CN110374799A - 一种风力发电***大工况范围控制方法 - Google Patents

一种风力发电***大工况范围控制方法 Download PDF

Info

Publication number
CN110374799A
CN110374799A CN201910672159.0A CN201910672159A CN110374799A CN 110374799 A CN110374799 A CN 110374799A CN 201910672159 A CN201910672159 A CN 201910672159A CN 110374799 A CN110374799 A CN 110374799A
Authority
CN
China
Prior art keywords
wind
generator system
condition range
pole
big
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910672159.0A
Other languages
English (en)
Other versions
CN110374799B (zh
Inventor
陈振宇
林忠伟
刘吉臻
韩翔宇
李宜霖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN201910672159.0A priority Critical patent/CN110374799B/zh
Publication of CN110374799A publication Critical patent/CN110374799A/zh
Application granted granted Critical
Publication of CN110374799B publication Critical patent/CN110374799B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/84Modelling or simulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Eletrric Generators (AREA)
  • Wind Motors (AREA)

Abstract

本发明属于风力发电技术领域,尤其涉及一种风力发电***大工况范围控制方法,通过综合考虑风力发电***的非线性特性,针对额定风速以上至切出风速以前的大工况范围,利用几何线性化构造涵盖大运行工况范围的风电机组线性模型,并调节极点配置区域,调节***动态性能直至满足需求,实现风电机组的状态反馈控制。本发明基于区域极点配置实现机组大工况范围的性能调节,实现机组控制,可应用于不同类型风电机组的额定风速以上至切出风速以下的大工况范围。

Description

一种风力发电***大工况范围控制方法
技术领域
本发明属于风力发电技术领域,尤其涉及一种风力发电***大工况范围控制方法。
背景技术
随着风电在能源结构中的比例不断提高,对风力发电***的性能提出了更高的要求,相关研究也在不断推进以实现更高效和稳定的风功率俘获与输出。
如中国专利申请号为:CN105449699A的发明提出了一种针对双馈感应风电机组的非线性分数阶自抗扰阻尼控制方法,通过构建自抗扰控制器,实现改进双馈机组相对电网的阻尼水平,提高机组电网友好特性。
如中国专利申请号为:CN104779642A的发明提出了一种风力发电***的频率与阻尼综合控制方法,在风电机组控制中结合微分控制环和频率下垂控制部分,改进风电机组在最大功率跟踪部分的特性,使风电机组具有频率调节和抑制***功率震荡的能力。这些技术的思想与实现方式与本专利均有可取之处,但在具体实施并不相同。
发明内容
本发明的目的是,针对现有技术的不足,提供一种风力发电***大工况范围控制方法,综合考虑风力发电***的非线性特性,针对额定风速以上至切出风速以前的大工况范围,利用几何线性化构造涵盖大运行工况范围的风电机组线性模型,并调节极点配置区域,调节***动态性能直至满足需求,实现风电机组的状态反馈控制。
所述风力发电***大工况范围控制方法,包括如下步骤:
步骤1:风力发电***各部件的物理特性构建风力发电***微分方程模型,得到其机理模型,利用机理方程,选择转子转速ωr、发电机转速ωg、传动轴前后位移偏差δ和桨距角β为状态变量,分别记为x1,x2,x3,x4、x=[ωr,ωg,δ,β]′,并建立风力发电***的非线性模型,将非线性模型写成仿射的状态空间的形式,记其中非线性状态矩阵为f(x),线性的输入矩阵为G,非线性模型写为:其中,u=[βd,ωz]′,为本发明控制参数中的桨距角设定值和发电机转速设定值;
步骤2:设输出参数y=h(x)=[ωr,δ]′,判断LGLfh的值,LGLf表示h的李导数,验证判断LGLfh的非零行,当LGLfh不等于0时,进行几何线性化;
步骤3:选择状态参数中的x1和x3,计算其一阶和二阶李导数;
步骤4:构建微分同胚结构φ,映射得到几何线性化后的风电机组额定风速以上工况大范围线性模型,记为其中z为新的状态空间变量,A和B分别为微分同胚后的线性***状态和输入矩阵,v为线性模型的输入参数且v=fz+Gzu;
步骤5:对几何线性化后的风电机组大工况范围模型的极点分布构建包括以最右边界线、最大扩张角、最大分布半径的目标极点区域,并利用区域极点配置的方法,计算得到反馈控制率v=Kz;
步骤6:结合以上线性化和微分同胚,计算真实***控制率
利用得到的控制率对所建模机组进行测试,分析其动态性能,包括***是否超调、超调量大小、调节时间长短和是否存在稳态误差;
步骤7:利用鲁棒控制中区域极点配置的方法来构造目标极点区域,这一区域的边界由以下各部分构成:
最右边界限,即虚轴左侧某一与虚轴平行的直线,限制目标极点调节区域的最右边界;
最大扩张角,限制目标极点区域中,复极点与原点的最大夹角,来实现对动态特性的调节;
最大分布半径,即目标极点区域的最后边界;
在对这三个边界进行设置以后,分别调整目标极点区域的最右边界线、最大扩张角、最大分布半径,返回步骤5,重复步骤5、6、7进行***动态性能调节,直到变桨动作速率在速率限制以下,扰动工况下,机组功率输出稳定,转速、转矩参数波动平缓,变桨动作平缓;
步骤8:结束计算,并保存当前控制率u,作为所设计机组的大工况范围控制器。
进一步地,步骤1中,
式中:Tm为风力发电***的叶轮转矩,BDT为风电机组的传动轴弹性系数,KDT为风电机组的传动轴扭转系数,Jr为叶轮转动惯量,Ng为齿轮箱传动比,Bg为发电机转矩-转速曲线斜率,Jg为发电机转动惯量,τβ为变桨执行机构惯性时间常数。
进一步地,步骤2中,
其中,LGLf表示h的李导数,Tm为风力发电***的叶轮转矩,BDT为风电机组的传动轴弹性系数,KDT为风电机组的传动轴扭转系数,Jr为叶轮转动惯量,Ng为齿轮箱传动比,Bg为发电机转矩-转速曲线斜率,Jg为发电机转动惯量,τβ为变桨执行机构惯性时间常数。
进一步地,步骤3中,x1和x3的一阶李导数和二阶李导数计算式分别为:
进一步地,步骤4中,微分同胚结构I为:
φ(x)=[x1,Lfx1,x3,Lfx3]′,
经过微分同胚,得到的新状态空间模型为:
其中,各变量分别为:
进一步地,步骤5中,目标极点区域为:
D={τ∈C:fD(τ)<0}
式中,τ表示待配置的极点位置,μ和ν均表示方阵,方阵的参数根据待配置目标区域具体设置;μkl和νkl在不同下标时,代表不同的目标极点区域,极点配置的目标区域由多区域复合形成。
本发明的有益效果是:
本发明所述风力发电***大工况范围控制方法,利用几何线性化构造风电机组的大范围工况线性化模型,并基于区域极点配置实现机组大工况范围的性能调节,实现机组控制,可应用于不同类型风电机组的额定风速以上至切出风速以下的大工况范围。
具体实施方式
实施例1
所述风力发电***大工况范围控制方法,包括如下步骤:
步骤1:风力发电***各部件的物理特性等构建风力发电***微分方程模型,得到其机理模型,利用机理方程,选择转子转速ωr、发电机转速ωg、传动轴前后位移偏差δ和桨距角β为状态变量,分别记为x1,x2,x3,x4、x=[ωr,ωg,δ,β]′,并建立风力发电***的非线性模型,将非线性模型写成仿射的状态空间的形式,记其中非线性状态矩阵为f(x),线性的输入矩阵为G,非线性模型写为:其中,u为本发明中的控制参数,即桨距角设定值和发电机转速设定值;
式中:Tm为风力发电***的叶轮转矩,BDT为风电机组的传动轴弹性系数,KDT为风电机组的传动轴扭转系数,Jr为叶轮转动惯量,Ng为齿轮箱传动比,Bg为发电机转矩-转速曲线斜率,Jg为发电机转动惯量,τβ为变桨执行机构惯性时间常数。
步骤2:判断LGLfh的值,当进行几何线性化;
其中,LGLf表示h的李导数,Tm为风力发电***的叶轮转矩,BDT为风电机组的传动轴弹性系数,KDT为风电机组的传动轴扭转系数,Jr为叶轮转动惯量,Ng为齿轮箱传动比,Bg为发电机转矩-转速曲线斜率,Jg为发电机转动惯量,τβ为变桨执行机构惯性时间常数。
步骤3:选择状态参数中的x1和x3,计算x1和x3的一阶李导数和二阶李导数计算式分别为:
步骤4:构建微分同胚结构φ,映射得到几何线性化后的风电机组额定风速以上工况大范围线性模型,记为其中z为新的状态空间变量,A和B分别为微分同胚后的线性***状态和输入矩阵,v为线性模型的输入参数且v=fz+Gzu;
其中,微分同胚结构I为:
φ(x)=[x1,Lfx1,x3,Lfx3]′,
经过微分同胚,得到的新状态空间模型为:
其中,各变量分别为:
步骤5:对几何线性化后的风电机组大工况范围模型的极点分布,构建包括以最右边界线、最大扩张角、最大分布半径的目标极点区域,并利用区域极点配置的方法,计算得到反馈控制率v=Kz;
其中,目标极点区域为:
D={τ∈C:fD(τ)<0},
式中,τ表示待配置的极点位置,μ和ν均表示方阵,方阵的参数根据待配置目标区域具体设置;μkl和νkl在不同下标时,代表不同的目标极点区域,极点配置的目标区域由多区域复合形成。
步骤6:结合以上线性化和微分同胚,计算真实***控制率为:
利用计算的计算真实***控制率对所建模机组进行测试,分析其动态性能,包括***是否超调、超调量大小、调节时间长短和是否存在稳态误差;
步骤7:利用鲁棒控制中区域极点配置的方法来构造目标极点区域,这一区域的边界由以下各部分构成:最右边界限,即虚轴左侧某一与虚轴平行的直线,限制目标极点调节区域的最右边界;最大扩张角,限制目标极点区域中,复极点与原点的最大夹角,来实现对动态特性的调节;最大分布半径,即目标极点区域的最后边界;在对这三个边界进行设置以后,分别调整目标极点区域的最右边界线、最大扩张角、最大分布半径,返回步骤5,重复步骤5、6、7进行***动态性能调节,直到获得符合调节目标需求的***动态性能,即:变桨动作速率在速率限制以下,扰动工况下,机组功率输出稳定,转速、转矩参数波动平缓,变桨动作平缓;
步骤8:结束计算,并保存当前控制率u,作为所设计机组的大工况范围控制器。
以上是本发明的较佳实施例,凡依本发明技术方案所作的改变,所产生的功能作用未超出本发明技术方案的范围时,均属于本发明的保护范围。

Claims (6)

1.一种风力发电***大工况范围控制方法,其特征在于,包括如下步骤:
步骤1:风力发电***各部件的物理特性构建风力发电***微分方程模型,得到其机理模型,利用机理方程,选择转子转速ωr、发电机转速ωg、传动轴前后位移偏差δ和桨距角β为状态变量,分别记为x1,x2,x3,x4、x=[ωr,ωg,δ,β]′,并建立风力发电***的非线性模型,将非线性模型写成仿射的状态空间的形式,记其中非线性状态矩阵为f(x),线性的输入矩阵为G,非线性模型写为:其中,u=[βd,ωz]′,为本发明控制参数中的桨距角设定值和发电机转速设定值;
步骤2:设输出参数y=h(x)=[ωr,δ]′,判断LGLfh的值,LGLf表示h的李导数,验证判断LGLfh的非零行,当LGLfh不等于0时,进行几何线性化;
步骤3:选择状态参数中的x1和x3,计算其一阶和二阶李导数;
步骤4:构建微分同胚结构φ,映射得到几何线性化后的风电机组额定风速以上工况大范围线性模型,记为其中z为新的状态空间变量,A和B分别为微分同胚后的线性***状态和输入矩阵,v为线性模型的输入参数且v=fz+Gzu;
步骤5:对几何线性化后的风电机组大工况范围模型的极点分布,构建包括以最右边界线、最大扩张角、最大分布半径的目标极点区域,并利用区域极点配置的方法,计算得到反馈控制率v=Kz;
步骤6:结合以上线性化和微分同胚,计算真实***控制率利用得到的控制率对所建模机组进行测试,分析其动态性能,包括***是否超调、超调量大小、调节时间长短和是否存在稳态误差;
步骤7:利用鲁棒控制中区域极点配置的方法来构造目标极点区域,这一区域的边界由以下各部分构成:
最右边界限,即虚轴左侧某一与虚轴平行的直线,限制目标极点调节区域的最右边界;
最大扩张角,限制目标极点区域中,复极点与原点的最大夹角,来实现对动态特性的调节;
最大分布半径,即目标极点区域的最后边界;
在对这三个边界进行设置以后,分别调整目标极点区域的最右边界线、最大扩张角、最大分布半径,返回步骤5,重复步骤5、6、7进行***动态性能调节,直到变桨动作速率在速率限制以下,扰动工况下,机组功率输出稳定,转速、转矩参数波动平缓,变桨动作平缓;
步骤8:结束计算,并保存当前控制率u,作为所设计机组的大工况范围控制器。
2.根据权利要求1中所述的一种风力发电***大工况范围控制方法,其特征在于,所述步骤1中,
式中:Tm为风力发电***的叶轮转矩,BDT为风电机组的传动轴弹性系数,KDT为风电机组的传动轴扭转系数,Jr为叶轮转动惯量,Ng为齿轮箱传动比,Bg为发电机转矩-转速曲线斜率,Jg为发电机转动惯量,τβ为变桨执行机构惯性时间常数。
3.根据权利要求1中所述的一种风力发电***大工况范围控制方法,其特征在于,所述步骤2中,
其中,LGLf表示h的李导数,Tm为风力发电***的叶轮转矩,BDT为风电机组的传动轴弹性系数,KDT为风电机组的传动轴扭转系数,Jr为叶轮转动惯量,Ng为齿轮箱传动比,Bg为发电机转矩-转速曲线斜率,Jg为发电机转动惯量,τβ为变桨执行机构惯性时间常数。
4.根据权利要求1中所述的一种风力发电***大工况范围控制方法,其特征在于,所述步骤3中,x1和x3的一阶李导数和二阶李导数计算式分别为:
5.根据权利要求1中所述的一种风力发电***大工况范围控制方法,其特征在于,所述步骤4中,微分同胚结构φ为:
φ(x)=[x1,Lfx1,x3,Lfx3]′,
经过微分同胚,得到的新状态空间模型为:
其中,各变量分别为:
6.根据权利要求1中所述的一种风力发电***大工况范围控制方法,其特征在于,所述步骤5中,目标极点区域为:
D={τ∈C:fD(τ)<0},
式中,τ表示待配置的极点位置,μ和ν均表示方阵,方阵的参数根据待配置目标区域具体设置;μkl和νkl在不同下标时,代表不同的目标极点区域,极点配置的目标区域由多区域复合形成。
CN201910672159.0A 2019-07-24 2019-07-24 一种风力发电***大工况范围控制方法 Active CN110374799B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910672159.0A CN110374799B (zh) 2019-07-24 2019-07-24 一种风力发电***大工况范围控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910672159.0A CN110374799B (zh) 2019-07-24 2019-07-24 一种风力发电***大工况范围控制方法

Publications (2)

Publication Number Publication Date
CN110374799A true CN110374799A (zh) 2019-10-25
CN110374799B CN110374799B (zh) 2021-06-01

Family

ID=68255568

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910672159.0A Active CN110374799B (zh) 2019-07-24 2019-07-24 一种风力发电***大工况范围控制方法

Country Status (1)

Country Link
CN (1) CN110374799B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111963376A (zh) * 2020-08-28 2020-11-20 国电联合动力技术有限公司 一种风力发电机组非线性控制输入设计方法及其***
CN115495935A (zh) * 2022-11-15 2022-12-20 华北电力大学 漂浮式风电机组的建模方法及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101581272A (zh) * 2009-06-23 2009-11-18 南京航空航天大学 定桨距变速风力发电机组在失速区的功率控制方法
CN102269125A (zh) * 2011-07-06 2011-12-07 东南大学 风力发电机额定风速以上鲁棒变桨控制器设计方法
DE102011007434A1 (de) * 2011-04-14 2012-10-18 Suzlon Energy Gmbh Simulationsmodell für eine Windenergieanlage sowie Erstellung und Verwendung
CN102890449A (zh) * 2012-09-20 2013-01-23 河北工业大学 基于有限时间鲁棒稳定的风电机组变桨距控制器设计方法
KR20130057230A (ko) * 2011-11-23 2013-05-31 한밭대학교 산학협력단 로터속도의 비선형성 파라미터를 이용한 풍력터빈의 토크제어장치 및 방법
CN103244348A (zh) * 2012-02-08 2013-08-14 北京能高自动化技术股份有限公司 变速变桨风力发电机组功率曲线优化方法
CN107202589A (zh) * 2016-03-18 2017-09-26 大众汽车有限公司 用于导航数据的几何线性化的装置、***和方法
CN108979957A (zh) * 2018-07-16 2018-12-11 中南大学 获取变速风力发电机组最大风能的非线性预测控制方法
CN109296500A (zh) * 2018-09-28 2019-02-01 江南大学 基于鲁棒控制理论的最大风能捕获方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101581272A (zh) * 2009-06-23 2009-11-18 南京航空航天大学 定桨距变速风力发电机组在失速区的功率控制方法
DE102011007434A1 (de) * 2011-04-14 2012-10-18 Suzlon Energy Gmbh Simulationsmodell für eine Windenergieanlage sowie Erstellung und Verwendung
CN102269125A (zh) * 2011-07-06 2011-12-07 东南大学 风力发电机额定风速以上鲁棒变桨控制器设计方法
KR20130057230A (ko) * 2011-11-23 2013-05-31 한밭대학교 산학협력단 로터속도의 비선형성 파라미터를 이용한 풍력터빈의 토크제어장치 및 방법
CN103244348A (zh) * 2012-02-08 2013-08-14 北京能高自动化技术股份有限公司 变速变桨风力发电机组功率曲线优化方法
CN102890449A (zh) * 2012-09-20 2013-01-23 河北工业大学 基于有限时间鲁棒稳定的风电机组变桨距控制器设计方法
CN107202589A (zh) * 2016-03-18 2017-09-26 大众汽车有限公司 用于导航数据的几何线性化的装置、***和方法
CN108979957A (zh) * 2018-07-16 2018-12-11 中南大学 获取变速风力发电机组最大风能的非线性预测控制方法
CN109296500A (zh) * 2018-09-28 2019-02-01 江南大学 基于鲁棒控制理论的最大风能捕获方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111963376A (zh) * 2020-08-28 2020-11-20 国电联合动力技术有限公司 一种风力发电机组非线性控制输入设计方法及其***
CN111963376B (zh) * 2020-08-28 2023-08-18 国电联合动力技术有限公司 一种风力发电机组非线性控制输入设计方法及其***
CN115495935A (zh) * 2022-11-15 2022-12-20 华北电力大学 漂浮式风电机组的建模方法及装置

Also Published As

Publication number Publication date
CN110374799B (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
Meghni et al. Effective supervisory controller to extend optimal energy management in hybrid wind turbine under energy and reliability constraints
Golnary et al. Dynamic modelling and design of various robust sliding mode controls for the wind turbine with estimation of wind speed
Fernández et al. Comparative study on the performance of control systems for doubly fed induction generator (DFIG) wind turbines operating with power regulation
Nadour et al. Comparative analysis between PI & backstepping control strategies of DFIG driven by wind turbine
CN101900080B (zh) 采用变结构pid变桨控制的风机控制***
US9835137B2 (en) Compensation for asymmetric load moment experienced by wind turbine rotor
CN102834606B (zh) 动态惯性调节装置
Zhang et al. Flicker mitigation by individual pitch control of variable speed wind turbines with DFIG
KR101158703B1 (ko) 풍력 발전 시스템 및 그 운전 제어 방법
CN105545595B (zh) 基于径向基神经网络的风力机反馈线性化功率控制方法
CN109296500A (zh) 基于鲁棒控制理论的最大风能捕获方法
CN110374799A (zh) 一种风力发电***大工况范围控制方法
CN105673322A (zh) 实现风力机mppt控制的变参数非线性反馈控制方法
De Kooning et al. Displacement of the maximum power point caused by losses in wind turbine systems
CN108539760A (zh) 一种基于群灰狼优化算法的双馈感应风电机组调频pid控制方法
Nam et al. Feedforward pitch control using wind speed estimation
CN112112759A (zh) 风力涡轮机、操作其的方法、风力涡轮机的布置及风电场
Khani et al. Analysis and optimization of frequency control in isolated microgrid with double-fed induction-generators based wind turbine
Anjun et al. Pitch control of large scale wind turbine based on expert PID control
CN109268205A (zh) 一种基于智能风力机的风电场优化控制方法
CN106230021B (zh) 含可控惯性风电的区域互联电网的暂态功角稳定控制方法
Baiomy et al. An amplitude-and rate-saturated collective pitch controller for wind turbine systems
CN105915134B (zh) 一种双馈发电机空载并网控制方法
CN117060484A (zh) 一种基于风储联合调频***的改进自适应控制方法
CN109991851B (zh) 一种应用于大规模风电场的分布式经济模型预测控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant