh) * 2018-12-12 2019-02-26 深圳大学 一种柔性应力传感器及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030133865A1 (en) * 2001-07-06 2003-07-17 William Marsh Rice University Single-wall carbon nanotube alewives, process for making, and compositions thereof
US20080206559A1 (en) * 2007-02-26 2008-08-28 Yunjun Li Lubricant enhanced nanocomposites
US20090118420A1 (en) * 2007-10-10 2009-05-07 University Of Central Florida Research Foundation, Inc. Dispersions of carbon nanotubes in copolymer solutions and functional composite materials and coatings therefrom
CN101462391A (zh) * 2007-12-21 2009-06-24 清华大学 碳纳米管复合材料的制备方法
CN101691280A (zh) * 2009-10-30 2010-04-07 上海交通大学 碳纳米管薄膜的制备方法
CN109387307A (zh) * 2018-12-12 2019-02-26 深圳大学 一种柔性应力传感器及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111336912A (zh) * 2020-03-04 2020-06-26 东北大学 一种传感性能可调的柔性应变传感器的制备方法
CN111336912B (zh) * 2020-03-04 2021-08-24 东北大学 一种传感性能可调的柔性应变传感器的制备方法

Similar Documents

Publication Publication Date Title
Kennedy et al. 3D-printed poly (vinylidene fluoride)/carbon nanotube composites as a tunable, low-cost chemical vapour sensing platform
Chen et al. Advances in responsively conductive polymer composites and sensing applications
Zhang et al. Enhanced piezoresistive performance of conductive WPU/CNT composite foam through incorporating brittle cellulose nanocrystal
Ren et al. Highly stretchable and durable strain sensor based on carbon nanotubes decorated thermoplastic polyurethane fibrous network with aligned wave-like structure
Wang et al. Highly stretchable and wearable strain sensor based on printable carbon nanotube layers/polydimethylsiloxane composites with adjustable sensitivity
Wu et al. Stretchable strain sensors based on PDMS composites with cellulose sponges containing one-and two-dimensional nanocarbons
Robert et al. Sensing skin for strain monitoring made of PC–CNT conductive polymer nanocomposite sprayed layer by layer
Dong et al. Resistive and capacitive strain sensors based on customized compliant electrode: Comparison and their wearable applications
CN108351233B (zh) 用于物理特征、优选地包括多层结构的传感器
Lu et al. Real-time cure behaviour monitoring of polymer composites using a highly flexible and sensitive CNT buckypaper sensor
Ji et al. Highly sensitive wearable flexible pressure sensor based on conductive carbon black/sponge
Dai et al. Scalable and multifunctional carbon nanotube-based textile as distributed sensors for flow and cure monitoring
Lu et al. Electroactive shape-memory polymer nanocomposites incorporating carbon nanofiber paper
Choi et al. A highly sensitive and stress-direction-recognizing asterisk-shaped carbon nanotube strain sensor
CN110699949B (zh) 一种具有压力/摩擦力传感功能的柔性自粘布、柔性力学传感器及其制备方法
Duan et al. A route toward ultrasensitive layered carbon based piezoresistive sensors through hierarchical contact design
Li et al. A multi-functional wearable sensor based on carbon nanomaterials reinforced TPU fiber with high sensitivity
Tang et al. Fabrication of kapok fibers and natural rubber composites for pressure sensor applications
CN110407164A (zh) 一种碳纳米管聚合物复合膜的制备方法及应用
Yang et al. 3D Printing of Carbon Nanotube (CNT)/Thermoplastic Polyurethane (TPU) Functional Composites and Preparation of Highly Sensitive, Wide‐range Detectable, and Flexible Capacitive Sensor Dielectric Layers via Fused Deposition Modeling (FDM)
Zhang et al. In situ monitoring of sandwich structure in liquid composite molding process using multifunctional MXene/carbon nanotube sensors
Yang et al. Improved tensile and single-lap-shear mechanical-electrical response of epoxy composites reinforced with gridded nano-carbons
Madhanagopal et al. Enhanced wide‐range monotonic piezoresistivity, reliability of Ketjenblack/deproteinized natural rubber nanocomposite, and its biomedical application
Bai et al. 3D printing of flexible strain sensor based on MWCNTs/flexible resin composite
CN114858046B (zh) 一种提高聚合物基柔性应变传感器灵敏度的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191105