CN110323935B - 一种单电感升压与升降压双输出直流变换器 - Google Patents

一种单电感升压与升降压双输出直流变换器 Download PDF

Info

Publication number
CN110323935B
CN110323935B CN201910722302.2A CN201910722302A CN110323935B CN 110323935 B CN110323935 B CN 110323935B CN 201910722302 A CN201910722302 A CN 201910722302A CN 110323935 B CN110323935 B CN 110323935B
Authority
CN
China
Prior art keywords
output
inductor
input voltage
diode
voltage source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910722302.2A
Other languages
English (en)
Other versions
CN110323935A (zh
Inventor
陈桂鹏
卿新林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201910722302.2A priority Critical patent/CN110323935B/zh
Publication of CN110323935A publication Critical patent/CN110323935A/zh
Application granted granted Critical
Publication of CN110323935B publication Critical patent/CN110323935B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/1552Boost converters exploiting the leakage inductance of a transformer or of an alternator as boost inductor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/1557Single ended primary inductor converters [SEPIC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种单电感升压与升降压双输出直流变换器,涉及直流变换技术。包括输入电压源、电感、开关管、二极管、输出电容以及输出电阻;输入电压源Vi的正端与电感L1的一端相连,电感L1的另一端与开关管的漏极相连,开关管S1的源极与输入电压源Vi的负端相连,开关管S2的源极与二极管Ds2的阳极相连,二极管Ds2的阴极与输出电容C1的一端、输出电阻R1的一端相连,输出电容C1的另一端和输出电阻R1的另一端相连于输入电压源Vi的负端,开关管S3的源极与二极管Ds3的阳极相连,二极管Ds3的阴极与输出电容C2的一端、输出电阻R2的一端相连,输出电容C2的另一端和输出电阻R2的另一端相连于输入电压源Vi的正端。

Description

一种单电感升压与升降压双输出直流变换器
技术领域
本发明涉及直流变换技术,尤其是涉及一种单电感升压与升降压双输出直流变换器。
背景技术
在新能源直流微网、电动汽车、个人电脑等诸多工业及生活应用中,存在多个电压不同的直流端口,它们之间需要通过直流变换器来实现电压调节和功率控制。针对此需求,最简单的一种解决方案是使用多个独立的直流变换器。但是该方案使用的元件数量多,导致***的体积大、成本高。为优化***的成本和体积,国内外研究提出了单电感多端口直流变换器改进方案,它仅需一个电感作为共同的功率传输途径,从而有效地减少了磁芯元件的使用数量。
目前,基于经典的boost两端口变换器,学者们已提出了三种不同的单电感双输出直流变换器。在第一种单电感双输出直流变换器中,第二路输出的负端与原输出的正端相连,因此第二路的输出电流必须要小于第一路的输出电流,限制了其应用推广([1]A.Nami,F.Zare,A.Ghosh,and F.Blaabjerg,"Multi-output DC-DC converters based on diode-clamped converters configuration:topology and control strategy,"IET PowerElectron.,vol.3,no.2,pp.197-208,Mar.2010)。在第二种单电感双输出直流变换器中,第二路输出的负端与原输出的负端相连([2]W.Ki and D.Ma,"Single-inductor multiple-output switching converters,"in IEEE 32nd Annual Power ElectronicsSpecialists Conference,2001,pp.226-231)。在该变换器中,要求两路输出电压均大于输入电压。若有一路输出电压比输入电压小,则其输出电流也会受到限制。在第三种单电感双输出直流变换器中,第二路输出的正端与输入的负端相连,可同时提供升压和升降压两路输出,但是在每个电感电流不为零的换流模态,总有两个半导体器件处于导通状态,它的导通损耗比较高([3]L.Benadero,V.Moreno-Font,R.Giral,and A.E.Aroudi,"Topologiesand control of a class of single inductor multiple-output convertersoperating in continuous conduction mode,"IET Power Electron.,vol.4,no.8,pp.927-935,Sept.2011)。
发明内容
本发明的目的在于针对现有基于经典的boost两端口变换器衍生出的单电感双输出直流变换器存在的问题,提供一种单电感升压(boost)与升降压(buck-boost)双输出直流变换器。
本发明包括一个输入电压源Vi,一个电感L1,三个开关管S1、S2、S3,两个二极管Ds2、Ds3,两个输出电容C1、C2以及两个输出电阻R1、R2;所述输入电压源Vi的正端与电感L1的一端相连,电感L1的另一端与开关管S1、S2和S3的漏极相连,开关管S1的源极与输入电压源Vi的负端相连,开关管S2的源极与二极管Ds2的阳极相连,二极管Ds2的阴极与输出电容C1的一端、输出电阻R1的一端相连,输出电容C1的另一端和输出电阻R1的另一端相连于输入电压源Vi的负端,开关管S3的源极与二极管Ds3的阳极相连,二极管Ds3的阴极与输出电容C2的一端、输出电阻R2的一端相连,输出电容C2的另一端和输出电阻R2的另一端相连于输入电压源Vi的正端。
所述双输出直流变换器中输入电压Vi与第一路输出电压Vo1为升压关系(boost),输入电压Vi与第二路输出电压Vo2为升降压关系(buck-boost),两路输出电流不受彼此限制。
所述双输出直流变换器中,在第一路输出电压Vo1大于输入电压Vi和第二路输出电压Vo2之和的情况下,可以将开关管S2省去;在第一路输出电压Vo1小于输入电压Vi和第二路输出电压Vo2之和的情况下,可以将开关管S3省去。由于半导体器件的数量得以减少,所述双输出直流变换器的导通损耗得以进一步降低。
所述双输出直流变换器的两路输出负载不局限于纯电阻R1、R2,还可以为其他形式负载比如LED。
本发明提供一种可同时提供升压(boost)和升降压(buck-boost)的单电感双输出直流变换器,它的两路输出电流不受彼此限制且导通损耗可有效减小。在电感电流不为零的换流模态中,存在仅有一个半导体器件导通的模态,因此变换器的导通损耗比较低。由于半导体器件的数量得以减少,所述双输出直流变换器的导通损耗得以进一步降低。
附图说明
图1为本发明所述单电感升压与升降压双输出直流变换器示意图;
图2为本发明所述单电感升压与升降压双输出直流变换器在第一路输出电压Vo1大于输入电压Vi和第二路输出电压Vo2之和情况下的简化电路图;
图3为本发明所述单电感升压与升降压双输出直流变换器在第一路输出电压Vo1小于输入电压Vi和第二路输出电压Vo2之和情况下的简化电路图;
图4为图2中电路在DCM下的开关管驱动信号波形和电感电流波形图;
图5为图2中电路在图4的t0~t1区间和t3~t4区间的等效电路图;
图6为图2中电路在图4的t1~t2区间的等效电路图;
图7为图2中电路在图4的t2~t3区间和t5~t6区间的等效电路图;
图8为图2中电路在图4的t4~t5区间的等效电路图。
具体实施方式
为了更具体地描述本发明,下面实施例将结合附图对本发明结构组成及其相关工作原理进行详细说明。
如图1所示,本发明实施例包括一个输入电压源Vi,一个电感L1,三个开关管S1、S2、S3,两个二极管Ds2、Ds3,两个输出电容C1、C2以及两个输出电阻R1、R2;输入电压源Vi的正端与电感L1的一端相连,电感L1的另一端与开关管S1、S2和S3的漏极相连,开关管S1的源极与输入电压源Vi的负端相连,开关管S2的源极与二极管Ds2的阳极相连,二极管Ds2的阴极与输出电容C1的一端、输出电阻R1的一端相连,输出电容C1的另一端和输出电阻R1的另一端相连于输入电压源Vi的负端,开关管S3的源极与二极管Ds3的阳极相连,二极管Ds3的阴极与输出电容C2的一端、输出电阻R2的一端相连,输出电容C2的另一端和输出电阻R2的另一端相连于输入电压源Vi的正端。
在第一路输出电压Vo1大于输入电压Vi和第二路输出电压Vo2之和的情况下(Vo1>Vi+Vo2),可以将图1中开关管S2省去,得到所述变换器的简化电路如图2所示。包括一个输入电压源Vi,一个电感L1,两个开关管S1、S3,两个二极管Ds2、Ds3,两个输出电容C1、C2以及两个输出电阻R1、R2。进一步地,输入电压源Vi的正端与电感L1的一端相连,电感L1的另一端与开关管S1的漏极、开关管S3的漏极和二极管Ds2的阳极相连,开关管S1的源极与输入电压源Vi的负端相连,二极管Ds2的阴极与输出电容C1的一端、输出电阻R1的一端相连,输出电容C1的另一端和输出电阻R1的另一端相连于输入电压源Vi的负端,开关管S3的源极与二极管Ds3的阳极相连,二极管Ds3的阴极与输出电容C2的一端、输出电阻R2的一端相连,输出电容C2的另一端和输出电阻R2的另一端相连于输入电压源Vi的正端。
在第一路输出电压Vo1小于输入电压Vi和第二路输出电压Vo2之和的情况下(Vo1<Vi+Vo2),可以将图1中开关管S3省去,得到所述变换器的简化电路如图3所示。包括一个输入电压源Vi,一个电感L1,两个开关管S1、S2,两个二极管Ds2、Ds3,两个输出电容C1、C2以及两个输出电阻R1、R2。进一步地,输入电压源Vi的正端与电感L1的一端相连,电感L1的另一端与开关管S1的漏极、开关管S2的漏极和二极管Ds3的阳极相连,开关管S1的源极与输入电压源Vi的负端相连,开关管S2的源极与二极管Ds2的阳极相连,二极管Ds2的阴极与输出电容C1的一端、输出电阻R1的一端相连,输出电容C1的另一端和输出电阻R1的另一端相连于输入电压源Vi的负端,二极管Ds3的阴极与输出电容C2的一端、输出电阻R2的一端相连,输出电容C2的另一端和输出电阻R2的另一端相连于输入电压源Vi的正端。
所述发明变换器(图1)及其两种简化电路(图2和3),均可工作于连续导通模式(Continuous Conduction Mode,CCM)和断续导通模式(Discontinuous Conduction Mode,DCM)。它们的工作原理相似,在本发明中以图2中简化电路为例,介绍其工作于DCM下的运行原理。
在DCM下,图2电路中开关管S1的驱动信号vgs1、开关管S3的驱动信号vgs3和电感L1的电流iL的波形如图4所示。开关管S1在每半个开关周期开始的时刻开通,且在第一个半周期t0~t3的导通时间为D1Ts、在第二个半周期t3~t6的导通时间为D2Ts。开关管S3在第一个半周期t0~t3内一直关断、在第二个半周期t3~t6内一直导通。由图4可知,在一个开关周期内,图2电路有6种工作模态。
模态1(t0~t1):在t0时刻,电感电流iL为零。此时开通开关管S1,电感L1将被输入电压源Vi充电,电感电流iL线性上升,如式(1)所示。在此模态,二极管Ds2被第一路输出电压Vo1反向钳位,二极管Ds2反向偏置,第一路的输出电阻R1的能量由输出电容C1提供;同理,二极管Ds3被输入电压Vi和第二路输出电压Vo2之和反向钳位,二极管Ds3反向偏置,第二路的输出电阻R2的能量由输出电容C2提供。等效电路如图5所示。
Figure BDA0002157644430000041
模态2(t1~t2):在t1时刻,关断开关管S1,电感电流iL将通过二极管Ds2续流,电感L1被输入电压源Vi和第一路输出电压Vo1之差放电,电感电流iL线性下降,如式(2)所示。在此模态,电感电流iL给输出电容C1充电以及提供能量给第一路的输出电阻R1。由于开关管S3为关断状态,第二路的输出电阻R2的能量还是由输出电容C2提供。等效电路如图6所示。
Figure BDA0002157644430000042
模态3(t2~t3):在t2时刻,电感电流iL下降为零。在本模态,开关管S1、S3和二极管Ds2、Ds3均不工作。第一路的输出电阻R1的能量由输出电容C1提供,第二路的输出电阻R2的能量由输出电容C2提供。等效电路如图7所示。
模态4(t3~t4):在t3时刻,同时开通开关管S1和开关管S3。此模态与模态1完全相同,电感L1将被输入电压源Vi充电,电感电流iL线性上升,如式(3)所示。
Figure BDA0002157644430000043
模态5(t4~t5):在t4时刻,关断开关管S1。由于开关管S3为导通状态,电感电流iL将通过二极管Ds3续流,给输出电容C2充电以及提供能量给第二路的输出电阻R2。二极管Ds2被电压Vo1-(Vi+Vo2)反向钳位,二极管Ds2反向偏置,第一路的输出电阻R1的能量由输出电容C1提供。在此模态,电感电流iL线性下降,如式(4)所示。等效电路如图8所示。
Figure BDA0002157644430000051
模态6(t5~t6):在t5时刻,电感电流iL下降为零。本模态与模态3完全相同。
根据以上工作模态分析及式(1)~(4),可求得输入电压Vi与第一路输出电压Vo1、第二路输出电压Vo2的关系如式(5)所示。
Figure BDA0002157644430000052
其中,第一路输出电压Vo1一定大于Vi,用于实现升压功能(boost);第二路输出电压Vo2可大于或小于Vi,用于实现升降压功能(buck-boost)。此外,两路输出电流之间不存在限制关系,而且由于开关管和二极管的数量较少,变换器的导通损耗也得以有效降低。

Claims (2)

1.一种单电感升压与升降压双输出直流变换器,其特征在于包括一个输入电压源Vi,一个电感L1,三个开关管S1、S2、S3,两个二极管Ds2、Ds3,两个输出电容C1、C2以及两个输出电阻R1、R2;输入电压源Vi的正端与电感L1的一端相连,电感L1的另一端与开关管S1、S2和S3的漏极相连,开关管S1的源极与输入电压源Vi的负端相连,开关管S2的源极与二极管Ds2的阳极相连,二极管Ds2的阴极与输出电容C1的一端、输出电阻R1的一端相连,输出电容C1的另一端和输出电阻R1的另一端相连于输入电压源Vi的负端,开关管S3的源极与二极管Ds3的阳极相连,二极管Ds3的阴极与输出电容C2的一端、输出电阻R2的一端相连,输出电容C2的另一端和输出电阻R2的另一端相连于输入电压源Vi的正端;所述输出电阻R1两端电压是第一路输出电压Vo1,输出电阻R2两端电压是第二路输出电压Vo2,输入电压源Vi与第一路输出电压Vo1为升压关系,输入电压源Vi与第二路输出电压Vo2为升降压关系。
2.如权利要求1所述一种单电感升压与升降压双输出直流变换器,其特征在于当第一路输出电压Vo1大于输入电压源Vi和第二路输出电压Vo2之和时,不设开关管S2;当第一路输出电压Vo1小于输入电压源Vi和第二路输出电压Vo2之和时,不设开关管S3
CN201910722302.2A 2019-08-06 2019-08-06 一种单电感升压与升降压双输出直流变换器 Active CN110323935B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910722302.2A CN110323935B (zh) 2019-08-06 2019-08-06 一种单电感升压与升降压双输出直流变换器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910722302.2A CN110323935B (zh) 2019-08-06 2019-08-06 一种单电感升压与升降压双输出直流变换器

Publications (2)

Publication Number Publication Date
CN110323935A CN110323935A (zh) 2019-10-11
CN110323935B true CN110323935B (zh) 2020-09-25

Family

ID=68125554

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910722302.2A Active CN110323935B (zh) 2019-08-06 2019-08-06 一种单电感升压与升降压双输出直流变换器

Country Status (1)

Country Link
CN (1) CN110323935B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7061214B2 (en) * 2003-11-25 2006-06-13 Texas Instruments Incorporated Single inductor dual output buck converter with frequency and time varying offset control
US20090237044A1 (en) * 2008-03-18 2009-09-24 Orges Gjini Bidirectional interleaved DC to DC converter utilizing positively coupled filter inductors
CN104092396B (zh) * 2014-06-30 2016-08-24 南京航空航天大学 一种单电感双Boost逆变器及其控制方法
GB2534348A (en) * 2014-11-21 2016-07-27 Reinhausen Maschf Scheubeck Active Snubber
CN105846696B (zh) * 2016-03-21 2018-07-06 南京航空航天大学 一种两级式ac-dc变换器及其控制方法
CN109149945B (zh) * 2018-09-18 2019-08-23 厦门大学 一种适用于光储直流微电网的三端口变流器

Also Published As

Publication number Publication date
CN110323935A (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
US11088616B2 (en) Isolated converter with switched capacitors
US8760128B2 (en) Three-phase boost-buck power factor correction converter
US20220239221A1 (en) Voltage regulator
JP6302095B2 (ja) スイッチング電源及び該スイッチング電源を制御する方法
US20150115926A1 (en) Power supply device
US10840802B2 (en) Isolated switched capacitor converter
US11817781B2 (en) Power converter having power stage circuits and an auxiliary module
CN113346750A (zh) 基于耦合电感的软开关同相buck-boost变换器及控制方法
CN112600428B (zh) 有源箝位交错不对称反激式直流变换器
CN106655774B (zh) 一种多输入高增益dc/dc变换器
CN109713905B (zh) CCM/DCM复用的单耦合电感多输出buck变换器
CN110535340B (zh) 一种变结构的宽输入降压电路及装置
CN110323935B (zh) 一种单电感升压与升降压双输出直流变换器
CN114667674A (zh) Dc/dc功率转换器、用于控制dc/dc功率转换器的切换的方法、dc/dc功率转换器布置、以及***
CN114514680A (zh) Dc/dc功率转换器、用于控制dc/dc功率转换器的切换的方法、dc/dc功率转换器布置、以及***
CN112072914A (zh) 一种用于混合储能的三端口直流变换器
US20230170784A1 (en) Charging circuit
CN106602872A (zh) 一种级联电压举升型准z源变换器
CN114499183A (zh) 一种宽范围输入非隔离三端口dc-dc变换器
US20160233769A1 (en) Three-level sepic converter circuit
EP3895299B1 (en) Hybrid power converter and method
CN211296563U (zh) 输入输出电流均连续的升压型dc-dc变换器
CN107634645B (zh) 一种基于耦合电感的输出支路结构
TW201611494A (zh) 降壓型直流轉換器
US20230122225A1 (en) Multipath Hybrid Regulator

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant