CN110331390A - 一种超轻仿生金属材料的制备方法 - Google Patents

一种超轻仿生金属材料的制备方法 Download PDF

Info

Publication number
CN110331390A
CN110331390A CN201910770684.6A CN201910770684A CN110331390A CN 110331390 A CN110331390 A CN 110331390A CN 201910770684 A CN201910770684 A CN 201910770684A CN 110331390 A CN110331390 A CN 110331390A
Authority
CN
China
Prior art keywords
template
preparation
ultralight
metal material
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910770684.6A
Other languages
English (en)
Other versions
CN110331390B (zh
Inventor
吴士平
戴贵鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201910770684.6A priority Critical patent/CN110331390B/zh
Publication of CN110331390A publication Critical patent/CN110331390A/zh
Application granted granted Critical
Publication of CN110331390B publication Critical patent/CN110331390B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1657Electroless forming, i.e. substrate removed or destroyed at the end of the process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/2086Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/22Roughening, e.g. by etching
    • C23C18/24Roughening, e.g. by etching using acid aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/285Sensitising or activating with tin based compound or composition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Chemically Coating (AREA)

Abstract

一种超轻仿生金属材料的制备方法,本发明涉及仿生金属材料制备技术领域。本发明要解决现有方法制备的仿生金属材料质量大,应用困难的技术问题。方法:3D打印结构模板;对模板进行预处理;将模板整体结构进行一次施镀金属;去活化处理,对模板外表面再次进行施镀金属;去模板。本发明方法制备的超轻仿生金属材料能够在保证强度的条件下极大的降低材料的密度,该仿生金属材料结构内部可以为多种结构;可以对仿生金属材料的厚度进行梯度变化控制。生产工艺简单、易于实现,制备成本低,操作灵活。本发明用于制备仿生材料。

Description

一种超轻仿生金属材料的制备方法
技术领域
本发明涉及仿生金属材料制备技术领域。
背景技术
仿生材料是一种新型的功能材料,是建立在自然界原有材料、人工合成材料、有机高分子材料基础上的可设计智能材料,是指模仿生物的各种特点或特性而研制开发的材料,按照生命***的运行模式和生物材料的结构规律而设计制造的人工材料。因此,仿生材料的最大特点是可设计性,人们可提取出自然界的生物原型,探究其功能性原理,并通过该原理设计出能够具有类似性能的新型功能材料。
因此,对于仿生技术的研究可以通过以下几点:(1)结构仿生:通过对生物构造进行分析研究,构建与生物体及生物结构相似的材料,从而实现相似功用。(2)功能仿生:必须建立在结构仿生的基础之上,通过模仿学习动物功能来实现相应的感知,运动和功能。(3)材质仿生:模拟生物特征如人体皮肤等特征实现仿生材料的研制与开发。(4)力学仿生:人体力学的仿生学主要研究人体结构的静态特征。(5)控制仿生:主要分为三类,即先进的神经元仿生学,低级神经元仿生学和进化机制。
目前,仿生材料一般为非金属氧化物材料,有机高分子聚合材料,鲜有金属材质运用于仿生材料。并且现有方法制备的仿生金属材料质量大,应用困难的技术问题,所以,在现有仿生学基础上,开发出结构-功能仿生一体化的金属仿生材料有着重要的意义。
发明内容
本发明要解决现有方法制备的仿生金属材料质量大,应用困难的技术问题而提供一种超轻仿生金属材料的制备方法。
一种超轻仿生金属材料的制备方法,具体按以下步骤进行:
一、模板制备:采用3D打印方法制备仿生结构的光敏树脂模板;
二、模板预处理:将步骤一制备的光敏树脂模板进行去应力处理,碱性除油处理,表面粗化处理,敏化处理,活化处理,还原处理,弱腐蚀处理;
三、模板一次施镀:将步骤二预处理后的模板整体结构进行施镀金属;
四、模板二次施镀:将步骤三处理的模板进行去活化处理,再次对模板外表面进行施镀金属;
五、去模板:将步骤四处理后的模板进行去模板处理,获得所述一种超轻仿生金属材料,完成该方法。
进一步的,步骤二中去应力处理为:采用丙酮将模板清洗30~40min。
进一步的,步骤二中碱性除油处理为:将浓度为10g/L氢氧化钠溶液、3g/L硅酸钠溶液、12g/L磷酸三钠溶液和8g/L碳酸钠溶液按照体积比为1∶1∶1∶1的比例混合制备混合溶液,然后将模板放入混合溶液中超声清洗15~30min。
进一步的,步骤二中表面粗化处理为:将模板放入温度为50℃、浓度为400g/L的高锰酸钾溶液中浸泡20~30min。
进一步的,步骤二中敏化处理为:在室温条件下,将模板放入浓度为10g/L的氯化亚锡溶液中浸泡6~8min。
进一步的,步骤二中活化处理为:在室温条件下,将模板放入浓度为0.7g/L氯化钯溶液中浸泡5~7min。
进一步的,步骤二中还原处理为:在室温条件下,将模板放入浓度为20g/L次磷酸钠溶液中浸泡3~5min。
进一步的,步骤二中弱腐蚀处理为:在室温条件下,将模板放入质量百分含量为10%的盐酸溶液中浸泡10s。
进一步的,步骤三和步骤四中施镀的金属为合金或金属单质。
进一步的,步骤三和步骤四中施镀工艺为化学镀、电镀、离子镀或蒸镀。
进一步的,步骤四中去活化处理为:将模板的多孔结构封闭。
进一步的,步骤五中去模板处理为:
采用高温炉,控制升温速度为10℃/min,将模板加热至光敏树脂的灰化温度进行高温灼烧,保温30min;
或者将模板的顶端开设预留口,然后放入温度为60℃、质量百分含量为12%的氢氧化钠溶液中浸泡。
本发明的有益效果是:
本发明主要设计仿生骨或鸟翼腔等的外部高致密结构,内部多孔结构的内外变化的超轻结构材料。仿生材料的设计是汇集了材料设计、结构设计和功能设计为一体的协同优化设计理念。该类材料具有传统材料不可比拟的优越性,如比强度高、比刚度大、可设计性强,兼具多功能潜力。
本发明方法制备的仿生材料在保证具有金属材料相接近的比强度(10~102MPa·g-1·cm3)条件下,极大的降低了材料的相对密度,其密度最低降至10-2g/cm2。并且内外部分结构变化的结合更为稳固,结合处出现服役疲劳的可能性大幅降低;该方法制备的仿生材料的内部结构选择多样,可以为多孔结构、点阵结构,微点阵结构等。本发明采用的内外层施镀材质可以是多种合金/金属单质,或是多层不同合金/金属单质,不同层合金/金属单质的厚度也可以具有梯度变化,材质的调节可通过改变施镀金属单质/合金配方来达到目的。本发明备方法简单、易于操作、安全可靠、节能省时、环境友好。本发明方法也还可用作制备三明治夹心结构的一体化制备。
本发明制备的超轻仿生金属材料在兼顾比强度的同时极大的降低材料相对密度,极大拓展了材料的使用范围。
本发明用于制备仿生材料。
具体实施方式
本发明技术方案不局限于以下所列举的具体实施方式,还包括各具体实施方式之间的任意组合。
具体实施方式一:本实施方式一种超轻仿生金属材料的制备方法,具体按以下步骤进行:
一、模板制备:采用3D打印方法制备仿生结构的光敏树脂模板;
二、模板预处理:将步骤一制备的光敏树脂模板进行去应力处理,碱性除油处理,表面粗化处理,敏化处理,活化处理,还原处理,弱腐蚀处理;
三、模板一次施镀:将步骤二预处理后的模板整体结构进行施镀金属;
四、模板二次施镀:将步骤三处理的模板进行去活化处理,再次对模板外表面进行施镀金属;
五、去模板:将步骤四处理后的模板进行去模板处理,获得所述一种超轻仿生金属材料,完成该方法。
具体实施方式二:本实施方式与具体实施方式一不同的是:步骤二中去应力处理为:采用丙酮将模板清洗30~40min。其它与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是:步骤二中碱性除油处理为:将浓度为10g/L氢氧化钠溶液、3g/L硅酸钠溶液、12g/L磷酸三钠溶液和8g/L碳酸钠溶液按照体积比为1∶1∶1∶1的比例混合制备混合溶液,然后将模板放入混合溶液中超声清洗15~30min。其它与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:步骤二中表面粗化处理为:将模板放入温度为50℃、浓度为400g/L的高锰酸钾溶液中浸泡20~30min。其它与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:步骤二中敏化处理为:在室温条件下,将模板放入浓度为10g/L的氯化亚锡溶液中浸泡6~8min。其它与具体实施方式一至四之一相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是:步骤二中活化处理为:在室温条件下,将模板放入浓度为0.7g/L氯化钯溶液中浸泡5~7min。其它与具体实施方式一至五之一相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同的是:步骤二中还原处理为:在室温条件下,将模板放入浓度为20g/L次磷酸钠溶液中浸泡3~5min。其它与具体实施方式一至六之一相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同的是:步骤二中弱腐蚀处理为:在室温条件下,将模板放入质量百分含量为10%的盐酸溶液中浸泡10s。其它与具体实施方式一至七之一相同。
具体实施方式九:本实施方式与具体实施方式一至八之一不同的是:步骤三和步骤四中施镀的金属为合金或金属单质。其它与具体实施方式一至八之一相同。
具体实施方式十:本实施方式与具体实施方式一至九之一不同的是:步骤三和步骤四中施镀工艺为化学镀、电镀、离子镀或蒸镀。其它与具体实施方式一至九之一相同。
具体实施方式十一:本实施方式与具体实施方式一至十之一不同的是:步骤四中去活化处理为:将模板的多孔结构封闭。其它与具体实施方式一至十之一相同。
具体实施方式十二:本实施方式与具体实施方式一至十一之一不同的是:步骤五中去模板处理为:
采用高温炉,控制升温速度为10℃/min,将模板加热至光敏树脂的灰化温度进行高温灼烧,保温30min;
或者将模板的顶端开设预留口,然后放入温度为60℃、质量百分含量为12%的氢氧化钠溶液中浸泡。其它与具体实施方式一至十一之一相同。
采用以下实施例验证本发明的有益效果:
实施例一:
本实施例一种超轻仿生金属材料的制备方法,具体按以下步骤进行:
一、模板制备:采用3D打印方法制备仿生结构的405nm光敏树脂模板;
二、模板预处理:将步骤一制备的光敏树脂模板进行去应力处理,碱性除油处理,表面粗化处理,敏化处理,活化处理,还原处理,弱腐蚀处理;
其中,去应力处理为:采用丙酮将模板清洗30min;
碱性除油处理为:将浓度为10g/L氢氧化钠溶液、3g/L硅酸钠溶液、12g/L磷酸三钠溶液和8g/L碳酸钠溶液按照体积比为1∶1∶1∶1的比例混合制备混合溶液,然后将模板放入混合溶液中超声清洗15min;
表面粗化处理为:将模板放入温度为50℃、浓度为400g/L的高锰酸钾溶液中浸泡20min;
敏化处理为:在室温条件下,将模板放入浓度为10g/L的氯化亚锡溶液中浸泡7min;
活化处理为:在室温条件下,将模板放入浓度为0.7g/L氯化钯溶液中浸泡6min;
还原处理为:在室温条件下,将模板放入浓度为20g/L次磷酸钠溶液中浸泡4min;
弱腐蚀处理为:在室温条件下,将模板放入质量百分含量为10%的盐酸溶液中浸泡10s;
三、模板一次施镀:将步骤二预处理后的模板整体结构进行化学镀镍,厚度为10μm;
四、模板二次施镀:采用丙三醇将步骤三处理的模板的多孔结构封闭,再次对模板外表面进行化学镀镍,厚度为100μm;
五、去模板:将步骤四处理后的模板进行去模板处理,采用高温炉,控制升温速度为10℃/min,将模板加热至400℃进行高温灼烧,保温30min;获得所述一种超轻仿生金属材料,完成该方法。
本实施例制备的仿生材料在保证具有金属材料相接近的比强度(10~102MPa·g-1·cm3)条件下,极大的降低了材料的相对密度,其密度最低降至10-2g/cm2。并且内外部分结构变化的结合更为稳固,结合处出现服役疲劳的可能性大幅降低;该方法制备的仿生材料的内部结构选择多样,可以为多孔结构、点阵结构,微点阵结构等。
本发明采用的内外层施镀材质可以是多种合金/金属单质,或是多层不同合金/金属单质,不同层合金/金属单质的厚度也可以具有梯度变化,材质的调节可通过改变施镀金属单质/合金配方来达到目的。本发明备方法简单、易于操作、安全可靠、节能省时、环境友好。本发明方法也还可用作制备三明治夹心结构的一体化制备。

Claims (10)

1.一种超轻仿生金属材料的制备方法,其特征在于该方法具体按以下步骤进行:
一、模板制备:采用3D打印方法制备仿生结构的光敏树脂模板;
二、模板预处理:将步骤一制备的光敏树脂模板进行去应力处理,碱性除油处理,表面粗化处理,敏化处理,活化处理,还原处理,弱腐蚀处理;
三、模板一次施镀:将步骤二预处理后的模板整体结构进行施镀金属;
四、模板二次施镀:将步骤三处理的模板进行去活化处理,再次对模板外表面进行施镀金属;
五、去模板:将步骤四处理后的模板进行去模板处理,获得所述一种超轻仿生金属材料,完成该方法。
2.根据权利要求1所述的一种超轻仿生金属材料的制备方法,其特征在于步骤二中去应力处理为:采用丙酮将模板清洗30~40min。
3.根据权利要求1所述的一种超轻仿生金属材料的制备方法,其特征在于步骤二中碱性除油处理为:将浓度为10g/L氢氧化钠溶液、3g/L硅酸钠溶液、12g/L磷酸三钠溶液和8g/L碳酸钠溶液按照体积比为1∶1∶1∶1的比例混合制备混合溶液,然后将模板放入混合溶液中超声清洗15~30min。
4.根据权利要求1所述的一种超轻仿生金属材料的制备方法,其特征在于步骤二中表面粗化处理为:将模板放入温度为50℃、浓度为400g/L的高锰酸钾溶液中浸泡20~30min。
5.根据权利要求1所述的一种超轻仿生金属材料的制备方法,其特征在于步骤二中敏化处理为:在室温条件下,将模板放入浓度为10g/L的氯化亚锡溶液中浸泡6~8min;
活化处理为:在室温条件下,将模板放入浓度为0.7g/L氯化钯溶液中浸泡5~7min。
6.根据权利要求1所述的一种超轻仿生金属材料的制备方法,其特征在于步骤二中还原处理为:在室温条件下,将模板放入浓度为20g/L次磷酸钠溶液中浸泡3~5min;
步骤二中弱腐蚀处理为:在室温条件下,将模板放入质量百分含量为10%的盐酸溶液中浸泡10s。
7.根据权利要求1所述的一种超轻仿生金属材料的制备方法,其特征在于步骤三和步骤四中施镀的金属为合金或金属单质。
8.根据权利要求1所述的一种超轻仿生金属材料的制备方法,其特征在于步骤三和步骤四中施镀工艺为化学镀、电镀、离子镀或蒸镀。
9.根据权利要求1所述的一种超轻仿生金属材料的制备方法,其特征在于步骤四中去活化处理为:将模板的多孔结构封闭。
10.根据权利要求1所述的一种超轻仿生金属材料的制备方法,其特征在于步骤五中去模板处理为:
采用高温炉,控制升温速度为10℃/min,将模板加热至光敏树脂的灰化温度进行高温灼烧,保温30min;
或者将模板的顶端开设预留口,然后放入温度为60℃、质量百分含量为12%的氢氧化钠溶液中浸泡。
CN201910770684.6A 2019-08-20 2019-08-20 一种超轻仿生金属材料的制备方法 Active CN110331390B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910770684.6A CN110331390B (zh) 2019-08-20 2019-08-20 一种超轻仿生金属材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910770684.6A CN110331390B (zh) 2019-08-20 2019-08-20 一种超轻仿生金属材料的制备方法

Publications (2)

Publication Number Publication Date
CN110331390A true CN110331390A (zh) 2019-10-15
CN110331390B CN110331390B (zh) 2021-07-02

Family

ID=68150020

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910770684.6A Active CN110331390B (zh) 2019-08-20 2019-08-20 一种超轻仿生金属材料的制备方法

Country Status (1)

Country Link
CN (1) CN110331390B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102068916A (zh) * 2010-11-17 2011-05-25 无锡中科光远生物材料有限公司 一种自抽运仿生膜及其制备方法
JP2013059896A (ja) * 2011-09-13 2013-04-04 Japan Polypropylene Corp プロピレン系樹脂成形体
CN104710548A (zh) * 2014-01-03 2015-06-17 刘毓海 一种3d打印用核心材料
CN109504869A (zh) * 2018-12-12 2019-03-22 西南交通大学 一种具有仿生多级结构的金属基纳米复合材料及其制备方法
CN109734342A (zh) * 2019-01-23 2019-05-10 东南大学 一种基于光固化3d打印的仿生混凝土粗骨料及其制备方法和应用
CN109972093A (zh) * 2019-03-22 2019-07-05 中车工业研究院有限公司 一种高聚物仿生构型光热转换材料及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102068916A (zh) * 2010-11-17 2011-05-25 无锡中科光远生物材料有限公司 一种自抽运仿生膜及其制备方法
JP2013059896A (ja) * 2011-09-13 2013-04-04 Japan Polypropylene Corp プロピレン系樹脂成形体
CN104710548A (zh) * 2014-01-03 2015-06-17 刘毓海 一种3d打印用核心材料
CN109504869A (zh) * 2018-12-12 2019-03-22 西南交通大学 一种具有仿生多级结构的金属基纳米复合材料及其制备方法
CN109734342A (zh) * 2019-01-23 2019-05-10 东南大学 一种基于光固化3d打印的仿生混凝土粗骨料及其制备方法和应用
CN109972093A (zh) * 2019-03-22 2019-07-05 中车工业研究院有限公司 一种高聚物仿生构型光热转换材料及其制备方法和应用

Also Published As

Publication number Publication date
CN110331390B (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
Castilho et al. Multitechnology biofabrication: a new approach for the manufacturing of functional tissue structures?
CN110482481A (zh) 一种末端膨大微结构阵列仿生黏附材料的制备方法
CN110331390A (zh) 一种超轻仿生金属材料的制备方法
Oladapo et al. Shape memory polymer review for flexible artificial intelligence materials of biomedical
CN109234735A (zh) 一种ebm成型钛植入体及其制备方法和应用
Wu et al. Recent advances in the material design for intelligent wearable devices
Garg et al. Significance of 3D printing for a sustainable environment
Xiao et al. Hydrophobic, hemostatic and durable nanofiber composites with a screw-like surface architecture for multifunctional sensing electronics
Zhang et al. Flexible tactile sensors with biomimetic microstructures: Mechanisms, fabrication, and applications
Whenish et al. Design and performance of additively manufactured lightweight bionic hand
Zheng et al. Cold-atmospheric-plasma–induced skin wrinkle
US20220056588A1 (en) Metal coating method for plastic outer shape requiring robustness
Klenam et al. Global perspective and African outlook on additive manufacturing research− an overview
CN110876817B (zh) 多孔peek仿生骨修复材料和具有多层结构的peek仿生骨制件及其制备方法
CN107137223A (zh) 一种多功能智能化漂浮设备
Artmann et al. Biological, physical and technical basics of cell engineering
Kumar et al. A comprehensive review of FDM printing in sensor applications: Advancements and future perspectives
CN102226291B (zh) 碳/碳复合材料表面的氧化处理方法
KR102659978B1 (ko) 이종 구조의 초고감도 정전용량형 촉각 센서 및 그 제조방법
CN208388982U (zh) 一种多功能智能化漂浮设备
Wang et al. Surface modification of porous titanium with rice husk as space holder
Bocardo APATITE FORMATION ON COBALT AND TITANIUM ALLOYS BY A BIOMIMETIC PROCESI
Poddar Additive Manufacturing of Carbon Fiber Reinforced Polymer Lattice Structures
Li et al. Laser-based bionic manufacturing
Granizo Cuadrado Design and Manufacturing with Additive Manufacturing Technologies of Electrically Controlled Forearm Prosthesis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant