CN110323289A - 一种单载流子光电探测器 - Google Patents

一种单载流子光电探测器 Download PDF

Info

Publication number
CN110323289A
CN110323289A CN201910349102.7A CN201910349102A CN110323289A CN 110323289 A CN110323289 A CN 110323289A CN 201910349102 A CN201910349102 A CN 201910349102A CN 110323289 A CN110323289 A CN 110323289A
Authority
CN
China
Prior art keywords
layer
cathode
ingaas
contact layer
gaassb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910349102.7A
Other languages
English (en)
Other versions
CN110323289B (zh
Inventor
陈佰乐
陈垚江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201910349102.7A priority Critical patent/CN110323289B/zh
Publication of CN110323289A publication Critical patent/CN110323289A/zh
Application granted granted Critical
Publication of CN110323289B publication Critical patent/CN110323289B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种单载流子光电探测器及其制备方法。所述光电探测器包括半导体主体、阴极及阳极,阴极及阳极分别与阴极接触层、阳极接触层相接触,且该两个金属电极的表面与共面波导电极连接;半导体主体的结构依次包括InP衬底、阴极接触层、集电层、InGaAs/GaAsSb多量子阱吸收层、电子阻挡层、阳极接触层。制备方法为:在InP衬底上依次生长出阴极接触层等制得半导体主体;然后依次制备阳极、第一层台阶、阴极、第二台阶、共面波导电极。本发明可以工作于2μm波段,并且由于采用了单载流子传输的结构,同时还具有低暗电流、高响应带宽的特点,能够满足2μm波段光通信***的需求。

Description

一种单载流子光电探测器
技术领域
本发明涉及一种半导体光电探测器,具体涉及一种工作于2μm波段的基于InGaAs/GaAsSb二类多量子阱吸收区的单载流子光电探测器,属于光电探测器技术领域。
背景技术
随着光通信技术的日益成熟,光通信***的容量已经逐渐趋近于理论极限。在不远的将来,现有光通信***将不能满足人们对***容量的日益增长的需求得益于2μm波段空心光子带隙光纤(Hollow-core photonic band-gap fiber,HC-PBGF)的低损耗、低延时特性,以及掺铥光纤放大器(Thulium doped fiber amplifier,TDFA)的高增益、高带宽特性,2μm波段将可能成为下一代光通信***的发展方向。2μm光通信***的关键器件(激光器、调制器、放大器、探测器等)是国内外学者研究的热点。
光通信***对光电探测器的性能要求包括较高的响应度,较低的噪声,以及较高的频率响应带宽等。目前用于2μm波段光通信***的光电探测器尚无成熟的解决方案。一方面是由于对应于2μm波长的半导体材料的生长技术不成熟,材料与衬底晶格失配,造成器件暗电流较大。另一方面,现有的2μm探测器的结构难以实现较高的响应速度,限制了整个光通信***的带宽特性。
基于InP衬底的InGaAs/GaAsSb二类多量子阱是短波红外半导体光电探测器的一种解决方案。利用InGaAs和GaAsSb形成有效带隙低于原材料带隙的二类多量子阱结构,从而将吸收区截至波长延伸至2~3μm。由于InGaAs/GaAsSb二类多量子阱与InP衬底晶格匹配,制成的探测器具有暗电流低、探测度高的优点。
发明内容
本发明所要解决的技术问题是:现有2μm波段光电探测器晶格质量不佳、频率响应带宽不高的问题。
为了解决上述技术问题,本发明提供了一种单载流子光电探测器,其特征在于,包括半导体主体、阴极及阳极,阴极及阳极分别与阴极接触层、阳极接触层相接触,且该两个金属电极的表面与共面波导电极连接,用于将响应的电信号引出与探测器、后级电路连接;半导体主体的结构依次包括InP衬底、阴极接触层、集电层、InGaAs/GaAsSb多量子阱吸收层、电子阻挡层、阳极接触层;其中,阴极接触层用于使半导体主体)与阴极之间形成欧姆接触,InGaAs/GaAsSb多量子阱吸收层用于吸收光子,电子阻挡层用于阻挡电子向阳极方向扩散,阳极接触层用于使半导体主体与阳极之间形成欧姆接触。
优选地,所述阴极接触层采用N型重掺杂的半导体材料;阳极接触层采用P型重掺杂的半导体材料。
优选地,所述集电层采用InP集电层。
优选地,所述InGaAs/GaAsSb多量子阱吸收层由多个周期性重复的InGaAs层和GaAsSb层构成。
更,所述InGaAs/GaAsSb多量子阱吸收层吸收波长在2μm波段的光子。每个周期内InGaAs层和GaAsSb层的厚度为纳米级,形成二类交错的量子阱结构以及分离的能级。当形成的电子基态能级与空穴基态能级之差小于2μm波长的光子对应的能量时,就能吸收2μm波长的光。当入射光激发一对电子空穴对之后,载流子被束缚在量子阱中,之后通过热激发或隧穿的机制离开量子阱。
优选地,所述InGaAs/GaAsSb多量子阱吸收层的掺杂类型为P型,使得空穴作为多数载流子能以较短的时间弛豫,从而让速度更快的电子主导器件的响应速度。
优选地,所述电子阻挡层采用P型重掺杂的宽带隙材料。
该探测器基于生长技术成熟的InP衬底,可以工作于2μm波段,同时还具有低暗电流、高响应带宽的特点。
本发明还提供了一种上述单载流子光电探测器的制备方法,其特征在于,包括以下步骤:
步骤1):利用分子束外延方法在InP衬底上依次生长出阴极接触层、集电层、InGaAs/GaAsSb多量子阱吸收层、电子阻挡层、阳极接触层;
步骤2):利用电子束蒸发技术在阳极接触层的上表面依次蒸镀钛、铂、金,构成阳极;
步骤3):利用湿法刻蚀第一层台阶,刻蚀面停止在阴极接触层内;
步骤4):利用电子束蒸发技术在阴极接触层表面依次蒸镀锗、金、镍、金,构成阴极;
步骤5):利用湿法刻蚀形成包围第一层台阶、阴极、阳极的第二台阶,刻蚀面停止在InP衬底内;
步骤6):利用电镀技术在InP衬底上电镀一层金,作为共面波导电极,与阴极、阳极相连。
优选地,所述步骤1)中的阴极接触层由一层掺杂浓度为1×1019cm-3的N型InP层和一层掺杂浓度为1×1018cm-3的N型InP层组成,其中,后者用于减少杂质离子向InP集电层扩散;集电层的掺杂浓度为1×1016cm-3以下;InGaAs/GaAsSb多量子阱吸收层的结构为:30个周期的InGaAs层和GaAsSb层,每个周期包含为一层InGaAs层和一层GaAsSb层,掺杂类型均为P型掺杂,其中,第1至第10个周期的掺杂浓度为5×1017cm-3,第11至第20个周期的掺杂浓度为1×1018cm-3,第21至第30个周期的掺杂浓度为2×1018cm-3;电子阻挡层的材料为AlxGa1-xAsySb1-y,其中,x=0.30,y=0.51,掺杂类型为P掺杂,掺杂浓度为1×1019cm-3;阳极接触层采用InGaAs阳极接触层,掺杂类型为P型掺杂,掺杂浓度为2×1019cm-3
更优选地,所述阴极接触层的厚度为900nm,集电层的厚度为400nm,InGaAs/GaAsSb多量子阱吸收层中InGaAs层和GaAsSb层的厚度均为3nm和3nm,电子阻挡层的厚度为30nm,阳极接触层的厚度为50nm;所述步骤2)中蒸镀的钛、铂、金的厚度分别为20nm、20nm、80nm;所述步骤3)中第一层台阶为直径10μm的圆柱形;所述步骤4)中蒸镀的锗、金、镍、金的厚度分别为10nm、10nm、20nm、80nm;所述步骤6)中共面波导电极的厚度为2μm。
本发明提供了一种基于InGaAs/GaAsSb二类多量子阱吸收区的单载流子光电探测器,该探测器基于生长技术成熟的InP衬底,可以工作于2μm波段,并且由于采用了单载流子传输的结构,同时还具有低暗电流、高响应带宽的特点,能够满足2μm波段光通信***的需求。
相比于现有的2μm波段高速光电探测器而言,本发明的有益效果如下:
1、该光电探测器基于生长技术成熟的InP衬底,成本相对较低,同时材料品质能够得到保证,从而器件性能较稳定;
2、该光电探测器使用的化合物半导体材料与InP衬底晶格匹配,从而有较低的暗电流,较高的探测度;
3、该光电探测器采用InGaAs/GaAsSb多量子阱作为吸收区,其吸收谱能够覆盖2μm波段,同时还具有一定的可调节范围。
4、该光电探测器使用了单行载流子结构,其渡越时间由运动速度更快的电子来主导,从而能够实现更高的响应速度。
附图说明
图1-6为实施例提供的单载流子光电探测器不同步骤时的示意图。
具体实施方式
为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。
实施例
一种2μm波段的单载流子光电探测器的制备方法,包括以下步骤:
步骤1:利用分子束外延方法在InP衬底a上依次生长出阴极接触层b、集电层c、InGaAs/GaAsSb多量子阱吸收层d、电子阻挡层e、阳极接触层f,如图1所示;各生长层的参数如表1所示:
表1
由表1可见,阴极接触层b的厚度为900nm,由一层掺杂浓度为1×1019cm-3的N型InP层和一层掺杂浓度为1×1018cm-3的N型InP层组成,其中,后者用于减少杂质离子向InP集电层扩散;
集电层c的厚度为400nm,掺杂浓度为1×1016cm-3以下;
InGaAs/GaAsSb多量子阱吸收层d的结构为:30个周期的InGaAs层和GaAsSb层,每个周期包含为一层厚度为3nm的InGaAs层和一层厚度为3nm的GaAsSb层,掺杂类型均为P型掺杂,其中,第1至第10个周期的掺杂浓度为5×1017cm-3,第11至第20个周期的掺杂浓度为1×1018cm-3,第21至第30个周期的掺杂浓度为2×1018cm-3
电子阻挡层e的厚度为30nm,其材料为AlxGa1-xAsySb1-y,其中,x=0.30,y=0.51,掺杂类型为P掺杂,掺杂浓度为1×1019cm-3
阳极接触层f的厚度为50nm,采用InGaAs阳极接触层,掺杂类型为P型掺杂,掺杂浓度为2×1019cm-3
步骤2:利用电子束蒸发技术在阳极接触层f的上表面依次蒸镀厚度分别为20nm、20nm、80nm的钛、铂、金,构成阳极6,如图2所示;
步骤3:利用湿法刻蚀第一层台阶1(直径10μm的圆柱形),刻蚀面停止在阴极接触层b内,如图3所示;
步骤4:利用电子束蒸发技术在阴极接触层b表面依次蒸镀厚度分别为10nm、10nm、20nm、80nm的锗、金、镍、金,构成阴极2,如图4所示;
步骤5:利用湿法刻蚀形成包围第一层台阶1、阴极2、阳极6的第二台阶3,刻蚀面停止在InP衬底a内,如图5所示;
步骤6:利用电镀技术在InP衬底a上电镀一层厚度为2μm的金,作为共面波导电极5,与阴极2、阳极6相连,如图6所示。
对上述制得的光电探测器进行响应度测试。利用黑体源(CI Systems SR200)产生宽谱光源,照射到制得的光电探测器上,并用傅里叶光谱仪(Thermo Scientific iS50RFT-IR)扫描上述光电探测器在2μm波段的光响应。测试得到上述制得的光电探测器在2μm波长的响应度为0.07A/W。
对上述制得的光电探测器进行频率响应测试。利用两个波长在2μm附近的DFB激光器(Sacher Lasertechnik DFB-2004-002-BF)拍频产生幅值变化频率范围在200MHz到30GHz的光源作为入射光4,使入射光4从InP衬底a的底部垂直射入,然后用射频功率计(Rohde&Schwarz NRP2)测量上述制得的光电探测器在不同入射光频率下产生的射频响应功率大小,从而得到其3dB带宽。测试得到的3dB带宽值在-3V偏压下能够达到25GHz。

Claims (10)

1.一种单载流子光电探测器,其特征在于,包括半导体主体、阴极(2)及阳极(6),阴极(2)及阳极(6)分别与阴极接触层(b)、阳极接触层(f)相接触,且该两个金属电极的表面与共面波导电极(5)连接,用于将响应的电信号引出与探测器、后级电路连接;半导体主体的结构依次包括InP衬底(a)、阴极接触层(b)、集电层(c)、InGaAs/GaAsSb多量子阱吸收层(d)、电子阻挡层(e)、阳极接触层(f);其中,阴极接触层(b)用于使半导体主体)与阴极(2)之间形成欧姆接触,InGaAs/GaAsSb多量子阱吸收层(d)用于吸收光子,电子阻挡层(e)用于阻挡电子向阳极(6)方向扩散,阳极接触层(f)用于使半导体主体与阳极(6)之间形成欧姆接触。
2.如权利要求1所述的单载流子光电探测器,其特征在于,所述阴极接触层(b)采用N型重掺杂的半导体材料;阳极接触层(f)采用P型重掺杂的半导体材料。
3.如权利要求1所述的单载流子光电探测器,其特征在于,所述集电层(c)采用InP集电层。
4.如权利要求1所述的单载流子光电探测器,其特征在于,所述InGaAs/GaAsSb多量子阱吸收层(d)由多个周期性重复的InGaAs层和GaAsSb层构成。
5.如权利要求5所述的单载流子光电探测器,其特征在于,所述InGaAs/GaAsSb多量子阱吸收层(d)吸收波长在2μm波段的光子。
6.如权利要求1所述的单载流子光电探测器,其特征在于,所述InGaAs/GaAsSb多量子阱吸收层(d)的掺杂类型为P型。
7.如权利要求1所述的单载流子光电探测器,其特征在于,所述电子阻挡层(e)采用P型重掺杂的宽带隙材料。
8.一种权利要求1-7任意一项所述的单载流子光电探测器的制备方法,其特征在于,包括以下步骤:
步骤1):利用分子束外延方法在InP衬底(a)上依次生长出阴极接触层(b)、集电层(c)、InGaAs/GaAsSb多量子阱吸收层(d)、电子阻挡层(e)、阳极接触层(f);
步骤2):利用电子束蒸发技术在阳极接触层(f)的上表面依次蒸镀钛、铂、金,构成阳极(6);
步骤3):利用湿法刻蚀第一层台阶(1),刻蚀面停止在阴极接触层(b)内;
步骤4):利用电子束蒸发技术在阴极接触层(b)表面依次蒸镀锗、金、镍、金,构成阴极(2);
步骤5):利用湿法刻蚀形成包围第一层台阶(1)、阴极(2)、阳极(6)的第二台阶(3),刻蚀面停止在InP衬底(a)内;
步骤6):利用电镀技术在InP衬底(a)上电镀一层金,作为共面波导电极(5),与阴极(2)、阳极(6)相连。
9.如权利要求8所述的单载流子光电探测器的制备方法,其特征在于,所述步骤1)中的阴极接触层(b)由一层掺杂浓度为1×1019cm-3的N型InP层和一层掺杂浓度为1×1018cm-3的N型InP层组成,其中,后者用于减少杂质离子向InP集电层扩散;集电层(c)的掺杂浓度为1×1016cm-3以下;InGaAs/GaAsSb多量子阱吸收层(d)的结构为:30个周期的InGaAs层和GaAsSb层,每个周期包含为一层InGaAs层和一层GaAsSb层,掺杂类型均为P型掺杂,其中,第1至第10个周期的掺杂浓度为5×1017cm-3,第11至第20个周期的掺杂浓度为1×1018cm-3,第21至第30个周期的掺杂浓度为2×1018cm-3;电子阻挡层(e)的材料为AlxGa1-xAsySb1-y,其中,x=0.30,y=0.51,掺杂类型为P掺杂,掺杂浓度为1×1019cm-3;阳极接触层(f)采用InGaAs阳极接触层,掺杂类型为P型掺杂,掺杂浓度为2×1019cm-3
10.如权利要求9所述的单载流子光电探测器的制备方法,其特征在于,所述阴极接触层(b)的厚度为900nm,集电层(c)的厚度为400nm,InGaAs/GaAsSb多量子阱吸收层(d)中InGaAs层和GaAsSb层的厚度均为3nm和3nm,电子阻挡层(e)的厚度为30nm,阳极接触层(f)的厚度为50nm;所述步骤2)中蒸镀的钛、铂、金的厚度分别为20nm、20nm、80nm;所述步骤3)中第一层台阶(1)为直径10μm的圆柱形;所述步骤4)中蒸镀的锗、金、镍、金的厚度分别为10nm、10nm、20nm、80nm;所述步骤6)中共面波导电极(5)的厚度为2μm。
CN201910349102.7A 2019-04-28 2019-04-28 一种单载流子光电探测器 Active CN110323289B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910349102.7A CN110323289B (zh) 2019-04-28 2019-04-28 一种单载流子光电探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910349102.7A CN110323289B (zh) 2019-04-28 2019-04-28 一种单载流子光电探测器

Publications (2)

Publication Number Publication Date
CN110323289A true CN110323289A (zh) 2019-10-11
CN110323289B CN110323289B (zh) 2021-08-27

Family

ID=68112956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910349102.7A Active CN110323289B (zh) 2019-04-28 2019-04-28 一种单载流子光电探测器

Country Status (1)

Country Link
CN (1) CN110323289B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111312848A (zh) * 2020-02-26 2020-06-19 光丰科技(浙江)有限公司 光电探测器、集成光电探测器及其制作方法
CN111430497A (zh) * 2020-03-31 2020-07-17 上海科技大学 用于中红外波段的半导体光电探测器及其制备方法
CN112086537A (zh) * 2020-09-21 2020-12-15 清华大学 一种高纯锗探测器
CN112420859A (zh) * 2020-11-18 2021-02-26 上海科技大学 850nm波段吸收区部分耗尽光电探测器及其制备方法
CN114242820A (zh) * 2021-12-06 2022-03-25 上海科技大学 一种基于InAs/InAsSb二类超晶格的中红外波段光电探测器
CN114400273A (zh) * 2022-01-17 2022-04-26 中山大学 一种InGaAs/InP体系的单行载流子的光电探测器制备方法
CN114975645A (zh) * 2022-05-14 2022-08-30 南京大学 一种稀土掺杂iii-v族半导体结构及其光电探测器结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104134713A (zh) * 2013-04-30 2014-11-05 住友电气工业株式会社 外延晶片及其制造方法、半导体元件和光学传感器装置
CN106505116A (zh) * 2016-11-30 2017-03-15 苏州苏纳光电有限公司 单行载流子探测器及其制作方法
CN106784132A (zh) * 2016-11-25 2017-05-31 中国科学院上海微***与信息技术研究所 单行载流子光探测器结构及其制作方法
CN106784123A (zh) * 2016-11-23 2017-05-31 苏州苏纳光电有限公司 单行载流子光电探测器及其制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104134713A (zh) * 2013-04-30 2014-11-05 住友电气工业株式会社 外延晶片及其制造方法、半导体元件和光学传感器装置
CN106784123A (zh) * 2016-11-23 2017-05-31 苏州苏纳光电有限公司 单行载流子光电探测器及其制作方法
CN106784132A (zh) * 2016-11-25 2017-05-31 中国科学院上海微***与信息技术研究所 单行载流子光探测器结构及其制作方法
CN106505116A (zh) * 2016-11-30 2017-03-15 苏州苏纳光电有限公司 单行载流子探测器及其制作方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JHIH-MIN WUN,ET AL.: "《Ultrafast Uni-Traveling Carrier Photodiodes With》", 《IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS》 *
YAOJIANG CHEN,ET AL.: "《Design of InP-Based High-Speed Photodiode》", 《IEEE JOURNAL OF QUANTUM ELECTRONICS》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111312848A (zh) * 2020-02-26 2020-06-19 光丰科技(浙江)有限公司 光电探测器、集成光电探测器及其制作方法
CN115188855A (zh) * 2020-02-26 2022-10-14 光丰科技(浙江)有限公司 光电探测器、集成光电探测器及其制作方法
CN111430497A (zh) * 2020-03-31 2020-07-17 上海科技大学 用于中红外波段的半导体光电探测器及其制备方法
CN111430497B (zh) * 2020-03-31 2021-11-16 上海科技大学 用于中红外波段的半导体光电探测器及其制备方法
CN112086537A (zh) * 2020-09-21 2020-12-15 清华大学 一种高纯锗探测器
CN112420859A (zh) * 2020-11-18 2021-02-26 上海科技大学 850nm波段吸收区部分耗尽光电探测器及其制备方法
CN112420859B (zh) * 2020-11-18 2022-05-13 上海科技大学 850nm波段吸收区部分耗尽光电探测器及其制备方法
CN114242820A (zh) * 2021-12-06 2022-03-25 上海科技大学 一种基于InAs/InAsSb二类超晶格的中红外波段光电探测器
CN114400273A (zh) * 2022-01-17 2022-04-26 中山大学 一种InGaAs/InP体系的单行载流子的光电探测器制备方法
CN114400273B (zh) * 2022-01-17 2023-10-31 中山大学 一种InGaAs/InP体系的单行载流子的光电探测器制备方法
CN114975645A (zh) * 2022-05-14 2022-08-30 南京大学 一种稀土掺杂iii-v族半导体结构及其光电探测器结构
CN114975645B (zh) * 2022-05-14 2024-03-19 南京大学 一种稀土掺杂iii-v族半导体结构及其光电探测器结构

Also Published As

Publication number Publication date
CN110323289B (zh) 2021-08-27

Similar Documents

Publication Publication Date Title
CN110323289A (zh) 一种单载流子光电探测器
US5371399A (en) Compound semiconductor having metallic inclusions and devices fabricated therefrom
KR100375829B1 (ko) 아발란치 광 검출기
CN111430497B (zh) 用于中红外波段的半导体光电探测器及其制备方法
CN113035982B (zh) 全硅掺杂多结电场增强型锗光波导探测器
Zhu et al. Self‐powered InP nanowire photodetector for single‐photon level detection at room temperature
Vendier et al. Thin-film inverted MSM photodetectors
CN106449855A (zh) 单行载流子光电探测器及其制作方法
Wun et al. GaSb-Based pin Photodiodes With Partially Depleted Absorbers for High-Speed and High-Power Performance at 2.5-$\mu\text {m} $ Wavelength
Li et al. High bandwidth surface-illuminated InGaAs/InP uni-travelling-carrier photodetector
CN106384755A (zh) InP基量子阱远红外探测器及其制作方法
Kumar et al. Design of mid-infrared Ge 1–x Sn x homojunction pin photodiodes on Si substrate
Jones AlxIn1-xAsySb1-y digital alloy avalanche photodiodes for low-noise applications
Jang et al. Metamorphic graded bandgap InGaAs-InGaAlAs-InAlAs double heterojunction PiIN photodiodes
CN109545882B (zh) 一种电容式光电探测器及制作工艺
KR102279914B1 (ko) 매우 효율적인 광-전기 변환 디바이스들
CN112420859B (zh) 850nm波段吸收区部分耗尽光电探测器及其制备方法
Sloan Photodetectors
CN103500766A (zh) 宽频带长波响应的GaAs/AlxGa1-xAs量子阱红外探测器及其制备方法与应用
Kim et al. Improvement of dark current using InP/InGaAsP transition layer in large-area InGaAs MSM photodetectors
Morse et al. Performance of Ge/Si receivers at 1310 nm
Zhu et al. Bandwidth characterization and optimization of high-performance mid-wavelength infrared HgCdTe e-avalanche photodiodes
Warren et al. The Electrical and Optical Properties of GaAs with as Precipitates (GaAs: As)
US20230146773A1 (en) GaAs Based Photodetectors Using Dilute Nitride for Operation in O-band and C-bands
CN110729374A (zh) 一种提高响应速度的改进的变容器型光电探测器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant