CN110322986A - A kind of preparation method of high fluidity graphene conductive slurry - Google Patents

A kind of preparation method of high fluidity graphene conductive slurry Download PDF

Info

Publication number
CN110322986A
CN110322986A CN201810272675.XA CN201810272675A CN110322986A CN 110322986 A CN110322986 A CN 110322986A CN 201810272675 A CN201810272675 A CN 201810272675A CN 110322986 A CN110322986 A CN 110322986A
Authority
CN
China
Prior art keywords
graphite
graphene
present
slurry
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810272675.XA
Other languages
Chinese (zh)
Other versions
CN110322986B (en
Inventor
赵永彬
苏凯民
吴开付
马立军
殷玉强
张在忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Oubo New Material Co Ltd
Original Assignee
Shandong Oubo New Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Oubo New Material Co Ltd filed Critical Shandong Oubo New Material Co Ltd
Priority to CN201810272675.XA priority Critical patent/CN110322986B/en
Priority to PCT/CN2018/109030 priority patent/WO2019184289A1/en
Publication of CN110322986A publication Critical patent/CN110322986A/en
Application granted granted Critical
Publication of CN110322986B publication Critical patent/CN110322986B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/19Preparation by exfoliation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables

Abstract

The present invention provides a kind of preparation methods of graphene conductive slurry, include the following steps, after first being removed graphite dispersing solution under conditions of ultrasound, then separate, obtain graphene nanometer sheet;Then after being mixed graphene nanometer sheet, dispersing agent and solvent that above-mentioned steps obtain, pre- slurry is obtained;After the pre- slurry that finally above-mentioned steps are obtained carries out sand milling mashing, graphene conductive slurry is obtained.The present invention has selected the liquid phase stripping method of low-temperature atmosphere-pressure, the method being sanded using graphite-solvent mixing-ultrasonic disperse-wet process, first prepare graphene nanometer sheet, then prepare the graphene conductive slurry of flowing again, can in a mild condition quickly, prepare graphene at low cost.And graphene prepared by the present invention has complete lamellar structure, it is not surface modified, the intrinsic feature for keeping two-dimensional slice, has the characteristics that high conductivity, high fluidity, can be used as conductive additive in fields such as lithium battery, supercapacitor, conductive coatings.

