CN110366830A - 双向卫星通信 - Google Patents

双向卫星通信 Download PDF

Info

Publication number
CN110366830A
CN110366830A CN201780087678.XA CN201780087678A CN110366830A CN 110366830 A CN110366830 A CN 110366830A CN 201780087678 A CN201780087678 A CN 201780087678A CN 110366830 A CN110366830 A CN 110366830A
Authority
CN
China
Prior art keywords
forward channel
wave beam
return channel
channel
return
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780087678.XA
Other languages
English (en)
Other versions
CN110366830B (zh
Inventor
哈米德·赫马提
阿布舍克·蒂瓦里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meta Platforms Inc
Original Assignee
Facebook Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Facebook Inc filed Critical Facebook Inc
Priority to CN202210533837.7A priority Critical patent/CN114978284A/zh
Publication of CN110366830A publication Critical patent/CN110366830A/zh
Application granted granted Critical
Publication of CN110366830B publication Critical patent/CN110366830B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/19Earth-synchronous stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/112Line-of-sight transmission over an extended range
    • H04B10/1123Bidirectional transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/112Line-of-sight transmission over an extended range
    • H04B10/1123Bidirectional transmission
    • H04B10/1125Bidirectional transmission using a single common optical path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/195Non-synchronous stations

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radio Relay Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

特定实施例可以提供地球同步轨道中的收发机,收发机可以包括多个正向信道接收机。至少一个正向信道接收机可以接收(1)从地面站发射的正向信道激光通信波束和(2)具有81‑86GHz带宽的E频段频率。收发机还可以包括具有不同频率的多个正向信道发射机。正向信道发射机可以向端点设备发射用户波束,其中,用户波束来自正向信道激光通信波束和MMW通信波束。收发机还可以包括多个返回信道接收机,其中返回信道接收机从端点设备接收用户波束。收发机还可以包括至少一个返回信道发射机,其中,返回信道发射机向地面站发射返回信道激光通信波束。

Description

双向卫星通信
技术领域
本公开总体上涉及卫星通信。
背景
为了向全球未连接的住宅提供优质互联网服务,据估计到2020年,将同时在线的人口部分将需要超过100Tbps的总计用户数据速率。实现这种容量所需的基础设施实际需要在地面的、空中的和宇宙空间上的电信技术的重大进步。
据估计,在每艘航天器几个Tbps电信容量的情况下,经由卫星进行互联网传输与成本最低的有线或无线连接技术相比可能具有成本竞争力。为了实现电信领域的这一技术进步,可能需要显著提高当今的卫星通信网络的容量,无论是在地球静止轨道(geostationary orbit)(GEO)或者中地球轨道(MEO)、低地球轨道(LEO)。
光学频率目前具有巨大且不受管制的频谱。当前用于自由空间光学/激光通信(lasercom)的技术可以允许从地面站到MEO或GEO卫星的多Tbps上行链路容量,以及经由几个波束的Tbps规模的下行链路容量。目前,实现每颗卫星10Tbps网关链路容量所需的总的单个空间模式和纵向模式上行链路激光功率是一个限制因素。此外,由于大气影响,每个站的激光通信上行链路和下行链路可用性可能受到限制(例如,对于高于平均水平的地面站点,大约为50%到60%的量级)。
特定实施例概述
特定实施例可以提供一种用于实现地面站点分集的***和方法,地面站(对于卫星是可见的)位于与大气无关的气象小区(weather cell),相距几个100km。特定实施例可以提供用于使用Q/V频段和E频段的组合实现与地球轨道卫星通信的多Tbps数据速率的***和方法。特定实施例可以从充当地面网络的网关的大气多样化(atmospheric-diverse)地面站向地球轨道卫星提供高链路可用性上行链路激光通信。
特定实施例可以提供射频(RF)和毫米波(MMW)网关链路的增强。特定实施例可以提供激光通信和MMW链路的混合,其中较低容量的MMW收发机既被用作实现每颗卫星的总的较高容量通信的装置,又被用作高速率激光通信链路的备份。特定实施例可以使用毫米波(MMW)频段(Q/V、E或W)的组合来以高数据速率下行传输数据,同时利用轻度调节的MMW频率。特定实施例可以使用具有分散的地面站的单输入单输出(SISO)和多输入多输出(MIMO)MMW频段链路来进一步增加下行链路数据速率。特定实施例可以以极高的数据速率来使用光学(例如激光通信)网关链路。特定实施例可以使用SISO或MIMO RF/MMW波束作为唯一的下行链路通信频段。
本文公开的实施例仅仅是示例,并且本公开的范围不限于它们。特定实施例可以包括上面公开的实施例的部件、元件、特征、功能、操作或步骤中的全部、一些或没有一个被包括。根据本发明的实施例在涉及方法、存储介质、***和计算机程序产品的所附权利要求中被具体公开,其中,在一个权利要求类别(例如方法)中提到的任何特征也可以在另一个权利要求类别(例如***)中被要求保护。在所附权利要求中的从属性或往回引用仅为了形式原因而被选择。然而,也可以要求保护由对任何前面的权利要求(特别是多项权利要求)的有意往回引用而产生的任何主题,使得权利要求及其特征的任何组合被公开并且可被要求保护,而不考虑在所附权利要求中选择的从属性。可以被要求保护的主题不仅包括如在所附权利要求中阐述的特征的组合,而且还包括在权利要求中的特征的任何其他组合,其中,在权利要求中提到的每个特征可以与权利要求中的任何其他特征或其他特征的组合相结合。此外,本文描述或描绘的实施例和特征中的任一个可以在单独的权利要求中和/或以与本文描述或描绘的任何实施例或特征的组合的形式或以与所附权利要求的任何特征的任何组合的形式被要求保护。
在根据本发明的实施例中,收发机(特别是在地球同步轨道中的收发机)可以包括:
多个正向信道接收机,其中,至少一个正向信道接收机接收(1)从地面站发射的正向信道激光通信波束和(2)具有81-86GHz带宽的E频段频率;
具有不同频率的多个正向信道发射机,其中,正向信道发射机向端点设备发射用户波束,其中,用户波束来自正向信道激光通信波束和MMW通信波束;
多个返回信道接收机,其中,返回信道接收机从端点设备接收用户波束;以及
至少一个返回信道发射机,其中,返回信道发射机向地面站发射返回信道激光通信波束。
在根据本发明的实施例中,收发机可以包括一个或更多个处理器和耦合到该处理器的存储器,存储器包括由处理器可执行的指令,处理器在执行指令时可操作来:
接收由在正向信道接收机处接收的一个或更多个上行链路波束所传输的正向信道数据;
基于正向信道数据,生成多个正向信道下行链路信号,正向信道下行链路信号中的每一个包括正向信道数据的至少一部分;以及
对于正向信道下行链路信号中的每一个,将正向信道下行链路信号发射至正向信道发射机中的一个。
在根据本发明的实施例中,处理器在执行指令时可操作来:
接收由在返回信道接收机处接收的一个或更多个上行链路波束所传输的返回信道数据;
基于返回信道数据,生成包括返回信道数据的单个返回信道下行链路信号;以及
将返回信道下行链路信号发射到返回信道发射机。
端点设备可以包括终端用户(end user)客户端设备,并且其中,用户波束是射到(impinging on)激光通信波束上的RF信号。
端点设备可以包括网络网关设备,并且其中,由正向信道发射机发射的用户波束是除了具有71-76GHz带宽的E频段频率信号之外发射的激光通信波束。
除了Q频段加E频段频率信号之外,还可以发射返回信道激光通信波束。
返回信道激光通信波束可以是双极化的。
收发机可以位于低地球轨道或中地球轨道中的卫星上。
收发机的单个天线馈源可以同时接收包括多种类型的MMW频段的信号。
正向信道发射机中的每一个可以使用Q/V频段、V频段、W+E频段或W频段上的频率来发射信号。
在根据本发明的实施例中,***可以包括一个或更多个处理器和耦合到该处理器的存储器,存储器包括由处理器可执行的指令,处理器在执行指令时可操作来:
接收由在可通信地连接到***的多个正向信道接收机处接收的一个或更多个上行链路波束所传输的正向信道数据,其中,至少一个正向信道接收机接收(1)从地面站发射的正向信道激光通信波束和(2)具有81-86GHz带宽的E频段频率;
基于正向信道数据,生成多个正向信道下行链路信号,正向信道下行链路信号中的每一个包括正向信道数据的至少一部分;以及
对于正向信道下行链路信号中的每一个,向可通信地连接到***的多个正向信道发射机中的一个发射正向信道下行链路信号,其中,正向信道发射机使用不同的频率来向端点设备发射用户波束,其中,用户波束来自正向信道激光通信波束和MMW通信波束。
处理器在执行指令时可操作来:
接收由在正向信道接收机处接收的一个或更多个上行链路波束传输的正向信道数据;
基于正向信道数据,生成多个正向信道下行链路信号,正向信道下行链路信号中的每一个包括正向信道数据的至少一部分;以及
对于正向信道下行链路信号中的每一个,将正向信道下行链路信号发射至正向信道发射机中的一个。
处理器在执行指令时可操作来:
接收由在多个返回信道接收机处接收的一个或更多个上行链路波束传输的返回信道数据,其中,返回信道接收机从端点设备接收用户波束;
基于返回信道数据,生成包括返回信道数据的单个返回信道下行链路信号;以及
向返回信道发射机发射返回信道下行链路信号,其中,返回信道发射机向地面站发射返回信道激光通信波束。
在根据本发明的实施例中,通过地球同步轨道中的收发机发射信号的方法可以包括:
通过多个正向信道接收机,接收由一个或更多个上行链路波束传输的正向信道数据,其中,至少一个正向信道接收机接收(1)从地面站发射的正向信道激光通信波束和(2)具有81-86GHz带宽的E频段频率;
通过收发机的一个或更多个处理器并基于正向信道数据,生成多个正向信道下行链路信号,正向信道下行链路信号中的每一个包括正向信道数据的至少一部分;
通过具有不同频率的多个正向信道发射机,对于正向信道下行链路信号中的每一个,向一个或更多个端点设备发射一个或更多个用户波束,其中,用户波束来自正向信道激光通信波束和MMW通信波束;
通过多个返回信道接收机,接收由在返回信道接收机处接收的一个或更多个上行链路波束传输的返回信道数据,其中,返回信道接收机从端点设备接收用户波束;
通过收发机的一个或更多个处理器并基于返回信道数据,生成包括返回信道数据的单个返回信道下行链路信号;以及
通过至少一个返回信道发射机,向地面站发射返回信道下行链路信号。
附图简述
图1是示出卫星收发机的第一示例配置的示意图。
图2是示出根据本文描述的实施例的卫星收发机和多个地面站的第一示例***配置的示意图。
图3是示出根据本文描述的实施例的卫星收发机和多个地面站的第二示例***配置的示意图。
图4是示出根据本文描述的实施例的空间飞行器(space vehicle)和多个地面站的第三示例***配置的示意图。
图5是示出根据本文描述的实施例的卫星收发机和多个地面站的第四示例***配置的示意图。
图6是示出根据本文描述的实施例的空间飞行器和多个地面站的第五示例***配置的示意图。
图7是示出根据本文描述的实施例的空间飞行器和多个地面站的第六示例***配置的示意图。
图8是示出用于提供SISO传输的卫星馈送链路接收机的示例配置的示意图。
图9是示出用于提供SISO传输的空间飞行器馈送链路发射机的示例配置的示意图。
图10是示出用于提供SISO传输的示例频率参考***的示意图。在该示例中,单独的频段可以使用Q/V频段或E频段***,并且频段的组合可以使用这两个***。
图11是示出地面站的示例配置的示意图。
图12是示出根据本文描述的实施例的示例信号处理设计的示意图。
图13是示出用于双极化的2x2 MIMO架构的示意图。
图14是示出具有接收机的示例MIMO地面站的示意图。
图15A示出了根据本文描述的***配置的第一示例实施例的正向信道频率计划。
图15B示出了根据图15A的示例实施例的返回信道频率计划。
图15C是示出根据图15A的示例实施例的正向/返回有效载荷框图的示意图。
图16A示出了根据本文描述的***配置的第二示例实施例的正向信道频率计划。
图16B示出了根据图16A的示例实施例的返回信道频率计划。
图16C是示出根据图16A的示例实施例的正向/返回有效载荷框图的示意图。
图17A示出了根据本文描述的***配置的第三示例实施例的正向信道频率计划。
图17B示出了根据图17A的示例实施例的返回信道频率计划。
图18A-图18C是示出对于参考图15A-图17B描述的示例实施例,计算分集网关的推荐数量的结果的曲线图。
图19示出了示例计算机***。
示例实施例的描述
特定实施例可以提供一种为高吞吐量卫星提供高容量RF/MMW馈送链路服务(例如,以10Tbps的上行链路和下行链路以及≥99.9%的平均链路可用性为目标)的手段。特定实施例可以提供一种用于实现地面站点分集的***和方法,地面站点(对于卫星是可见的)位于与大气无关的气象小区,相距几个100km。特定实施例可以从不同气象小区的4到5个地面站以多Tbps量级的数据速率将激光通信波束上行传输到(例如,MEO或GEO)卫星,以实现站分集,从而导致高(例如,>99%)链路可用性。特定实施例可以提供RF和MMW网关链路的增强。特定实施例可以提供激光通信和毫米波(MMW)链路的混合,其中较低容量的MMW收发机既被用作增强每颗卫星的通信容量的手段,又被用作高速率激光通信链路的备份。特定实施例可以使用MMW频段的组合(例如在大约46GHz至56GHz的Q/V频段,加上E频段(71-76GHz和81-86GHz),或者Q/V加上大约86GHz至110GHz的W频段),或者E+W频段)来提供卫星下行链路,以在轻度调节的频率下实现高通信带宽。Q/V频段和E频段一起使用例如可能会使可用频谱接近增加一倍。特定实施例可以提供具有分散地面站的SISO和MIMO MMW频段链路,以进一步提高下行链路数据速率。卫星上行链路和下行链路使用MMW频段的组合(例如,在大约46GHz至56GHz的Q/V频段,加上E频段(大约71-76GHz和81-86GHz)或加上W频段(大约86-110GHz),或加上E+W频段),以在轻度调节的频率下实现高通信带宽。特定实施例可以使用SISO或MIMO RF/MMW波束作为唯一的下行链路通信频段。特定实施例可以提供到特定网关链路的光学(例如,激光通信)馈送下行链路(与直接连接到终端用户相反)。例如,为了实现10Tbps容量的MMW馈送链路,可能需要相应地调整MMW地面站的数量,并且需要将天线尺寸扩大到最大实际尺寸。
图1是示出卫星收发机100的第一示例配置的示意图。多Tbps数据聚合和分解模块100包括复用(mux)/解复用(demux)逻辑,以将数据传输作为激光通信波束120或作为MMW通信130发送到地面站和端点设备以及从地面站和端点设备发送数据传输。在图1中,由于与卫星相关联的尺寸重量和功率限制,不同的MMW频段由使用公共反射器辐射的N个RF分支来表示。在功率放大后,MMW频段被动地被聚合;在2016年4月27日提交的标题为“WirelessCommunication Utilizing Post-Amplification Carrier Aggregation”的第2017/0317741A1号美国专利申请公开中描述了实现这一点的示例技术。多频段同轴馈源结构也可以用于被动地聚合不同的MMW频段。每个MMW频段的数据承载能力受到可用的RF带宽量和每个频段可能的最大频谱效率的限制。为了实现多Tbps的数据,需要将几个这样的频段与自由空间光传输一起进行复用。在附图中,自由空间光传输使用单独的口径(aperture)和它自己的传输链。
图2是示出根据本文描述的特定实施例的卫星收发机和多个地面站的第一示例***配置的示意图。图1示出了混合光学上行链路和用于下行链路的Q/V+E频段或E+W频段的示例。光学地面站可以位于四个不同站点中的每一个处,并且配备有到卫星的经调制的上行链路激光波束。任何两个站点之间的距离d可以被配置为大于波束的最大复用距离。这些站点可以位于与大气无关的气象小区(例如,用于站分集)。
图3是示出根据本文描述的特定实施例的卫星收发机和多个地面站的第二示例***配置的示意图。图2示出了在卫星和在地面站处的组合的Q/V频段和E频段的示例,用于利用GEO卫星来实现双向0.5Tbps容量的示例。如本文所使用的,Tx表示发射机并且Rx表示接收机。如图2所示,收发机可以包括两个3m Tx天线(一个Q/V频段和一个E频段)和两个2.5mTx天线(一个Q/V频段和一个E频段),其中波束是双极化的。地面站可以各自包括一个E频段Tx/Tx 12m天线和一个V频段Tx/Rx 12m天线,其中波束是双极化的。在特定实施例中,可能需要七个地面站来实现0.5Tbps的总带宽。
在讨论不同的通信频段时,特定实施例可以基于假设,例如,通过示例的方式但不限于:27.5-30GHz范围(例如,2.5GHz可用频谱)的Ka频段上行链路,以及17.7-18.6GHz和18.8-20.2GHz(例如,2.3GHz可用频谱)的Ka频段下行链路;42.5-47GHz、47.2-50.2GHz、50.4-51.4GHz范围(例如,>5GHz可用频谱)的Q/V频段上行链路,以及37.5-42.5GHz范围(例如,5GHz可用频谱)的Q/V下行链路;81-86GHz(例如,5GHz可用频谱)的E频段上行链路,以及71-76GHz(例如,5GHz可用频谱)的E频段下行链路。
与传统的GEO卫星Ka频段通信相比,在每个方向(例如,正向或返回信道)上0.5Tbps容量的同时波束的数量对于Ka频段和Q/V频段可以是15个波束,或者对于E频段或Q/V频段和E频段组合可以是7个波束。为了在该容量下实现高(例如,≥99.9%)链路可用性,基于在任何通信频率下2.5米的机载天线直径和3米的地面站直径的假设,特定实施例可能需要18个波束用于Ka频段和Q/V频段,以及9个波束用于组合的E频段和Q/V频段以及E频段(见图2和图3)。
图4是示出根据本文描述的特定实施例的空间飞行器(包括卫星通信有效载荷)和多个地面站的第三示例***配置的示意图。图3示出了单个频率(Ka、V或E)下的多站点SISO。这些实施例可以基于特定的假设,以在与空间飞行器的链路中在每个方向上实现0.5Tbps的容量,例如,通过示例的方式但不限于:空间飞行器包括一个三米发射天线(在Ka、V或E)、一个2.5米接收天线(Ka、V、E)和双极化波束;地面站包括:一个十二米发射和接收天线,以及双极化波束。在特定实施例中,在E频段或Q/V频段实现0.5Tbps的站点数量可以是十五个。
图5是示出根据本文描述的特定实施例的卫星收发机和多个地面站的第四示例***配置的示意图。特定实施例在组合的Q/V频段和E频段提供多站点SISO。特定实施例可以基于特定的假设,以在与GEO卫星的链路中在每个方向上实现0.5Tbps的容量,例如,通过示例的方式但不限于:航天器侧包括两个3米发射天线(例如,一个Q/V频段、一个E频段)、两个2.5米接收天线(例如,一个Q/V频段、一个E频段)和双极化波束;地面站包括:一个12米发射和接收天线Q/V频段天线、一个12米E频段天线和双极化波束。相对于单独使用其他的通信频段,在E频段或Q/V频段实现0.5Tbps的站点数量可以减少到大约一半(到7个站点)。
图6是示出根据本文描述的特定实施例的空间飞行器和多个地面站的第五示例***配置的示意图。特定实施例提供多站点2X2 MIMO架构:为了在与空间飞行器的链路中实现双向0.5Tbps,特定实施例可以基于假设,例如,通过示例的方式但不限于:空间飞行器上的四个2米天线、发射机和接收机天线之间的6米间距,以及双极化波束。地面站可以包括:两个12米天线。所需的站点数量为9个。
图7是示出根据本文描述的特定实施例的空间飞行器和多个地面站的第六示例***配置的示意图。特定实施例提供多站点3X3 MIMO架构:为了在每个方向(GEO范围)上实现0.5Tbps,特定实施例可以基于假设,例如,通过示例的方式但不限于:空间飞行器上的六个2米天线、发射机和接收机天线之间的6米间距,以及双极化波束。地面站可以包括:三个12米天线。所需的站点数量为6个。
组合频段的SISO实现。在讨论不同的通信频段时,特定实施例基于以下假设:27.5GHz至30GHz范围(2.5GHz可用频谱)的Ka频段上行链路,以及17.7GHz至18.6GHz和18.8-20.2GHz(2.3GHz可用频谱)的Ka频段下行链路;42.5-47GHz、47.2-50.2GHz、50.4-51.4GHz范围(>5GHz可用频谱)的Q/V频段上行链路,以及37.5GHz至42.5GHz范围(5GHz可用频谱)的Q/V下行链路;81GHz至86GHz(5GHz可用频谱)的E频段上行链路,以及71GHz至76GHz)5GHz可用频谱)的E频段下行链路。特定实施例可以支持这些通信频段中的不同值。
RF站点(在SISO模式下)的最小所需数量。特定实施例基于以下假设:所有站点都可以在99%的链路可用性下操作,并且站点足够远,以至于降雨概率之间的站点间相关性可以忽略不计。与传统的GEO卫星Ka频段通信(表1)相比,例如,在每个方向(正向或返回)上以0.5Tbps的容量的同时波束数量,对于Ka频段和Q/V频段为15个波束,而对于E频段或Q/V频段和E频段组合为7个波束。为了在该容量下实现99.9%的链路可用性,特定实施例可能需要18个波束用于Ka频段和Q/V频段,以及9个波束用于组合的E频段和Q/V频段以及E频段。特定实施例基于以下假设:任何通信频率下的2.5米机载天线直径和3米地面站直径。
特定实施例提供0.5Tbps的目标***范围容量。假设所有站点都可以在高(例如99%)链路可用性下操作,并且站点之间距离足够远,使得降雨概率之间的站点间相关性可以忽略不计,链路分析可以指示不同频率的SISO通信和***可用性所需的站点数量。通过示例的方式而非限制,Ka频段通信可能需要41个波束,Q/V频段和E频段通信可能需要15个波束,以及使用Q/V频段和E频段组合的链路可能需要7个波束。在所有情况下,发射口径可以是3米,并且接收机口径可以是2.5米。
在该容量下,以99.99%的***可用性为目标,Ka频段可能需要45个波束,Q/V频段或E频段可能需要18个波束,以及Q/V频段和E频段组合可能仅需要9个波束。3个附加的波束(可用性所需)可能处于热备用状态:当一个或更多个波束因天气原因损坏时,准备好接收一些负载。这些波束的功率损耗减少主要是因为以低占空比(duty cycle)使用的固态放大器和数字电子器件,其中损耗基于数据吞吐量FPGA解调器/解码器、和I/Q调制器和数模转换器。非常低的数据速率信号可能会继续被发送到3个备份站点,以确保快速切换到全数据速率是可能的。组合的Q/V频段和E频段配置可以在每个频段上使用9个双极化波束,并且只有9个地面站对18个地面站。表1总结了RF/MMW站点的最低需要数量。
表1.不同***可用性假设的RF/MMW的最小所需数量。
表2示出了所有三个选项的质量、功率和标准化成本、以及可能显著影响终端成本的参数的示例值。对于18个波束单频段情况,可以使用36个双冗余固态功率放大器(SSPA)。组合的双频段实施例将唯一地面站的数量从18个减少到9个。根据卫星配置,可能需要动臂(boom)。
表2.V、E和V+E组合频段的质量、功率和标准化成本(资本支出(CAPEX)和运营支出(OPEX))值,以实现高速率容量。
特定实施例可以利用多输入多输出(MIMO)来扩大容量。同样地,在这里可以应用组合的Q/V频段和E频段***来进一步增加卫星通信容量。MEMO建立在基本的SISO架构之上,使用相同的接收机和发射机链。然而,所需的链的数量可能不同。每个发射机都有能力向多个位置(为了可用性)发送唯一的双极化流,一次使用一个站点(图4和图5)。2x2和3x3架构各自向活动站点发送2组或3组这样的流,其中接收机提供信号处理以使用空时均衡器来对流进行分离(图6)。
图8是示出用于提供SISO传输的卫星馈送链路接收机的示例配置的示意图。在各种馈源上接收的信号通过正交模式换能器将它们分成左旋圆极化(LHCP)和右旋圆极化(RHCP)信号,然后被下变频(downconverted)到公共中频。使用I/Q接收机对各种中频信号进行下变频。以尼奎斯特(Nyquist)速率对模拟I/Q信号进行采样,并在缓冲和分组交换之后发送到有效载荷。
图9是示出用于提供SISO传输的空间飞行器馈送链路发射机的示例配置的示意图。图9示出了几个数据流,这些数据流通过I/Q混频器结构被向上变频到公共中频。不同分支中的IF信号被向上变频到各种不同的MMW频段,然后使用行波导管放大器进行放大,并使用普通抛物面反射器(dish reflector)进行辐射。
图10是示出用于提供SISO传输的示例频率参考***的示意图。在该示例中,单个频段可以使用Q/V频段或E频段***,并且频段的组合可以使用这两个***。该附图示出了生成典型的超外差架构中所需的两个LO的直接数字合成芯片。
图11是示出地面站的示例配置的示意图。该示例标识:在地面站处光纤接入(SISO/MIMO/光学地面站接入)的需求;高速边缘路由器的需求(例如,100GbE接口)以有效地管理数据移动(例如需要快速的硬件脉冲);数据服务器和交换机基础设施,用于数据管理而不仅仅是传递数据分组;提供波长转换和长距离(long-haul)的波长复用的光传输硬件;具有较大骨干网的核心路由器,用于处理进/出集中位置的最大数据速率和到ISP的数据切换;以及高速率连接到互联网的供应商(Vendor)接入。
图12是示出根据本文描述的特定实施例的信号处理的示意图。MIMO建立在基本的SISO架构之上,使用相同的接收机和发射机链。然而,所需的链的数量可能不同。每个发射机都有能力向多个位置(为了可用性)发送唯一的双极化流,一次使用一个站点。在NxNMIMO的示例实施例中,N组流(例如,2x2和3x3架构各自发送2组或3组这样的流)到活动站点,其中接收机提供信号处理以使用空时均衡器(“STE”)来对流进行分离。
图13是示出用于双极化的2x2 MIMO架构的示意图。该附图示出了实现STE的最小均方(“LMS”)算法以及八个权重之一的一些附加细节。基于时间带宽积和多径,每个复数权重在横向滤波器中具有多个抽头(tap)。注意,天线也可能导致内部多径,因为空间飞行器主体可能导致大的反射进入天线旁瓣。
分析表明,与SISO相比,对于2x2和3x3 MIMO需要更少的站点来实现最低所需容量和可用性。口径的尺寸略有减小,但必须被配置成均匀线性阵列。这可能需要带有接头(joint)的动臂从收起(stowed)配置重新定位。例如,2x2总共需要四个2米天线,而3x3需要六个2米天线。
这种配置可能会给卫星增加很大的质量,但会被并行信道数量的减少部分地抵消。每个同步信道可能需要2xN个接收和发送链,其中N是MIMO维度。
表3.空时均衡器复杂度
表4总结了所有四种选择的质量和功率,以及对终端成本影响最大的参数。对于所有情况,都使用双冗余SSPA。3x3 MIMO以更加复杂的空间飞行器为代价将地面站点的数量减少到8个。MIMO质量明显高于类似的SISO情况,因为已经假设必须使用动臂来定位天线和清除SV服务链路天线。
频段→ Q/V 2x2 E 2x2 Q/V 3x3 E 3x3
质量(kg) 410 410 536 536
功率(W) 1573 1684 1491 1591
天线的数量 4 4 6 6
用于可用性的波束的数量 12 12 8 8
双极化馈源的数量 24 24 24 24
Rx和Rx链的数量 48 48 48 48
表4.关键MIMO参数汇总
如下表所示,对于实现2x2 MIMO的特定实施例,每个站点的容量可能比SISO高70%。V频段和E频段可能需要9个站点来实现500Gbps(容量)。对于2x2(2个接收天线和2个发射天线)MIMO,假设高(例如,99.99%)***可用性,对于Q/V频段或E频段,容量的同时波束的数量可以是9个。在特定实施例中,高链路可用性所需的波束数量可以是十二个波束。相反,对于3x3 MIMO的示例实施例,高可用性可能仅需要6个同时波束,并且同样使用Q/V频段或E频段,高可用性可能仅需要8个同时波束。在任一种情况下,假设使用2米直径的发射机口径和2米直径的接收机口径。
2X2的每个站点容量可以比SISO高大约70%。此外,与Ka频段需要23个站点相比,在与GEO卫星的链路中,Q/V频段和E频段仅需要9个站点就能实现双向0.5Tbps。在该特定示例中,对于地面至卫星链路,卫星处的飞行器天线间隔对于所有频段可以是8米,而对于Ka频段卫星上的天线间隔可以是8米,以及对于Q/V频段或E频段可以是6米。表5总结了这些值。
表5.对于上行链路和下行链路情况,2X2 MIMO(2个接收和w个发射天线)的要求以及的距离间隔。
表6总结了对于上行链路和下行链路,3X3 MIMO(3个接收天线和3个发射天线)的天线要求和间隔。3X3的每个站点容量可以比SISO大大约2.5倍。此外,与Ka频段的15个站点相比,在GEO范围内,V频段和E频段可能仅需要6个站点就能实现0.5Tbps。
表6.Ka频段、V/Q频段和E频段的3x3 MIMO容量(实现0.5Tbps数据速率所需的站点数量)
链路可用性——特定实施例在GEO范围内提供0.5Tbps的目标***范围MMW容量。特定实施例可以基于假设,即所有站点都可以在高链路可用性下操作,同时保持足够的分离和距离,使得降雨概率之间的站点间相关性低。表5总结了实现不同程度的链路可用性的站点数量。
表7.在与GEO卫星的链路中实现双向0.5Tbps所需的站点数量,以及不同的***可用性。
图14是示出具有接收机的示例MIMO地面站的示意图。为了创建高秩视距MIMO信道矩阵,地面站MIMO天线可能需要分离8-50km。来自多个地面天线站点的所有采样信号需要被带到中心位置,以用于MIMO接收机处理。在该特定实施例中,来自远程站点的经采样的基带信号被打包,并通过专用光纤骨干与在各种MIMO天线处接收的所有其他信号一起被发送到主站点进行处理。MIMO接收机处理在主站点处完成。分离的数据流然后被发送到中央数据分发设施。
表8总结并比较了不同通信频率的SISO和MIMO情况下的飞行器发射机和接收机天线直径的数量和直径以及地面天线的数量和直径。
表8.不同频率频段的SISO和MIMO情况下的数量、飞行器口径和地面口径。Tx表示发送,以及Rx表示接收。Tx表示发射机,以及Rx表示接收机。
特定实施例可以在上行链路上提供信道化。特定实施例还可以在卫星上提供交叉极化干扰消除或其他类型的干扰消除的实现。特定实施例还可以提供椭圆形卫星天线,其可以在MIMO地面站的间隔方向上加宽波束,以及减轻指向误差。
以下讨论三个示例***配置:
示例1:
·用户波束:Ka频段双极化
·地面站:V频段双极化上行链路;Q频段单极化下行链路
·频谱/地面站:8GHz正向信道,3GHz返回信道示例2:
·用户波束:Ka双极化
·地面站:V频段和E频段(81-86GHz)双极化上行链路;Q频段双极化下行链路
·频谱/地面站:18GHz正向信道,6GHz返回信道示例3:
·用户波束:Ka双极化
·地面站:V频段和E频段(71-76GHz,81-86GHz)双极化上行链路;Q频段双极化下行链路
·频谱/地面站:27GHz正向信道,6GHz返回信道
表7.三种卫星收发机设计的频率概述。
图15A示出了根据本文描述的***配置的第一示例实施例(“示例1”)的正向信道频率计划。图15A所示的V/Ka频段正向频率计划可以支持每个地面站12个用户波束,因此每个卫星收发机需要30个地面站。如图所示,十个用户波束可以被分配750MHz,以及两个用户波束可以被分配250MHz,因此需要五个本地振荡器(LO)频率。
图15B示出了根据图15A的示例实施例的返回信道频率计划。如上所述,每个地面站可以支持12个用户波束,并且分配给正向信道的地面站的波束中的每一个可以分配给返回信道的同一网关。在返回信道上,所有12个用户波束可以被分配250MHz,因此需要6个LO频率。
图15C是示出根据图15A的示例实施例的正向/返回有效载荷框图的示意图。在正向信道框图中,从地面站接收的V频段信号被处理(例如,下变频,然后滤波和路由)以生成单独的Ka用户波束,从而向终端用户的设备发送信息。在返回信道框图中,从终端用户的设备接收的Ka用户波束被处理(例如,滤波和路由,然后上变频)以生成Q频段信号,从而将信息发射回地面站。
图16A示出了根据本文描述的***配置的第二示例实施例(“示例2”)的正向信道频率计划。图16A中所示的V频段+E频段(在81-86GHz)正向频率计划可以为每个网关提供10GHz的附加正向上行链路带宽。该示例配置可以支持每个地面站24个用户波束,因此每个卫星收发机仅需要15个地面站。在该示例配置中,先前分配250MHz的任何用户波束可以分配750MHz,因此需要12个LO频率。
图16B示出了根据图16A的示例实施例的返回信道频率计划。如上所述,每个地面站可以支持24个用户波束,并且分配给正向信道的地面站的波束中的每一个可以分配给返回信道的同一网关。在返回信道上,所有24个用户波束可以被分配250MHz(提供3:1的正向与返回带宽比),需要6个LO频率。在该示例中,两种极化都可以用于返回传输。在该实施例中,可能不需要附加的返回行波管放大器(TWTA)(与示例1相比)。
图16C是示出根据图16A的示例实施例的正向/返回有效载荷框图的示意图。在正向框图中,从地面站接收的V频段和E频段信号被处理(例如,分别下变频,然后联合滤波和路由)以生成单独的Ka用户波束,从而向终端用户的设备发送信息。在返回框图中,从终端用户的设备接收的Ka用户波束被处理(例如,滤波和路由,然后上变频)以生成Q频段信号,从而将信息发射回地面站。
图17A示出了根据本文描述的***配置的第三示例实施例(“示例3”)的正向信道频率规划。图16A中所示的V频段+E频段(在71-76GHz和81-86GHz带宽)正向频率计划可以为每个网关提供20GHz的附加正向上行链路带宽(相对于示例1)。该示例配置可以支持每个地面站的36个用户波束,因此每个卫星收发机仅需要10个地面站。在该示例配置中,所有用户波束可以被分配750MHz,从而需要18个LO频率(每个波束的正向带宽分配可以与示例2类似)。
图17B示出了根据图17A的示例实施例的返回信道频率计划。如上所述,每个地面站可以支持36个用户波束,并且分配给正向信道的地面站的波束中的每一个可以被分配给返回信道的同一网关。在返回信道上,所有36个用户波束可以被分配166MHz(提供4.5:1的正向与返回带宽比),需要9个LO频率(与示例1和示例2的6个LO频率相比)。在该示例中,两种极化都可以用于返回传输。在该实施例中,可能不需要附加的返回行波管放大器(TWTA)(与示例1相比)。
当比较质量和功率需求时,上面关于三个示例描述的实施例说明了每个***配置的各种可能的益处(如下表8所示)。在示例2中(相对于示例1),示例2的附加的正向上行链路带宽可以将地面站的数量减少50%。E频段部件所需的附加的质量和DC功率可以通过所需的V频段单元的减少来抵消。示例2中质量的轻微增加导致E频段频率转换的附加LO。在示例3中(相对于示例1),质量和功率的显著降低归因于所需的地面站的数量的减少。
质量(kg) 功率(W)
示例1 2013 20381
示例2 2017 20034
示例3 1872 19474
表8.质量和功率需求的比较。
为了评估给定***配置所需的分集网关的数量,特定实施例可以使用N+P网关冗余方法来确定所需的最小网关数量,使得它们中的至少X个在99.9%的时间内同时可用(网关链路可用性总体上为99.9%),其中X是给定***配置中的地面站的数量。如上面在图15A-图17B中所示的三个示例中所述,对于示例1,X是30,对于示例2,X是15,以及对于示例3,X是10。特定实施例可以对N+P使用二项式分布,其中N是{30,15,10}个网关,而P在1-5个附加网关的范围内。
基于以下假设:
·每个网关具有相同的网关中断概率p,
·交付的网关容量为1或0,并且
·网关之间的中断没有关联,
网关中断的总概率,P_中断可以计算为:
其中:
·N=基线网关的数量(#),
·P=提供的分集网关的数量(#),
·р=每个网关的中断的概率,以及
·C=二项式系数。
图18A是示出对于参考示例1描述的示例实施例,基于改变具有30个地面站(12个用户波束/网关)的***配置提供的分集网关的数量,计算分集网关的推荐数量的结果的曲线图(正向信道:V频段上行链路/Ka频段下行链路;返回信道:Ka上行链路/Q频段下行链路)。图18B是示出对于参考示例2描述的示例实施例,基于改变具有15个地面站(24个用户波束/网关)的***配置提供的分集网关的数量,计算分集网关的推荐数量的结果的曲线图(正向信道:V频段+E频段[81-86GHz]上行链路/Ka频段下行链路;返回信道:Ka上行链路/Q频段下行链路)。图18C是示出对于参考示例3描述的示例实施例,基于改变具有10个地面站(36个用户波束/网关)的***配置提供的分集网关的数量,计算分集网关的推荐数量的结果的曲线图(正向信道:V频段+E频段[71-76GHz和81-86GHz]上行链路/Ka频段下行链路;返回信道:Ka上行链路/Q频段下行链路)。在所有三种情况下,р假设为2%,对应于每个单独网关的98%可用性。
如图18A-图18C中以及下面表9中所示,在三个示例中的每一个中,对于上述三个示例,可能需要提供两个分集网关。
示例1 示例2 示例3
主要地面站 30 15 10
分集网关 2 2 2
总的网关可用性 99.90% 99.96% 99.98%
表9.评估所需的分集网关的数量的结果。
如在本公开中使用的,术语“地面站”可以与术语“网关”互换使用。
图19示出了示例计算机***1900。在特定实施例中,一个或更多个计算机***1900执行本文描述或示出的一个或更多个方法的一个或更多个步骤。在特定实施例中,一个或更多个计算机***1900提供本文描述或示出的功能。在特定实施例中,在一个或更多个计算机***1900上运行的软件执行本文描述或示出的一个或更多个方法的一个或更多个步骤,或者提供本文描述或示出的功能。特定实施例包括一个或更多个计算机***1900的一个或更多个部分。在本文,在适当的情况下,对计算机***的引用可以包括计算设备,反之亦然。此外,在适当的情况下,对计算机***的引用可以包括一个或更多个计算机***。
本公开设想了任何合适数量的计算机***1900。本公开设想了计算机***1900采取任何合适的物理形式。作为示例而不是作为限制,计算机***1900可以是嵌入式计算机***、片上***(SOC)、单板计算机***(SBC)(例如,模块上计算机(COM)或模块上***(SOM))、台式计算机***、膝上型或笔记本计算机***、交互式信息亭、大型机、计算机***网状网、移动电话、个人数字助理(PDA)、服务器、平板计算机***、增强/虚拟现实设备、或者这些的两个或更多个的组合。在适当的情况下,计算机***1900可以包括一个或更多个计算机***1900;是单一的或分布式的;跨越多个位置;跨越多台机器;跨越多个数据中心;或者驻留在云中,云可以包括在一个或更多个网络中的一个或更多个云部件。在适当的情况下,一个或更多个计算机***1900可以在没有实质性空间或时间限制的情况下,执行本文描述或示出的一个或更多个方法的一个或更多个步骤。作为示例而不是作为限制,一个或更多个计算机***1900可以实时地或以批处理模式来执行本文描述或示出的一个或更多个方法的一个或更多个步骤。在适当的情况下,一个或更多个计算机***1900可以在不同的时间或在不同的位置处执行本文描述或示出的一个或更多个方法的一个或更多个步骤。
在特定实施例中,计算机***1900包括处理器1902、存储器1904、存储装置1906、输入/输出(I/O)接口1908、通信接口1910和总线1912。尽管本公开描述并示出了具有在特定布置中的特定数量的特定部件的特定计算机***,但是本公开设想了具有在任何合适布置中的任何合适数量的任何合适部件的任何合适的计算机***。
在特定实施例中,处理器1902包括用于执行指令(例如构成计算机程序的那些指令)的硬件。作为示例,而不是作为限制,为了执行指令,处理器1902可以从内部寄存器、内部高速缓存、存储器1904或存储装置1906中检索(或取回)指令;将它们解码并执行它们;以及然后将一个或更多个结果写到内部寄存器、内部高速缓存、存储器1904或存储装置1906。在特定实施例中,处理器1902可以包括用于数据、指令或地址的一个或更多个内部高速缓存。在适当的情况下,本公开设想了处理器1902包括任何合适数量的任何合适的内部高速缓存。作为示例,而不是作为限制,处理器1902可以包括一个或更多个指令高速缓存、一个或更多个数据高速缓存、以及一个或更多个转译后备缓冲器(TLB)。在指令高速缓存中的指令可以是在存储器1904或存储装置1906中的指令的副本,并且指令高速缓存可以加速处理器1902对那些指令的检索。在数据高速缓存中的数据可以是在存储器1904或存储装置1906中的数据的副本,用于使在处理器1902处执行的指令进行操作;在处理器1902处执行的先前指令的结果,用于由在处理器1902处执行的后续指令访问或者用于写到存储器1904或存储装置1906;或其他合适的数据。数据高速缓存可以加速由处理器1902进行的读或写操作。TLB可以加速关于处理器1902的虚拟地址转换。在特定实施例中,处理器1902可以包括用于数据、指令或地址的一个或更多个内部寄存器。在适当的情况下,本公开设想了处理器1902包括任何合适数量的任何合适的内部寄存器。在适当的情况下,处理器1902可以包括一个或更多个算术逻辑单元(ALU);是多核处理器;或者包括一个或更多个处理器1902。尽管本公开描述并示出了特定的处理器,但是本公开设想了任何合适的处理器。
在特定实施例中,存储器1904包括用于存储用于使处理器1902执行的指令或用于使处理器1902操作的数据的主存储器。作为示例,而不是作为限制,计算机***1900可以将指令从存储装置1906或另一个源(例如,另一个计算机***1900)加载到存储器1904。处理器1902然后可以将指令从存储器1904加载到内部寄存器或内部高速缓存。为了执行指令,处理器1902可以从内部寄存器或内部高速缓存中检索指令并将它们解码。在指令的执行期间或之后,处理器1902可以将一个或更多个结果(其可以是中间结果或最终结果)写到内部寄存器或内部高速缓存。处理器1902然后可以将这些结果中的一个或更多个写到存储器1904。在特定实施例中,处理器1902仅执行在一个或更多个内部寄存器或内部高速缓存中或在存储器1904(与存储装置1906相对或其它地方)中的指令,并且仅对在一个或更多个内部寄存器或内部高速缓存中或在存储器1904(与存储装置1906相对或其它地方)中的数据进行操作。一个或更多个存储器总线(其可以各自包括地址总线和数据总线)可以将处理器1902耦合到存储器1904。如下所述,总线1912可以包括一个或更多个存储器总线。在特定实施例中,一个或更多个存储器管理单元(MMU)驻留在处理器1902和存储器1904之间,并且便于由处理器1902请求的对存储器1904的访问。在特定实施例中,存储器1904包括随机存取存储器(RAM)。在适当的情况下,该RAM可以是易失性存储器。在适当的情况下,该RAM可以是动态RAM(DRAM)或静态RAM(SRAM)。此外,在适当的情况下,该RAM可以是单端口RAM或多端口RAM。本公开设想了任何合适的RAM。在适当的情况下,存储器1904可以包括一个或更多个存储器1904。尽管本公开描述并示出了特定的存储器,但是本公开设想了任何合适的存储器。
在特定实施例中,存储装置1906包括用于数据或指令的大容量存储装置。作为示例,而不是作为限制,存储装置1906可以包括硬盘驱动器(HDD)、软盘驱动器、闪存、光盘、磁光盘、磁带或通用串行总线(USB)驱动器、或这些中的两个或更多个的组合。在适当的情况下,存储装置1906可以包括可移动或不可移动(或固定)介质。在适当的情况下,存储装置1906可以在计算机***1900的内部或外部。在特定实施例中,存储装置1906是非易失性固态存储器。在特定实施例中,存储装置1906包括只读存储器(ROM)。在适当的情况下,该ROM可以是掩模编程ROM、可编程ROM(PROM)、可擦除PROM(EPROM)、电可擦除PROM(EEPROM)、电可变ROM(EAROM)、或闪存、或这些中的两个或更多个的组合。本公开设想了大容量存储装置1906采取任何合适的物理形式。在适当的情况下,存储装置1906可以包括便于在处理器1902和存储装置1906之间的通信的一个或更多个存储装置控制单元。在适当的情况下,存储装置1906可以包括一个或更多个存储装置1906。尽管本公开描述并示出了特定的存储装置,但是本公开设想了任何合适的存储装置。
在特定实施例中,I/O接口1908包括为在计算机***1900和一个或更多个I/O设备之间的通信提供一个或更多个接口的硬件、软件或两者。在适当的情况下,计算机***1900可以包括这些I/O设备中的一个或更多个。这些I/O设备中的一个或更多个可以实现在人和计算机***1900之间的通信。作为示例,而不是作为限制,I/O设备可以包括键盘、小键盘、麦克风、监视器、鼠标、打印机、扫描仪、扬声器、静态摄像机、触笔、平板计算机、触摸屏、跟踪球、视频摄像机、另一个合适的I/O设备、或这些中的两个或更多个的组合。I/O设备可以包括一个或更多个传感器。本公开设想了任何合适的I/O设备以及用于它们的任何合适的I/O接口1908。在适当的情况下,I/O接口1908可以包括使处理器1902能够驱动这些I/O设备中的一个或更多个的一个或更多个设备或软件驱动器。在适当的情况下,I/O接口1908可以包括一个或更多个I/O接口1908。尽管本公开描述并示出了特定的I/O接口,但是本公开设想了任何合适的I/O接口。在特定实施例中,通信接口1910包括提供用于在计算机***1900和一个或更多个其他计算机***1900或一个或更多个网络之间的通信(例如,基于分组的通信)的一个或更多个接口的硬件、软件或两者。作为示例,而不是作为限制,通信接口1910可以包括用于与以太网或其他基于有线的网络进行通信的网络接口控制器(NIC)或网络适配器,或用于与无线网络(例如WI-FI网络)进行通信的无线NIC(WNIC)或无线适配器。本公开设想了任何合适的网络和用于它的任何合适的通信接口1910。作为示例,而不是作为限制,计算机***1900可以与自组织网络、个域网(PAN)、局域网(LAN)、广域网(WAN)、城域网(MAN)或互联网的一个或更多个部分、或这些中的两个或更多个的组合进行通信。这些网络中的一个或更多个的一个或更多个部分可以是有线的或无线的。作为示例,计算机***1900可以与无线PAN(WPAN)(例如,蓝牙WPAN)、WI-FI网络、WI-MAX网络、蜂窝电话网络(例如,全球移动通信***(GSM)网络)、或其他合适的无线网络、或这些中的两个或更多个的组合进行通信。在适当的情况下,计算机***1900可以包括用于这些网络中的任一个的任何合适的通信接口1910。在适当的情况下,通信接口1910可以包括一个或更多个通信接口1910。尽管本公开描述并示出了特定的通信接口,但是本公开设想了任何合适的通信接口。
在特定实施例中,总线1912包括将计算机***1200的部件耦合到彼此的硬件、软件或两者。作为示例而不是作为限制,总线1912可以包括加速图形端口(AGP)或其他图形总线、扩展工业标准体系结构(EISA)总线、前端总线(FSB)、HYPERTRANSPORT(HT)互连、工业标准体系结构(ISA)总线、INFINIBAND互连、低引脚数(LPC)总线、存储器总线,微通道体系结构(MCA)总线、***部件互连(PCI)总线、PCI-Express(扩展)(PCIe)总线、串行高级技术附件(SATA)总线、视频电子标准协会本地(VLB)总线、或任何其他合适的总线、或这些中的两个或更多个的组合。
在适当的情况下,总线1912可以包括一个或更多个总线1912。尽管本公开描述并示出了特定总线,但是本公开设想了任何合适的总线或互连。
在本文,在适当的情况下,一个或更多个计算机可读非暂时性存储介质可以包括一个或更多个基于半导体的或其他集成电路(IC)(例如,现场可编程门阵列(FPGA)或专用IC(ASIC))、硬盘驱动器(HDD)、混合硬盘驱动器(HHD)、光盘、光盘驱动器(ODD)、磁光盘、磁光盘驱动器、软盘、软盘驱动器(FDD)、磁带、固态驱动器(SSD)、RAM驱动器、安全数字(SECURE DIGITAL)卡或驱动器、任何其他合适的计算机可读非暂时性存储介质、或这些中的两个或更多个的组合。在适当的情况下,计算机可读非暂时性存储介质可以是易失性的、非易失性的或者易失性和非易失性的组合。
本文中,除非另有明确指示或通过上下文另有指示,否则“或”是包括一切的而非排他性的。因此在本文,除非另有明确指示或通过上下文另有指示,否则“A或B”意指“A、B、或两者”。此外,除非另有明确指示或通过上下文另有指示,否则“和”既是联合的又是各自的。因此在本文,除非另有明确指示或通过上下文另有指示,否则“A和B”意指“A和B,联合地或各自地”。
本公开的范围包括本领域中的普通技术人员将理解的对本文描述或示出的示例实施例的所有改变、替换、变化、变更和修改。本公开的范围不限于本文描述或示出的示例实施例。此外,尽管本公开将本文的相应实施例描述并示为包括特定的部件、元件、特征、功能、操作或步骤,但是这些实施例中的任何一个可以包括本领域中的普通技术人员将理解的在本文任何地方描述或示出的任何部件、元件、特征、功能、操作或步骤的任何组合或置换。此外,在所附权利要求中对适合于、被布置成、能够、被配置成、实现来、可操作来、或操作来执行特定功能的装置或***或装置或***的部件的引用包括该装置、***、部件,无论它或那个特定功能是否被激活、开启或解锁,只要该装置、***或部件是如此被调整、被布置、有能力的、被配置、实现、可操作的、或操作的。此外,尽管本公开将特定实施例描述或示出为提供特定优点,但是特定实施例可以提供这些优点中的一些、全部或不提供这些优点。

Claims (20)

1.一种地球同步轨道中的收发机,包括:
多个正向信道接收机,其中,所述正向信道接收机中的至少一个接收(1)从地面站发射的正向信道激光通信波束和(2)具有81-86GHz带宽的E频段频率;
具有不同频率的多个正向信道发射机,其中,所述正向信道发射机向端点设备发射用户波束,其中,所述用户波束来自所述正向信道激光通信波束和MMW通信波束;
多个返回信道接收机,其中,所述返回信道接收机从所述端点设备接收用户波束;以及
至少一个返回信道发射机,其中,所述返回信道发射机向地面站发射返回信道激光通信波束。
2.根据权利要求1所述的收发机,还包括一个或更多个处理器和耦合到所述处理器的存储器,所述存储器包括由所述处理器能够执行的指令,所述处理器在执行所述指令时能够操作来:
接收由在所述正向信道接收机处接收的一个或更多个上行链路波束所传输的正向信道数据;
基于所述正向信道数据,生成多个正向信道下行链路信号,所述正向信道下行链路信号中的每一个包括所述正向信道数据的至少一部分;以及
对于所述正向信道下行链路信号中的每一个,将该正向信道下行链路信号发射到所述正向信道发射机中的一个。
3.根据权利要求2所述的收发机,所述处理器在执行所述指令时还能够操作来:
接收由在所述返回信道接收机处接收的一个或更多个上行链路波束传输的返回信道数据;
基于所述返回信道数据,生成包括所述返回信道数据的单个返回信道下行链路信号;以及
将所述返回信道下行链路信号发射到所述返回信道发射机。
4.根据权利要求1所述的收发机,其中,端点设备包括终端用户客户端设备,并且其中,所述用户波束是射到激光通信波束上的RF信号。
5.根据权利要求1所述的收发机,其中,端点设备包括网络网关设备,并且其中,由所述正向信道发射机发射的所述用户波束是除了具有71-76GHz带宽的E频段频率信号之外发射的激光通信波束。
6.根据权利要求1所述的收发机,其中,除了Q频段加E频段频率信号之外,还发射所述返回信道激光通信波束。
7.根据权利要求1所述的收发机,其中,所述返回信道激光通信波束是双极化的。
8.根据权利要求1所述的收发机,其中,所述收发机位于低地球轨道或中地球轨道中的卫星上。
9.根据权利要求1所述的收发机,其中,单个天线馈源同时接收包括多种类型的MMW频段的信号。
10.根据权利要求1所述的收发机,其中,所述正向信道发射机中的每一个使用Q/V频段、V频段、W+E频段或W频段上的频率来发射信号。
11.一种包括一个或更多个处理器和耦合到所述处理器的存储器的***,所述存储器包括由所述处理器能够执行的指令,所述处理器在执行所述指令时能够操作来:
接收由在可通信地连接到所述***的多个正向信道接收机处接收的一个或更多个上行链路波束所传输的正向信道数据,其中,所述正向信道接收机中的至少一个接收(1)从地面站发射的正向信道激光通信波束和(2)具有81-86GHz带宽的E频段频率;
基于所述正向信道数据,生成多个正向信道下行链路信号,所述正向信道下行链路信号中的每一个包括所述正向信道数据的至少一部分;以及
对于所述正向信道下行链路信号中的每一个,向可通信地连接到所述***的多个正向信道发射机中的一个发射该正向信道下行链路信号,其中,所述正向信道发射机使用不同的频率向端点设备发射用户波束,其中,所述用户波束来自所述正向信道激光通信波束和MMW通信波束。
12.根据权利要求11所述的***,所述处理器在执行所述指令时还能够操作来:
接收由在所述正向信道接收机处接收的一个或更多个上行链路波束所传输的正向信道数据;
基于所述正向信道数据,生成多个正向信道下行链路信号,所述正向信道下行链路信号中的每一个包括所述正向信道数据的至少一部分;以及
对于所述正向信道下行链路信号中的每一个,将该正向信道下行链路信号发射到所述正向信道发射机中的一个。
13.根据权利要求12所述的***,所述处理器在执行所述指令时还能够操作来:
接收由在多个返回信道接收机处接收的一个或更多个上行链路波束所传输的返回信道数据,其中,所述返回信道接收机从所述端点设备接收用户波束;
基于所述返回信道数据,生成包括所述返回信道数据的单个返回信道下行链路信号;以及
向返回信道发射机发射所述返回信道下行链路信号,其中,所述返回信道发射机向地面站发射返回信道激光通信波束。
14.根据权利要求11所述的***,其中,端点设备包括终端用户客户端设备,并且其中,所述用户波束是射到激光通信波束上的RF信号。
15.根据权利要求11所述的***,其中,端点设备包括网络网关设备,并且其中,由所述正向信道发射机发射的所述用户波束是除了具有71-76GHz带宽的E频段频率信号之外发射的激光通信波束。
16.根据权利要求11所述的***,其中,除了Q频段加E频段频率信号之外,还发射所述返回信道激光通信波束。
17.根据权利要求11所述的***,其中,所述返回信道激光通信波束是双极化的。
18.根据权利要求11所述的***,其中,所述收发机位于低地球轨道或中地球轨道中的卫星上。
19.根据权利要求11所述的***,其中,单个天线馈源同时接收包括多种类型的MMW频段的信号。
20.一种通过地球同步轨道中的收发机发射信号的方法,包括:
通过多个正向信道接收机,接收由一个或更多个上行链路波束传输的正向信道数据,其中,所述正向信道接收机中的至少一个接收(1)从地面站发射的正向信道激光通信波束和(2)具有81-86GHz带宽的E频段频率;
通过所述收发机的一个或更多个处理器并基于所述正向信道数据,生成多个正向信道下行链路信号,所述正向信道下行链路信号中的每一个包括所述正向信道数据的至少一部分;
通过具有不同频率的多个正向信道发射机,对于所述正向信道下行链路信号中的每一个,向一个或更多个端点设备发射一个或更多个用户波束,其中,所述用户波束来自所述正向信道激光通信波束和MMW通信波束;
通过多个返回信道接收机,接收由在所述返回信道接收机处接收的一个或更多个上行链路波束所传输的返回信道数据,其中,所述返回信道接收机从所述端点设备接收用户波束;
通过所述收发机的所述一个或更多个处理器并基于所述返回信道数据,生成包括所述返回信道数据的单个返回信道下行链路信号;以及
通过至少一个返回信道发射机,向地面站发射所述返回信道下行链路信号。
CN201780087678.XA 2016-12-29 2017-12-29 双向卫星通信 Active CN110366830B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210533837.7A CN114978284A (zh) 2016-12-29 2017-12-29 双向卫星通信

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662440238P 2016-12-29 2016-12-29
US62/440,238 2016-12-29
US15/857,605 US10374696B2 (en) 2016-12-29 2017-12-28 Bidirectional satellite communications
US15/857,605 2017-12-28
PCT/US2017/068898 WO2018126113A1 (en) 2016-12-29 2017-12-29 Bidirectional satellite communications

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202210533837.7A Division CN114978284A (zh) 2016-12-29 2017-12-29 双向卫星通信

Publications (2)

Publication Number Publication Date
CN110366830A true CN110366830A (zh) 2019-10-22
CN110366830B CN110366830B (zh) 2022-05-24

Family

ID=60856966

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202210533837.7A Pending CN114978284A (zh) 2016-12-29 2017-12-29 双向卫星通信
CN201780087678.XA Active CN110366830B (zh) 2016-12-29 2017-12-29 双向卫星通信

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202210533837.7A Pending CN114978284A (zh) 2016-12-29 2017-12-29 双向卫星通信

Country Status (4)

Country Link
US (2) US10374696B2 (zh)
EP (2) EP3343802B1 (zh)
CN (2) CN114978284A (zh)
WO (1) WO2018126113A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116073893A (zh) * 2023-04-06 2023-05-05 西安空间无线电技术研究所 标定多频段毫米波信号大气传输特性的载荷***及方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3484067B1 (en) * 2017-11-13 2021-01-27 NEOSAT GmbH Method for operating a communication system
US10797795B2 (en) * 2018-11-27 2020-10-06 Facebook, Inc. System and method of satellite communication
US11543645B1 (en) 2020-03-19 2023-01-03 Meta Platforms, Inc. Optical beam expander with partial monolithic structure
US11689283B1 (en) 2020-03-30 2023-06-27 Meta Platforms, Inc. Free-space optical communication system using a backchannel for power optimization
US11265076B2 (en) * 2020-04-10 2022-03-01 Totum Labs, Inc. System and method for forward error correcting across multiple satellites
US11546062B1 (en) 2020-04-22 2023-01-03 Meta Platforms, Inc. Wavelength-selectable free-space optical communication
CN111641418A (zh) * 2020-05-07 2020-09-08 中国电子科技集团公司电子科学研究院 一种基于e波段的无线通信***及其信号处理方法
CN113794503B (zh) * 2021-09-03 2023-08-08 上海卫星工程研究所 环绕器多频段多通道组合深空中继转发***
CN115022404B (zh) * 2022-08-09 2022-11-01 北京融为科技有限公司 一种缓存控制方法和设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000014902A2 (en) * 1998-09-08 2000-03-16 Angel Technologies Corporation Network for providing wireless communications using an atmospheric platform
US20050090198A1 (en) * 2003-10-27 2005-04-28 Christopher Paul F. Method to extend millimeter wave satellite communication (75-98 GHz) and 3-10 micron laser links to wide areas in the temperate zone
US20090298423A1 (en) * 2006-10-03 2009-12-03 Viasat, Inc. Piggy-Back Satellite Payload
CN103748812A (zh) * 2011-05-31 2014-04-23 欧普蒂克斯技术公司 使用射频和自由空间光学数据通信的集成商用通信网络
US9252869B2 (en) * 2012-10-18 2016-02-02 Thales Satellite telecommunications system for providing star traffic and mesh traffic
CN105553539A (zh) * 2015-12-16 2016-05-04 天津大学 一种卫星间太赫兹通信***构架及其信息传输方法
US20160285541A1 (en) * 2014-09-04 2016-09-29 Honeywell International Inc. Free space laser and millimetre wave(mmw) network for airborne relay networks

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6240124B1 (en) * 1995-06-06 2001-05-29 Globalstar L.P. Closed loop power control for low earth orbit satellite communications system
US6873644B1 (en) * 1999-10-08 2005-03-29 Terence W. Barrett High data rate inter-satellite communications links method
US7680516B2 (en) * 2001-05-02 2010-03-16 Trex Enterprises Corp. Mobile millimeter wave communication link
US20020176139A1 (en) * 2001-05-02 2002-11-28 Louis Slaughter SONET capable millimeter wave communication system
US20040001720A1 (en) * 2002-06-27 2004-01-01 Krill Jerry A. Satellite-based mobile communication system
EP2254264A3 (en) 2005-01-05 2013-11-13 ATC Technologies, LLC Adaptive beam forming with multi-user detection and interference reduction in satellite communication systems and methods
CN101582715B (zh) * 2006-09-26 2013-05-15 维尔塞特公司 改进的点波束卫星***
US20080175766A1 (en) * 2007-01-22 2008-07-24 John Carlton Mankins Process and method of making fuels and other chemicals from radiant energy
US20090289839A1 (en) 2007-09-26 2009-11-26 Viasat, Inc Dynamic Sub-Channel Sizing
WO2009055210A2 (en) * 2007-10-25 2009-04-30 Battelle Memorial Institute Optical-to-millimeter wave conversion
US8913894B2 (en) 2012-07-13 2014-12-16 Raytheon Company High-bandwidth optical communications relay architecture
US20150029932A1 (en) 2013-07-18 2015-01-29 David A. Slemp Ultra broadband networks and methods
US9967792B2 (en) 2015-03-16 2018-05-08 Space Systems/Loral, Llc Communication system with multi band gateway
US10158419B2 (en) 2016-04-27 2018-12-18 Facebook, Inc. Wireless communication utilizing post-amplification carrier aggregation
US20180013193A1 (en) * 2016-07-06 2018-01-11 Google Inc. Channel reconfigurable millimeter-wave radio frequency system by frequency-agile transceivers and dual antenna apertures

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000014902A2 (en) * 1998-09-08 2000-03-16 Angel Technologies Corporation Network for providing wireless communications using an atmospheric platform
US20050090198A1 (en) * 2003-10-27 2005-04-28 Christopher Paul F. Method to extend millimeter wave satellite communication (75-98 GHz) and 3-10 micron laser links to wide areas in the temperate zone
US20090298423A1 (en) * 2006-10-03 2009-12-03 Viasat, Inc. Piggy-Back Satellite Payload
CN103748812A (zh) * 2011-05-31 2014-04-23 欧普蒂克斯技术公司 使用射频和自由空间光学数据通信的集成商用通信网络
US9252869B2 (en) * 2012-10-18 2016-02-02 Thales Satellite telecommunications system for providing star traffic and mesh traffic
US20160285541A1 (en) * 2014-09-04 2016-09-29 Honeywell International Inc. Free space laser and millimetre wave(mmw) network for airborne relay networks
CN105553539A (zh) * 2015-12-16 2016-05-04 天津大学 一种卫星间太赫兹通信***构架及其信息传输方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116073893A (zh) * 2023-04-06 2023-05-05 西安空间无线电技术研究所 标定多频段毫米波信号大气传输特性的载荷***及方法

Also Published As

Publication number Publication date
US20190363783A1 (en) 2019-11-28
US10374696B2 (en) 2019-08-06
EP3343802B1 (en) 2019-08-28
CN114978284A (zh) 2022-08-30
US20180191428A1 (en) 2018-07-05
US10594389B2 (en) 2020-03-17
CN110366830B (zh) 2022-05-24
EP3591860B1 (en) 2021-03-17
WO2018126113A1 (en) 2018-07-05
EP3591860A1 (en) 2020-01-08
EP3343802A1 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
CN110366830A (zh) 双向卫星通信
US8923189B2 (en) System and methods for scalable processing of received radio frequency beamform signal
US9954632B2 (en) TDMA rate reconfigurable matrix power amplifier and method of communication in a FDMA/TDMA architecture
US20180205448A1 (en) Distributed satcom aperture on fishing boat
US7831202B2 (en) Satellite communications systems and methods using substantially co-located feeder link antennas
CN104601502B (zh) 使用星载波束形成和陆基处理抑制卫星通信***中的干扰的方法及装置
US9801176B2 (en) FDMA/TDMA architecture using channelizer and matrix power amplifier
US10135523B2 (en) Hitless rearrangement of a satellite-hosted switch via propagated synchronization
WO2019092259A1 (en) Method for operating a communication system
Sikri et al. Multi-beam phased array with full digital beamforming for SATCOM and 5G
US11894911B2 (en) Low earth orbit (LEO) satellite communication methods and systems using fractionated satellites and high-resolution spatial multiplexing
US10951295B2 (en) Reconfigurable fully-connected bidirectional hybrid beamforming transceiver
WO2017053417A1 (en) Antenna with beamwidth reconfigurable circularly polarized radiators
CN106850036B (zh) 一种基于优先级的中轨卫星***可移动点波束调度方法
Vaccaro et al. Ka-band mobility terminals enabling new services
CN108282165B (zh) 一种无线通信***架构
US11290177B2 (en) Scaling power and control signals in modular satellite user terminals
Capez et al. On the use of mega constellation services in space

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: California, USA

Applicant after: Yuan platform Co.

Address before: California, USA

Applicant before: Facebook, Inc.

GR01 Patent grant
GR01 Patent grant