Description

A kind of preparation method of high fluidity graphene conductive slurry
Technical field
The invention belongs to technical field of graphene, are related to a kind of preparation method more particularly to one of graphene conductive slurry The preparation method of kind high fluidity graphene conductive slurry.
Background technique
Graphene be as six side of single layer of carbon atom it is tightly packed made of two dimensional crystal material, thickness is about 0.335 nanometer, With perfect crystal structure, electric conductivity with super strength is the best material of current electric conductivity, theoretical electronic transfer rate For 200000cm2/V.S, theoretical thermal conductivity is 5000W/m.K.Graphene because its conductive, superelevation specific surface area, solely The excellent performances such as special two-dimensional network structure, high intensity and high electron mobility, cause the extensive concern of people, Jin Erye Promote the fast development of graphene preparation technology.Just because of with above-mentioned many excellent physical chemical property, storing up Energy material, environmental project, sensing sensitive aspect are widely used, referred to as " dark fund " or " king of new material ", and potential Application prospect it is vast, have become global focus and research hotspot at present.
For the such application for realizing graphene, can prepare the preparation method with excellent properties graphene just becomes necessary Task.However in practical applications, the preparation of graphene is exactly a main barrier for restricting graphene practical application and development Hinder.Although scientific research personnel has developed numerous graphene preparation methods so far.The method for wherein comparing mainstream has graphite oxide Reduction method, epitaxial growth method and chemical vapour deposition technique (CVD) etc..Graphite oxide reduction method is prepare graphene at present best One of method is to react natural graphite with strong acid and oxidizing species to generate graphite oxide, is prepared by ultrasonic disperse Graphene oxide (mono-layer graphite oxide), be added reducing agent removal graphite oxide surface oxygen-containing group, as carboxyl, epoxy group and Hydroxyl obtains graphene.This method is easy to operate, preparation cost is low, can prepare graphene on a large scale, but because it is being made The strong oxidizer concentrated sulfuric acid or potassium permanganate etc. are introduced during standby, inevitably destroys the lattice structure of graphene, are introduced A large amount of defects, so as to cause the serious loss of graphene intrinsic performance.
Chemical vapour deposition technique (Chemical Vapor Deposition, CVD) refers to reactive material under gaseous condition It chemically reacts, generates the solid matrix surface that solid matter is deposited on heating, and then the technology of solid material is made. Although the graphite of the high-quality large area of complete, the few defect of lattice can be obtained with epitaxial growth method and chemical vapour deposition technique Alkene, but its preparation cost valuableness, low yield, preparation process require harshness, are unable to satisfy the business needs of large-scale production.Thus Above-mentioned these preparation methods are not met by the requirement of high-quality graphene industrialization in reality.
Solvent stripping method is just to propose for nearest 2 years, its principle is formed by a small amount of graphite dispersion in solvent The dispersion liquid of low concentration carries out intercalation at high temperature under high pressure, destroys the Van der Waals force of graphite layers, and solvent can be inserted at this time Enter graphite layers, removed layer by layer, prepares graphene.The method will not destroy graphene as oxidation-reduction method Structure can prepare the graphene of high quality.But there are the high requirements on the equipment, react the problems such as dangerous and at high cost, and The problem of there is also chemical reagent pollutions.
More important is no matter the graphene of which kind of above-mentioned method preparation is short of mobility, and it is easy can not to solve graphene The inherent shortcoming of reunion, so that graphene lacks mobility in application.
Therefore, in order to preferably realize the business application of graphene, a kind of more environmentally friendly preparation high-quality stone how is obtained The method of black alkene, while the defect for overcoming graphene easy to reunite, improve its mobility, are that each R & D Enterprises are faced in field One of key challenges and urgent problem to be solved.
Summary of the invention
In view of this, the technical problem to be solved in the present invention is that provide a kind of preparation method of graphene conductive slurry, Especially a kind of low temperature preparation method of high fluidity graphene conductive slurry, room temperature liquid phase stripping method provided by the invention, energy The graphene for obtaining having better electric conductivity quickly, inexpensive in a mild condition, and compounding aid form high stream The graphene conductive slurry of dynamic property, can be used as conductive additive in fields such as lithium battery, supercapacitors.
The present invention provides a kind of preparation methods of graphene conductive slurry, comprising the following steps:
1) it after being removed graphite dispersing solution under conditions of ultrasound, then separates, obtains graphene nanometer sheet;
2) after being mixed graphene nanometer sheet, dispersing agent and solvent that above-mentioned steps obtain, pre- slurry is obtained;
3) after the pre- slurry for obtaining above-mentioned steps carries out sand milling mashing, graphene conductive slurry is obtained.
Preferably, the graphite in the graphite dispersing solution includes graphite powder, crystalline flake graphite, artificial graphite, expansible graphite With one of expanded graphite or a variety of;
The mass concentration of graphite is 0.5%~5% in the graphite dispersing solution;
Solvent in the graphite dispersing solution includes water and organic solvent miscible with water.
Preferably, the organic solvent miscible with water include methanol, ethyl alcohol, ethylene glycol, glycerol, acetone, tetrahydrofuran, One of dimethylformamide, dimethyl acetamide, N-Methyl pyrrolidone and dimethyl sulfoxide are a variety of;
Mass concentration of the organic solvent miscible with water in the graphite dispersing solution is 30%~70%;
The power of the ultrasound is 600~3000W;The time of the ultrasound is 1~20h;
It further include drying steps after the separation.
Preferably, the mode of the removing includes one of stirring, shearing, ball milling and sand milling or a variety of;
The phosphorus content of the graphene nanometer sheet is more than or equal to 98%;
The graphene nanometer sheet with a thickness of be less than or equal to 5nm;
The piece diameter of the graphene nanometer sheet is 1~20 μm.
Preferably, the dispersing agent includes polyvinylpyrrolidone, Vingon, polypropylene, cetyl trimethyl One of ammonium bromide and neopelex are a variety of;
The solvent includes water, ethyl alcohol, acetone, dimethylformamide, dimethyl acetamide, N-Methyl pyrrolidone and two One of methyl sulfoxide is a variety of;
In the pre- slurry, the mass concentration of the dispersing agent is 0.2%~10%;
In the pre- slurry, the mass concentration of the graphene nanometer sheet is 1%~10%.
Preferably, described be sanded is that wet process is sanded;
The size of the sanding media of the sand milling is 0.1~2mm;
The conductivity of the graphene conductive slurry is more than or equal to 40000S/m.
Preferably, it is that wet method super-fine is sanded that the wet process, which is sanded,;
The sanding media includes one of zirconium silicate pearl, zirconium oxide bead, bead and steel ball or a variety of;
The number of the sand milling is 2~50 times.
Preferably, the graphite is to pass through pretreated graphite;
The pretreated step are as follows:
A after) being reacted graphite and small molecule intercalator, intercalated graphite is obtained;
B) intercalated graphite for obtaining above-mentioned steps is after high-temperature expansion, the graphite that obtains that treated.
Preferably, the granularity of the graphite is 50~10000 mesh;
The carbon content of the graphite is more than or equal to 70%;
The small molecule intercalator includes small molecule high temperature decomposable compound;
The time of the reaction is 10~30 hours;The temperature of the reaction is 0~40 DEG C.
Preferably, the small molecule intercalator includes sulfuric acid, nitric acid, urea, sodium bicarbonate, carbonic acid sodium dihydrogen, bicarbonate One of disodium, oxalic acid, phosphoric acid, perchloric acid, periodic acid and trifluoromethanesulfonic acid are a variety of;
The mass ratio of the graphite and small molecule intercalator is 1:(1~5);
The temperature of the high-temperature expansion is 500~1200 DEG C;
The time of the high-temperature expansion is 5~60 seconds.
The present invention provides a kind of preparation methods of graphene conductive slurry, include the following steps, first by graphite dispersion It after liquid is removed under conditions of ultrasound, then separates, obtains graphene nanometer sheet;Then graphene above-mentioned steps obtained After nanometer sheet, dispersing agent and solvent are mixed, pre- slurry is obtained;The pre- slurry that finally above-mentioned steps are obtained be sanded and is beaten After slurry, graphene conductive slurry is obtained.Compared with prior art, the present invention can be prepared for existing micromechanics stripping method High-quality graphene, but there are low yields and deficiency at high cost, are unsatisfactory for industrialization and large-scale production requirement, at present can only It is prepared on a small scale as laboratory.Chemical vapour deposition technique can prepare the graphene of high quality large area, but ideal The expensive of substrate material monocrystalline nickel, greatly limits graphene industrialized production, higher cost, complex process.Oxidation- Reduction method will lead to the loss of graphene part electric property, be restricted the application of graphene.And conventional solvent removing The problem of high temperature and pressure defect existing for method and low yield.The present invention has selected the liquid phase stripping method of low-temperature atmosphere-pressure, creative The method being sanded using graphite-solvent mixing-ultrasonic disperse-wet process then prepared again by first preparing graphene nanometer sheet The graphene conductive slurry of flowing, can in a mild condition quickly, prepare graphene at low cost.And it is prepared by the present invention Graphene has complete lamellar structure, is not surface modified, keeps the intrinsic feature of two-dimensional slice.It is prepared by the present invention Graphene conductive slurry has the characteristics that high conductivity, high fluidity, can be used as conductive additive in lithium battery, super capacitor The fields such as device, conductive coating.
The experimental results showed that highly conductive graphene slurry prepared by the present invention, carbon content is more than or equal to 99.5%, conductivity Greater than 50000S/m, 70000S/m, 10s can be reached-1When viscosity be less than 1500mPas.
Detailed description of the invention
Fig. 1 is the rheometer test data and curves of the highly conductive graphene of comparative example 1 of the present invention preparation;
Fig. 2 is the rheometer test data and curves of highly conductive graphene prepared by the embodiment of the present invention 1;
Fig. 3 is the rheometer test data and curves of highly conductive graphene prepared by the embodiment of the present invention 2;
Fig. 4 is the rheometer test data and curves of highly conductive graphene prepared by the embodiment of the present invention 3.
Specific embodiment
For a further understanding of the present invention, the preferred embodiment of the invention is described below with reference to embodiment, still It should be appreciated that these descriptions are intended merely to further illustrate the features and advantages of the present invention, rather than to invention claim Limitation.
All raw materials of the present invention, are not particularly limited its source, buying on the market or according to those skilled in the art The preparation of conventional method known to member.
All raw materials of the present invention, are not particularly limited its purity, and present invention preferably employs analyze the preparation of pure or graphene The purity requirement of field routine.
All raw materials of the present invention, the trade mark and abbreviation belong to this field routine trade mark and abbreviation, each trade mark and abbreviation In the field of its associated uses be it is explicit, those skilled in the art according to the trade mark, abbreviation and corresponding purposes, It can be commercially available from city's mid-sales or conventional method is prepared.
The present invention provides a kind of preparation methods of graphene conductive slurry, comprising the following steps:
1) it after being removed graphite dispersing solution under conditions of ultrasound, then separates, obtains graphene nanometer sheet;
2) after being mixed graphene nanometer sheet, dispersing agent and solvent that above-mentioned steps obtain, pre- slurry is obtained;
3) after the pre- slurry for obtaining above-mentioned steps carries out sand milling mashing, graphene conductive slurry is obtained.
It after the present invention first removes graphite dispersing solution under conditions of ultrasound, then separates, obtains graphene nano Piece.
The selection of graphite in the graphite dispersing solution is not particularly limited in the present invention, with well known to those skilled in the art Graphite material, those skilled in the art can select according to practical condition, product requirement and quality requirement And adjustment, graphite of the present invention preferably include in graphite powder, crystalline flake graphite, artificial graphite, expansible graphite and expanded graphite One or more, more preferably graphite powder, crystalline flake graphite, artificial graphite, expansible graphite or expanded graphite.
The granularity of graphite in the graphite dispersing solution is not particularly limited in the present invention, with well known to those skilled in the art The partial size of graphite powder, those skilled in the art can carry out according to practical condition, product requirement and quality requirement Selection and adjustment, graphite dispersing solution of the present invention are preferably the dispersion liquid of graphite powder, and the granularity of the graphite is preferably 50~ 10000 mesh, more preferably 100~5000 mesh, more preferably 500~3000 mesh, most preferably 1000~2000 mesh.
The carbon content of graphite in the graphite dispersing solution is not particularly limited in the present invention, known to those skilled in the art Graphite powder carbon content, those skilled in the art can be according to practical condition, product requirement and quality requirement It is selected and is adjusted, the carbon content of graphite of the present invention is preferably greater than or equal to 70%, optimal more preferably greater than equal to 80% It is selected as being more than or equal to 90%, is specifically as follows 70%~95%, or 75%~90%, or be 78%~93%.
The concentration of graphite in the graphite dispersing solution is not particularly limited in the present invention, with well known to those skilled in the art Normal concentration, those skilled in the art can select according to practical condition, product requirement and quality requirement And adjustment, the present invention are to improve the performance of subsequent product, improve the uniformity of graphite dispersing solution, graphite dispersing solution of the present invention The mass concentration of middle graphite is preferably 0.5%~5%, and more preferably 1.5%~4%, more preferably 2.5%~3%.
The solvent in the graphite dispersing solution is not particularly limited in the present invention, with routine well known to those skilled in the art Solvent, those skilled in the art can select and adjust according to practical condition, product requirement and quality requirement Whole, the present invention is to improve the performance of subsequent product, improves the uniformity of graphite dispersing solution, and the solvent in the graphite dispersing solution is special Water and organic solvent miscible with water are not preferably included.Organic solvent miscible with water of the present invention preferably includes methanol, second Alcohol, ethylene glycol, glycerol, acetone, tetrahydrofuran, dimethylformamide, dimethyl acetamide, N-Methyl pyrrolidone and dimethyl One of sulfoxide is a variety of, more preferably methanol, ethyl alcohol, ethylene glycol, glycerol, acetone, tetrahydrofuran, dimethylformamide, Dimethyl acetamide, N-Methyl pyrrolidone or dimethyl sulfoxide.
The concrete composition ratio of the solvent in the graphite dispersing solution is not particularly limited in the present invention, with art technology Conventional proportions known to personnel, those skilled in the art can want according to practical condition, product requirement and quality It asks and is selected and adjusted, the present invention is to improve the performance of subsequent product, improves the uniformity of graphite dispersing solution, described mutual with water Mass concentration of the molten organic solvent in the graphite dispersing solution is preferably 30%~70%, and more preferably 40%~60%, More preferably 45%~55%.
The mode of the removing is not particularly limited in the present invention, with the side of such removing well known to those skilled in the art Formula, those skilled in the art can select and adjust according to practical condition, product requirement and quality requirement, The present invention is to improve the performance of final products, and the mode of the removing is preferably mechanical stripping, i.e., using mechanical stripping and ultrasound The mode of collocation is removed, and is specifically preferably included one of stirring, shearing, ball milling and sand milling or a variety of, is more preferably stirred It mixes, shear, ball milling and sand milling, and carrying out ultrasound simultaneously.
The temperature of the removing is not particularly limited in the present invention, with the temperature of such removing well known to those skilled in the art Degree, those skilled in the art can select and adjust according to practical condition, product requirement and quality requirement, The present invention is to improve the advantage of the performance and liquid phase separation method of final products, and the temperature of the removing is preferably room temperature, i.e., preferably It is 0~40 DEG C, more preferably 5~35 DEG C, more preferably 10~30 DEG C, more preferably 15~25 DEG C.
The condition of the ultrasound is not particularly limited in the present invention, is with normal condition well known to those skilled in the art Can, those skilled in the art can select and adjust, this hair according to practical condition, product requirement and quality requirement The bright performance to improve subsequent product, improves the uniformity of graphite dispersing solution, and the power of the ultrasound is preferably 600~3000W, More preferably 1100~2500W, more preferably 1600~2000W.The time of the ultrasound, that is, the time removed, preferably 1~ 20h, more preferably 5~16h, more preferably 9~12h, are specifically as follows 1h, 2h, 8h or 20h.
The isolated mode is not particularly limited in the present invention, with conventional separate mode well known to those skilled in the art , those skilled in the art can select and adjust according to practical condition, product requirement and quality requirement, this It invents the separation to be preferably separated by filtration, more specifically preferably includes to filter.It is also preferable to include dryings after separation of the present invention Step.The concrete mode and condition of the drying is not particularly limited in the present invention, with routine well known to those skilled in the art Drying mode and condition, those skilled in the art can according to practical condition, product requirement and quality requirement into Row selection and adjustment.
The present invention is the electric conductivity for further increasing subsequent product, improves the uniformity of graphite dispersing solution, the graphite Graphite in dispersion liquid more preferably passes through pretreated graphite.The pretreated step specifically preferred according to the invention is specific Are as follows:
A after) being reacted graphite and small molecule intercalator, intercalated graphite is obtained;
B) intercalated graphite for obtaining above-mentioned steps is after high-temperature expansion, the graphite that obtains that treated.
Selection and requirement and corresponding optimum principle of the present invention to graphite in above-mentioned steps, lead with foregoing graphites alkene The selection and requirement of corresponding raw material in the preparation method of plasma-based material, and corresponding optimum principle can be corresponded to, herein No longer repeat one by one.
After the present invention first reacts graphite and small molecule intercalator, intercalated graphite is obtained.
The selection of the small molecule intercalator is not particularly limited in the present invention, with small point well known to those skilled in the art Sub- intercalator, those skilled in the art can select according to practical condition, product requirement and quality requirement And adjustment, the present invention are to improve the performance of final products, the small molecule intercalator is preferably that small molecule high temperature can decompose chemical combination Object, more preferably include sulfuric acid, nitric acid, urea, sodium bicarbonate, carbonic acid sodium dihydrogen, disodium bicarbonate, oxalic acid, phosphoric acid, perchloric acid, One of periodic acid and trifluoromethanesulfonic acid are a variety of, more preferably sulfuric acid, nitric acid, urea, sodium bicarbonate, carbonic acid sodium dihydrogen, Disodium bicarbonate, oxalic acid, phosphoric acid, perchloric acid, periodic acid or trifluoromethanesulfonic acid.More preferably sulfuric acid, nitric acid, urea, bicarbonate Sodium, carbonic acid sodium dihydrogen, disodium bicarbonate, oxalic acid or phosphoric acid.
The dosage of the small molecule intercalator is not particularly limited in the present invention, and those skilled in the art can be according to reality The condition of production, product requirement and quality requirement are selected and are adjusted, and the present invention is to improve the performance of final products, the stone Ink and the mass ratio of small molecule intercalator are preferably 1:(1~5), more preferably 1:(1.5~4.5), more preferably 1:(2~4), Most preferably 1:(2.5~3.5).
The temperature of the reaction is not particularly limited in the present invention, and those skilled in the art can be according to actual production feelings Condition, product requirement and quality requirement are selected and are adjusted, and the present invention is to improve the performance and liquid phase separation method of final products Advantage, reaction temperature is particularly maintained into room temperature, i.e., the temperature of the described reaction is preferably 0~40 DEG C, more preferably 5~35 DEG C, more preferably 10~30 DEG C, more preferably 15~25 DEG C.
The time of the reaction is not particularly limited in the present invention, with liquid phase separation method well known to those skilled in the art Conventional intercalation time, those skilled in the art can be according to practical condition, product requirement and quality requirements It being selected and is adjusted, the time of reaction of the present invention is preferably 10~30h, more preferably 12~28h, more preferably 15~ 25h, more preferably 17~for 24 hours, it is specifically as follows 10h, 15h, 20h or 30h.
The present invention can decompose intercalator using small molecule high temperature and carry out intercalation, small molecule high temperature decomposable compound to graphite It can be realized small molecule and enter interlayer, reduce graphite reaction, keep the complete structure of graphite flake layer;And also avoid high temperature height The reaction condition of pressure has further lowered the temperature of intercalation, can be mild under the conditions of lower temperature and common room temperature etc. Condition realizes effective intercalation of graphite, obtains graphite intercalation compound, reduces the loss and energy consumption of preparation process, green ring It protects.
The present invention is to improve the practicability of preparation method, and complete process route, it is also preferable to include post-processings after the reaction Step.The specific steps of the post-processing are not particularly limited in the present invention, with post-processing well known to those skilled in the art step Rapid, those skilled in the art can select and adjust according to practical condition, product requirement and quality requirement, Post-processing of the present invention is preferably included to wash and be separated, more specific to be preferably washed to neutral and centrifuge separation.
Then intercalated graphite that the present invention obtains above-mentioned steps obtains expanded graphite after high-temperature expansion.
The temperature of the high-temperature expansion is not particularly limited in the present invention, with such expansion well known to those skilled in the art Temperature, those skilled in the art can be selected according to practical condition, product requirement and quality requirement and Adjustment, the present invention are to improve the advantage of the performance and liquid phase separation method of final products, and the temperature of the high-temperature expansion is preferably 500 ~1200 DEG C, more preferably 600~1100 DEG C, more preferably 700~1000 DEG C, more preferably 800~900 DEG C.
The time of the high-temperature expansion is not particularly limited in the present invention, with high-temperature expansion well known to those skilled in the art Time, those skilled in the art can be selected according to practical condition, product requirement and quality requirement and Adjustment, the time of high-temperature expansion of the present invention is preferably 5~60 seconds, more preferably 10~55 seconds, more preferably 15~50 seconds, More preferably 25~40 seconds, it is specifically as follows 5 seconds, 10 seconds, 30 seconds or 60 seconds.
The present invention has obtained graphene nanometer sheet by above-mentioned steps.Specifics of the present invention to the graphene nanometer sheet Energy parameter is not particularly limited, and the graphene nano of the specific performance can be obtained referring to the above method by those skilled in the art Piece, those skilled in the art can select and adjust, this hair according to practical condition, product requirement and quality requirement The phosphorus content of the bright graphene nanometer sheet is preferably greater than or equal to 98%, is more preferably greater than equal to 98.5%, more preferably greater than etc. In 99%.The thickness of the graphene nanometer sheet, which is preferably less than, is equal to 5nm, is more preferably less than equal to 4nm, more preferably small In equal to 3nm.The piece diameter of the graphene nanometer sheet is preferably 1~20 μm, more preferably 5~16 μm, more preferably 9~12 μ m。
After the present invention then mixes graphene nanometer sheet, dispersing agent and solvent that above-mentioned steps obtain, obtain pre- Slurry.
The specific choice of the dispersing agent is not particularly limited in the present invention, with routine well known to those skilled in the art point Powder, those skilled in the art can select and adjust according to practical condition, product requirement and quality requirement Whole, the present invention is to improve the performance of subsequent product, improves the uniformity of pre- slurry, the dispersing agent preferably includes polyvinyl pyrrole One of alkanone, Vingon, polypropylene, cetyl trimethylammonium bromide and neopelex are a variety of, More preferably polyvinylpyrrolidone, Vingon, polypropylene, cetyl trimethylammonium bromide or dodecyl benzene sulfonic acid Sodium.
The dosage of the dispersing agent is not particularly limited in the present invention, is with conventional amount used well known to those skilled in the art Can, those skilled in the art can select and adjust, this hair according to practical condition, product requirement and quality requirement The bright performance to improve subsequent product, improves the uniformity of pre- slurry, and in the pre- slurry, the mass concentration of the dispersing agent is excellent It is selected as 0.2%~10%, more preferably 0.7%~9%, more preferably 2%~8%, more preferably 4%~6%.
The specific choice of the solvent is not particularly limited in the present invention, with Conventional solvents well known to those skilled in the art , those skilled in the art can select and adjust according to practical condition, product requirement and quality requirement, this Invention is the performance for improving subsequent product, improves the uniformity of pre- slurry, the solvent preferably includes water, ethyl alcohol, acetone, diformazan One of base formamide, dimethyl acetamide, N-Methyl pyrrolidone and dimethyl sulfoxide are a variety of, more preferably water, second Alcohol, acetone, dimethylformamide, dimethyl acetamide, N-Methyl pyrrolidone or dimethyl sulfoxide.
The dosage of the solvent is not particularly limited in the present invention, with Conventional solvents dosage well known to those skilled in the art , those skilled in the art can select and adjust according to practical condition, product requirement and quality requirement, this Invention is the performance for improving subsequent product, improves the uniformity of pre- slurry, in the pre- slurry, the matter of the graphene nanometer sheet Measuring concentration is preferably 1%~10%, and more preferably 2%~9%, more preferably 3%~8%, more preferably 4%~7%.
The mixed mode is not particularly limited in the present invention, is with hybrid mode well known to those skilled in the art Can, those skilled in the art can select and adjust, this hair according to practical condition, product requirement and quality requirement The bright mixed mode is preferably stirred.
After the pre- slurry that the present invention finally obtains above-mentioned steps carries out sand milling mashing, graphene conductive slurry is obtained.
The present invention is to improve the performance of final products, provides the mobility and electric conductivity of graphene conductive slurry, especially It is preferred that being beaten by the way of being sanded.The concrete mode of the sand milling is not particularly limited in the present invention, with this field skill Sand milling mode known to art personnel, those skilled in the art can be according to practical condition, product requirement and quality It is required that being selected and being adjusted, the mode of sand milling of the present invention is preferably that wet process is sanded, and more preferably wet method super-fine is sanded, i.e., It is sanded using wet method super-fine sand mill, concrete type can be stick pin type nanometer sand mill.
The sanding media of the sand milling is not particularly limited in the present invention, with sanding media well known to those skilled in the art , those skilled in the art can select and adjust according to practical condition, product requirement and quality requirement, this It invents the sanding media and preferably includes one of zirconium silicate pearl, zirconium oxide bead, bead and steel ball or a variety of, more preferably Zirconium silicate pearl, zirconium oxide bead, bead or steel ball, more preferably zirconium silicate pearl or zirconium oxide bead.The sand of sand milling of the present invention Grinding media is preferably dimensioned to be 0.1~2mm, more preferably 0.5~1.5mm, more preferably 0.8~1.2mm.
The number of the sand milling is not particularly limited in the present invention, is with sand milling number well known to those skilled in the art Can, those skilled in the art can select and adjust, this hair according to practical condition, product requirement and quality requirement The number of the bright sand milling is preferably repeatedly sanded, and is specifically as follows 2~50 times, more preferably 5~35 times, more preferably 10~ 30 times, more preferably 15~25 times.
The other conditions of the sand milling are not particularly limited in the present invention, with sand milling condition well known to those skilled in the art , those skilled in the art can select and adjust according to practical condition, product requirement and quality requirement, this The power for inventing the sand milling is preferably 2~15KW, more preferably 5~12KW, more preferably 7~10KW.The sand milling adds Work treating capacity is preferably 1~100L/h, more preferably 10~90L/h, more preferably 30~70L/h, more preferably 40~60L/ h。
The present invention passes through the graphene conductive slurry that above-mentioned steps obtain, and is a kind of highly conductive graphene conductive slurry, this The performance and structure of the highly conductive graphene is not particularly limited in invention, with highly conductive stone well known to those skilled in the art The performance and structure of black alkene, those skilled in the art, which carry out preparation according to aforementioned preparation process, can be obtained highly conductive graphite The performance and structure of graphene in alkene electrocondution slurry, the highly conductive graphene in highly conductive graphene conductive slurry of the present invention Flaky, thickness, which is preferably less than, is equal to 5nm, is more preferably less than equal to 4nm, is more preferably less than equal to 3nm.This hair The bright graphene is with a thickness of the random average thickness for choosing 20 lamellas measured by atomic force microscope.
Highly conductive graphene of the present invention, carbon content are measured by elemental analysis, and carbon content is preferably greater than or equal to 99.5%.
Highly conductive graphene of the present invention, conductivity are measured by four probe conduction rate methods of testing, and conductivity is preferably greater than 40000S/m is more preferably higher than equal to 45000S/m, is more preferably higher than equal to 50000S/m, can more reach 70000S/ m。
Above-mentioned steps of the present invention provide a kind of electrocondution slurry containing highly conductive graphene, and the present invention has selected low temperature normal The liquid phase stripping method of pressure, it is creative using graphite-solvent mixing-ultrasonic disperse-super-high-pressure homogenization method, it is further excellent Then choosing prepares stream by first preparing graphene nanometer sheet using small molecule intercalation-high-temperature expansion Graphitic pretreatment mode again Dynamic graphene conductive slurry, can in a mild condition quickly, prepare graphene at low cost.And stone prepared by the present invention Black alkene has complete lamellar structure, is not surface modified, keeps the intrinsic feature of two-dimensional slice.Stone prepared by the present invention Black alkene electrocondution slurry has the characteristics that high conductivity, high fluidity, further through to the existing insufficient research of commercial electroconductive agent performance, Graphene conductive slurry is made using the above method using the conductive characteristic that graphene is excellent, is applied to lithium battery anode material Material, with high rate performance, the cycle life etc. for significantly improving lithium battery.Electrocondution slurry electric conductivity of the invention is excellent, and dispersion is equal Even, good fluidity, and simple process, it is easy to accomplish, it is suitble to high-volume system by graphene conductive slurry.
The experimental results showed that highly conductive graphene slurry prepared by the present invention, carbon content is more than or equal to 99.5%, conductivity Greater than 50000S/m, 70000S/m, 10s can be reached-1When viscosity be less than 1500mPas.
In order to further illustrate the present invention, with reference to embodiments to a kind of graphene conductive slurry provided by the invention Preparation method is described in detail, but it is to be understood that these embodiments are to carry out under the premise of the technical scheme of the present invention Implement, the detailed implementation method and specific operation process are given, only to further illustrate the features and advantages of the present invention, Rather than limiting to the claimed invention, protection scope of the present invention are also not necessarily limited to following embodiments.
Comparative example 1
Raw material are 1000 mesh natural graphites (Qingdao Dong Kai graphite Co., Ltd).By 10g graphite and 50g carbonic acid sodium dihydrogen Mixing is scattered in 100g water, and mixed liquor mechanical stirring is reacted 20 hours at room temperature, is added the dilution of 400g water, is centrifuged To intercalated graphite.Intercalated graphite is placed in 1000 DEG C of Muffle furnace, expands 30s.Graphite dispersion after 5g expansion is in 5mLN- first In base pyrrolidones, 800W ultrasound removes 8h, and 300rmp ball milling 2h obtains highly conductive graphene.
Rheology viscosity characterization is carried out to the highly conductive graphene of comparative example 1 of the present invention preparation.
Test method: the rheology viscosity test of graphene sample is tested to obtain by Anton Paar MCR302 rheometer.
Referring to Fig. 1, Fig. 1 is the rheometer test data and curves of the highly conductive graphene of comparative example 1 of the present invention preparation.
As shown in Figure 1, the highly conductive graphene that prepared by comparative example 1 of the present invention is in 10s-1Shear rate under the conditions of, viscosity For 2353mPas, apparent fluidity is poor.
Elemental analysis is carried out to the highly conductive graphene of comparative example 1 of the present invention preparation, height prepared by comparative example 1 of the present invention is led The carbon content of graphene has reached 99.414%.
Conductivity is measured using four probe conduction rate methods of testing to the highly conductive graphene of comparative example 1 of the present invention preparation.
Test method: the conductivity of graphene sample is by being pressed into the disk that diameter is 10mm for sample, by Suzhou crystalline substance Four probe conduction rate tester of lattice is tested to obtain.
The conductivity of highly conductive graphene prepared by comparative example 1 of the present invention is 51000S/m.
The stability of the highly conductive graphene of comparative example 1 of the present invention preparation is tested.
Test method: graphene sample being imported in closed transparent sample bottle, is placed in 60 DEG C of baking oven, and 24 as a child again Secondary its viscosity of progress rheometer test.
After 24 hours, highly conductive graphene layering prepared by comparative example 1 is obvious, and rheological data, which is shown, to be approximately more than 3000mPa·s。
Embodiment 1
8g graphite powder and 1L ethyl alcohol are made into the aqueous solution of 1.5L, its 600r/min mechanical stirring 30min, 1000W is super Drying is filtered after sound 12h and obtains graphene nanometer sheet, and 3g nanometer sheet, 2g polyvinylpyrrolidone are mixed with 95g ethyl alcohol, 600r/min mechanical stirring 10min, 800W ultrasound 20min, obtains mixed liquor.The sand mill of 0.3mm zirconium oxide bead, circulation are used again It is beaten 120min, obtains the graphene conductive slurry of good fluidity.
Rheology viscosity characterization is carried out to highly conductive graphene prepared by the embodiment of the present invention 1.
Test method: the rheology viscosity test of graphene sample is tested to obtain by Anton Paar MCR302 rheometer.
Referring to fig. 2, Fig. 2 is the rheometer test data and curves of highly conductive graphene prepared by the embodiment of the present invention 1.
As shown in Figure 2, the highly conductive graphene that prepared by the embodiment of the present invention 1 is in 10s-1Shear rate under the conditions of, viscosity For 788mPas, apparent fluidity is preferable.
Elemental analysis is carried out to highly conductive graphene prepared by the embodiment of the present invention 1, height prepared by the embodiment of the present invention 1 is led The carbon content of graphene has reached 99.621%.
Conductivity is measured using four probe conduction rate methods of testing to highly conductive graphene prepared by the embodiment of the present invention 1.
Test method: the conductivity of graphene sample is by being pressed into the disk that diameter is 10mm for sample, by Suzhou crystalline substance Four probe conduction rate tester of lattice is tested to obtain.
The conductivity of highly conductive graphene prepared by the embodiment of the present invention 1 has reached 57000S/m.
The stability of highly conductive graphene prepared by the embodiment of the present invention 1 is tested.
Test method: graphene sample being imported in closed transparent sample bottle, is placed in 60 DEG C of baking oven, and 24 as a child again Secondary its viscosity of progress rheometer test.
After 24 hours, for highly conductive graphene prepared by embodiment 1 without layering, rheological data shows about 810mPas, stream Dynamic property is preferable.
Embodiment 2
15g graphite powder and 1L ethyl alcohol are made into the aqueous solution of 1.5L, its 400r/min mechanical stirring 30min, 2000W is super Drying is filtered after sound 3h and obtains graphene nanometer sheet, and 7g nanometer sheet, 3g Vingon are mixed with 90g dimethyl acetamide, 700r/min mechanical stirring 20min, 1000W ultrasound 30min, obtains mixed liquor.The sand mill for using 0.8mm zirconium silicate pearl again, is followed Ring is beaten 20min, obtains the graphene conductive slurry of good fluidity.
Rheology viscosity characterization is carried out to highly conductive graphene prepared by the embodiment of the present invention 2.
Test method: the rheology viscosity test of graphene sample is tested to obtain by Anton Paar MCR302 rheometer.
Referring to Fig. 3, Fig. 3 is the rheometer test data and curves of highly conductive graphene prepared by the embodiment of the present invention 2.
From the figure 3, it may be seen that highly conductive graphene prepared by the embodiment of the present invention 2 is in 10s-1Shear rate under the conditions of, viscosity For 774mPas, apparent fluidity is preferable.
Elemental analysis is carried out to highly conductive graphene prepared by the embodiment of the present invention 2, height prepared by the embodiment of the present invention 2 is led The carbon content of graphene has reached 99.58%.
Conductivity is measured using four probe conduction rate methods of testing to highly conductive graphene prepared by the embodiment of the present invention 2.
Test method: the conductivity of graphene sample is by being pressed into the disk that diameter is 10mm for sample, by Suzhou crystalline substance Four probe conduction rate tester of lattice is tested to obtain.
The conductivity of highly conductive graphene prepared by the embodiment of the present invention 2 has reached 59000S/m.
The stability of highly conductive graphene prepared by the embodiment of the present invention 2 is tested.
Test method: graphene sample being imported in closed transparent sample bottle, is placed in 60 DEG C of baking oven, and 24 as a child again Secondary its viscosity of progress rheometer test.
After 24 hours, for highly conductive graphene prepared by embodiment 2 without layering, rheological data shows about 790mPas, stream Dynamic property is preferable.
Embodiment 3
20g graphite powder and 1L ethyl alcohol are made into the aqueous solution of 1.5L, its 600r/min mechanical stirring 20min, 3000W is super Drying is filtered after sound 6h and obtains graphene nanometer sheet, by 4g nanometer sheet, 4g neopelex and 92gN- crassitude Ketone mixing, 600r/min mechanical stirring 20min, 1000W ultrasound 20min obtain mixed liquor.The sand of 1.0mm zirconium silicate pearl is used again Grinding machine, circulation beating 240min obtain the graphene conductive slurry of good fluidity.
Rheology viscosity characterization is carried out to highly conductive graphene prepared by the embodiment of the present invention 3.
Test method: the rheology viscosity test of graphene sample is tested to obtain by Anton Paar MCR302 rheometer.
Referring to fig. 4, Fig. 4 is the rheometer test data and curves of highly conductive graphene prepared by the embodiment of the present invention 3.
As shown in Figure 4, the highly conductive graphene that prepared by the embodiment of the present invention 3 is in 10s-1Shear rate under the conditions of, viscosity For 872mPas, apparent fluidity is preferable.
Elemental analysis is carried out to highly conductive graphene prepared by the embodiment of the present invention 3, height prepared by the embodiment of the present invention 3 is led The carbon content of graphene has reached 99.462%.
Conductivity is measured using four probe conduction rate methods of testing to highly conductive graphene prepared by the embodiment of the present invention 3.
Test method: the conductivity of graphene sample is by being pressed into the disk that diameter is 10mm for sample, by Suzhou crystalline substance Four probe conduction rate tester of lattice is tested to obtain.
The conductivity of highly conductive graphene prepared by the embodiment of the present invention 3 has reached 62000S/m.
The stability of highly conductive graphene prepared by the embodiment of the present invention 3 is tested.
Test method: graphene sample being imported in closed transparent sample bottle, is placed in 60 DEG C of baking oven, and 24 as a child again Secondary its viscosity of progress rheometer test.
After 24 hours, for highly conductive graphene prepared by embodiment 3 without layering, rheological data shows about 920mPas, stream Dynamic property is preferable.
Detailed Jie has been carried out to a kind of preparation method of high fluidity graphene conductive slurry provided by the invention above It continues, used herein a specific example illustrates the principle and implementation of the invention, and the explanation of above embodiments is only Be be used to help to understand method and its core concept of the invention, including best mode, and but also this field any skill Art personnel can practice the present invention, including any device or system of manufacture and use, and implement the method for any combination.It should It points out, it for those skilled in the art, without departing from the principle of the present invention, can also be to this hair Bright some improvement and modification can also be carried out, and these improvements and modifications also fall within the scope of protection of the claims of the present invention.The present invention is special The range of benefit protection is defined by the claims, and may include those skilled in the art it is conceivable that other embodiments.Such as These other embodiments of fruit have the structural element for being not different from claim character express, or if they include and power Equivalent structural elements of the character express without essence difference that benefit requires, then these other embodiments should also be included in claim In the range of.

Claims (10)

1. a kind of preparation method of graphene conductive slurry, which comprises the following steps:
1) it after being removed graphite dispersing solution under conditions of ultrasound, then separates, obtains graphene nanometer sheet;
2) after being mixed graphene nanometer sheet, dispersing agent and solvent that above-mentioned steps obtain, pre- slurry is obtained;
3) after the pre- slurry for obtaining above-mentioned steps carries out sand milling mashing, graphene conductive slurry is obtained.
2. preparation method according to claim 1, which is characterized in that the graphite in the graphite dispersing solution includes graphite One of powder, crystalline flake graphite, artificial graphite, expansible graphite and expanded graphite are a variety of;
The mass concentration of graphite is 0.5%~5% in the graphite dispersing solution;
Solvent in the graphite dispersing solution includes water and organic solvent miscible with water.
3. preparation method according to claim 2, which is characterized in that the organic solvent miscible with water include methanol, Ethyl alcohol, ethylene glycol, glycerol, acetone, tetrahydrofuran, dimethylformamide, dimethyl acetamide, N-Methyl pyrrolidone and diformazan One of base sulfoxide is a variety of;
Mass concentration of the organic solvent miscible with water in the graphite dispersing solution is 30%~70%;
The power of the ultrasound is 600~3000W;The time of the ultrasound is 1~20h;
It further include drying steps after the separation.
4. preparation method according to claim 1, which is characterized in that the mode of the removing includes stirring, shearing, ball milling Be sanded one of or it is a variety of;
The phosphorus content of the graphene nanometer sheet is more than or equal to 98%;
The graphene nanometer sheet with a thickness of be less than or equal to 5nm;
The piece diameter of the graphene nanometer sheet is 1~20 μm.
5. preparation method according to claim 1, which is characterized in that the dispersing agent includes polyvinylpyrrolidone, gathers One of vinylidene chloride, polypropylene, cetyl trimethylammonium bromide and neopelex are a variety of;
The solvent includes water, ethyl alcohol, acetone, dimethylformamide, dimethyl acetamide, N-Methyl pyrrolidone and dimethyl One of sulfoxide is a variety of;
In the pre- slurry, the mass concentration of the dispersing agent is 0.2%~10%;
In the pre- slurry, the mass concentration of the graphene nanometer sheet is 1%~10%.
6. preparation method according to claim 1, which is characterized in that described be sanded is that wet process is sanded;
The size of the sanding media of the sand milling is 0.1~2mm;
The conductivity of the graphene conductive slurry is more than or equal to 40000S/m.
7. preparation method according to claim 6, which is characterized in that it is that wet method super-fine is sanded that the wet process, which is sanded,;
The sanding media includes one of zirconium silicate pearl, zirconium oxide bead, bead and steel ball or a variety of;
The number of the sand milling is 2~50 times.
8. preparation method according to claim 1, which is characterized in that the graphite is to pass through pretreated graphite;
The pretreated step are as follows:
A after) being reacted graphite and small molecule intercalator, intercalated graphite is obtained;
B) intercalated graphite for obtaining above-mentioned steps is after high-temperature expansion, the graphite that obtains that treated.
9. preparation method according to claim 8, which is characterized in that the granularity of the graphite is 50~10000 mesh;
The carbon content of the graphite is more than or equal to 70%;
The small molecule intercalator includes small molecule high temperature decomposable compound;
The time of the reaction is 10~30 hours;The temperature of the reaction is 0~40 DEG C.
10. preparation method according to claim 9, which is characterized in that the small molecule intercalator include sulfuric acid, nitric acid, One in urea, sodium bicarbonate, carbonic acid sodium dihydrogen, disodium bicarbonate, oxalic acid, phosphoric acid, perchloric acid, periodic acid and trifluoromethanesulfonic acid Kind is a variety of;
The mass ratio of the graphite and small molecule intercalator is 1:(1~5);
The temperature of the high-temperature expansion is 500~1200 DEG C;
The time of the high-temperature expansion is 5~60 seconds.
CN201810272675.XA 2018-03-29 2018-03-29 Preparation method of high-fluidity graphene conductive paste Active CN110322986B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810272675.XA CN110322986B (en) 2018-03-29 2018-03-29 Preparation method of high-fluidity graphene conductive paste
PCT/CN2018/109030 WO2019184289A1 (en) 2018-03-29 2018-09-30 Method for preparing high-fluidity graphene conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810272675.XA CN110322986B (en) 2018-03-29 2018-03-29 Preparation method of high-fluidity graphene conductive paste

Publications (2)

Publication Number Publication Date
CN110322986A true CN110322986A (en) 2019-10-11
CN110322986B CN110322986B (en) 2021-06-29

Family

ID=68062370

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810272675.XA Active CN110322986B (en) 2018-03-29 2018-03-29 Preparation method of high-fluidity graphene conductive paste

Country Status (2)

Country Link
CN (1) CN110322986B (en)
WO (1) WO2019184289A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113640581A (en) * 2021-08-10 2021-11-12 常州第六元素材料科技股份有限公司 Graphene conductivity analysis method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101728535A (en) * 2009-10-30 2010-06-09 北京化工大学 Lithium ion battery conducting material and preparation method and application thereof
CN104966837A (en) * 2015-04-24 2015-10-07 深圳市德方纳米科技股份有限公司 Graphene conductive liquid as well as preparation method and application thereof
CN105776187A (en) * 2016-01-27 2016-07-20 复旦大学 Method for green environmental-protection preparation of high-concentration ultra-clean graphene dispersion liquid
CN106365155A (en) * 2015-07-20 2017-02-01 北京中科云腾科技有限公司 Graphene and preparation method thereof
CN107416811A (en) * 2017-06-21 2017-12-01 山东欧铂新材料有限公司 A kind of preparation method of high conductivity graphene

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101526412B1 (en) * 2013-10-22 2015-06-05 현대자동차 주식회사 Method for pregaring graphene nanoplate, graphene nanoplate by the method, graphene nanoplate paste, and conductive layer including the same
CN105217612B (en) * 2015-09-29 2017-08-11 北京航空航天大学 A kind of ultrasonic assistant sand mill stripping prepares the method for graphene and peels off the device of graphene processed
CN106882796B (en) * 2017-03-23 2020-12-18 复旦大学 Preparation method of three-dimensional graphene structure/high-quality graphene
CN107381559A (en) * 2017-09-05 2017-11-24 北京中元龙港矿业科技有限公司 Two-dimensional graphene and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101728535A (en) * 2009-10-30 2010-06-09 北京化工大学 Lithium ion battery conducting material and preparation method and application thereof
CN104966837A (en) * 2015-04-24 2015-10-07 深圳市德方纳米科技股份有限公司 Graphene conductive liquid as well as preparation method and application thereof
CN106365155A (en) * 2015-07-20 2017-02-01 北京中科云腾科技有限公司 Graphene and preparation method thereof
CN105776187A (en) * 2016-01-27 2016-07-20 复旦大学 Method for green environmental-protection preparation of high-concentration ultra-clean graphene dispersion liquid
CN107416811A (en) * 2017-06-21 2017-12-01 山东欧铂新材料有限公司 A kind of preparation method of high conductivity graphene

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113640581A (en) * 2021-08-10 2021-11-12 常州第六元素材料科技股份有限公司 Graphene conductivity analysis method
CN113640581B (en) * 2021-08-10 2023-12-15 常州第六元素材料科技股份有限公司 Graphene conductivity analysis method

Also Published As

Publication number Publication date
CN110322986B (en) 2021-06-29
WO2019184289A1 (en) 2019-10-03

Similar Documents

Publication Publication Date Title
CN109817382A (en) A kind of preparation method of high-stability graphene electrocondution slurry
CN104386680B (en) The method of large stretch of Graphene is prepared in scale
CN106629724B (en) A kind of N doping porous charcoal, preparation method and its application as electrode material for super capacitor
Zhao et al. Rose-like N-doped porous carbon for advanced sodium storage
CN103241727B (en) Preparation method of graphene
CN105271170B (en) Preparation method of nano carbon and composite material of nano carbon
CN102916168B (en) Modification method of artificial graphite
CN103588195A (en) Preparation method of graphene
CN104591177B (en) Method for preparing self-supporting three-dimensional porous graphene composite microsphere
Li et al. Electrochemical performance of Li3V2 (PO4) 3/C prepared with a novel carbon source, EDTA
Yu et al. High stability of sub-micro-sized silicon/carbon composites using recycling Silicon waste for lithium-ion battery anode
CN110611092B (en) Preparation method of nano silicon dioxide/porous carbon lithium ion battery cathode material
CN105185604A (en) Preparation method of flexible electrode and application
CN103253661A (en) Method for preparing graphene powder at large scale
CN109665518A (en) A kind of preparation method of highly conductive graphene
CN102544457B (en) Method for preparing graphene oxide-iron sesquioxide nanotube composite material by using in-situ method
CN109666370A (en) A kind of conductive anti-corrosion coating and preparation method thereof containing graphene
CN103832997A (en) Graphene/carbon black composite material, preparation method and application thereof
CN109592684A (en) A kind of petal spherical carbide titanium and its preparation method and application
Zhou et al. Construction of MoS2-nitrogen-deficient graphitic carbon nitride anode toward high performance sodium-ions batteries
Fan et al. Synthesis and characteristic of the ternary composite electrode material PTCDA/CNT@ MPC and its electrochemical performance in sodium ion battery
Liu et al. Green synthesis of nitrogen self-doped porous carbons from waste garlic peels for high-performance supercapacitor applications
Li et al. TiN porous ceramics with excellent electrochemical properties prepared by freeze-drying and in-situ nitridation reaction
US20200010326A1 (en) Intercalation agent for rapid graphite exfoliation in mass production of high-quality graphene
CN110322986A (en) A kind of preparation method of high fluidity graphene conductive slurry

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant