CN110317751B - Denitrification method for wastewater discharged in hydroxyethyl cellulose production process - Google Patents

Denitrification method for wastewater discharged in hydroxyethyl cellulose production process Download PDF

Info

Publication number
CN110317751B
CN110317751B CN201910545924.2A CN201910545924A CN110317751B CN 110317751 B CN110317751 B CN 110317751B CN 201910545924 A CN201910545924 A CN 201910545924A CN 110317751 B CN110317751 B CN 110317751B
Authority
CN
China
Prior art keywords
denitrification
aeromonas
acinetobacter
alcaligenes
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910545924.2A
Other languages
Chinese (zh)
Other versions
CN110317751A (en
Inventor
李丽
严月根
吴华明
张许阳
郭慧
李婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Puritek Environment Group Co ltd
Original Assignee
Puritek Environment Group Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Puritek Environment Group Co ltd filed Critical Puritek Environment Group Co ltd
Priority to CN201910545924.2A priority Critical patent/CN110317751B/en
Publication of CN110317751A publication Critical patent/CN110317751A/en
Application granted granted Critical
Publication of CN110317751B publication Critical patent/CN110317751B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/02Separating microorganisms from their culture media
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention relates to a denitrification method of wastewater discharged in the production process of hydroxyethyl cellulose, which comprises the specific steps of adding a denitrification microbial inoculum into a biochemical treatment system of the wastewater discharged in the production process of hydroxyethyl cellulose, and starting biological denitrification treatment, wherein the wastewater treatment temperature is 25-40 ℃, and the dissolved oxygen is 0.2-7 mg/L; the invention combines the advantages of denitrifying strains, prepares the high-efficiency denitrifying microbial inoculum by compounding, can realize the removal of ammonia nitrogen, nitrite nitrogen, nitrate nitrogen and COD in the same reactor, has the total nitrogen removal rate of 99 percent and good wastewater treatment effect.

Description

Denitrification method for wastewater discharged in hydroxyethyl cellulose production process
Technical Field
The invention relates to a denitrification method for wastewater discharged in a hydroxyethyl cellulose production process, belonging to the technical field of biological treatment of sewage treatment in environmental engineering.
Background
The wastewater discharged in the production process of the hydroxyethyl cellulose has the characteristics of complex pollutant components, high wastewater concentration, existence of substances which are difficult to biodegrade and the like. The waste water contains a large amount of toxic nitrogen-containing substances, particularly a large amount of nitrate nitrogen. The prior method for preparing the hydroxyethyl cellulose chemical wastewater mainly comprises the following steps: anaerobic + anoxic + aerobic, SBR processes, etc. The biological toxic substances contained in the hydroxyethyl cellulose production wastewater have a strong inhibiting effect on the life activities of microorganisms in a biochemical system, and a large amount of nitrate nitrogen contained in the wastewater needs to prolong the treatment time of the biochemical system, so that the treatment efficiency of the biochemical system is reduced. Therefore, how to efficiently remove nitrogen-containing pollutants on the basis of the existing biochemical treatment process is a problem which needs to be solved for the treatment of the wastewater generated in the production of hydroxyethyl cellulose.
The nitrogen pollution can bring serious environmental problems, the biological denitrification technology of the wastewater goes through the traditional nitrification-denitrification, the conversion to the novel biological denitrification technology is realized, and the discovery of novel denitrification microorganisms, such as heterotrophic nitrifying bacteria, aerobic denitrifying bacteria, anaerobic ammonium oxidizing bacteria and the like, is realized in succession, so that the biological strengthening technology is more widely applied to the novel denitrification technology.
The existing biological strengthening technology does not have a microbial agent completely aiming at the hydroxyethyl cellulose production wastewater, and can efficiently strengthen the denitrification and COD removal of the hydroxyethyl cellulose production wastewater.
Disclosure of Invention
The invention discloses a denitrification method for nitrogen-containing wastewater discharged in the production process of hydroxyethyl cellulose, aiming at the defects of the existing biological denitrification technology.
In order to achieve the purpose, the technical scheme adopted by the invention is as follows:
a denitrifier is prepared from aeromonas (aeromonas)Aeromonas sp.) PR-DN1, Alcaligenes: (A)Alcaligenes sp.) PR-DN2, Acinetobacter (A)Acinetobacter sp.) PR-DN3, Bacillus cereus (B.cereus)Bacillus cereus.) PR-DN4, Microbacterium (A)Exiguobacterium sp.) PR-DN 5; the five strains are respectively preserved in China type culture Collection (CCTCC) in 2019, 4 and 15 days in 2019, 5 and 20 days in 2019, 5 and 31 days in 2019, the preservation number of PR-DN1 is M2019255, the preservation number of PR-DN2 is M2019372, the preservation number of PR-DN3 is M2019373, the preservation number of PR-DN4 is M2019374, and the preservation number of PR-DN5 is M2019413.
As an improvement of the invention, the total viable count of the denitrifier is 1 multiplied by 109cfu/g-4×109cfu/g。
As an improvement of the invention, the denitrogenation microbial inoculum also comprises conventional additives such as a nutrient, a preservation auxiliary agent, a carrier and the like.
As an improvement of the invention, the sum of the volumes of the five strains in the denitrification microbial inoculum is 20-50%, preferably 20-40% of the total volume of the denitrification microbial inoculum.
As an improvement of the invention, the production process of the denitrification microbial inoculum comprises the following steps:
(1) separately collecting aeromonas obtained by fermentationAeromonas sp.) PR-DN1, Alcaligenes: (A)Alcaligenes sp.) PR-DN2, Acinetobacter (A)Acinetobacter sp.) PR-DN3, Bacillus cereus (B.cereus)Bacillus cereus.) PR-DN4, Microbacterium (A)Exiguobacterium sp.)PR-DN5;
(2) Centrifuging the five bacteria in a centrifugal machine of 5000r/min for 15min, and removing supernatant;
(3) adding 9g/L physiological saline into the five strains respectively, centrifuging for 15min in a centrifugal machine with the speed of 5000r/min, and removing supernatant;
(4) adding 9g/L physiological saline into the five strains respectively, preparing into a bacterium liquid suspension, measuring the viable count, and preparing the five strains into the microbial denitrification microbial inoculum according to the viable count proportion.
As an improvement of the present invention, said Aeromonas sp. (Aeromonas sp.) PR-DN1, Alcaligenes: (A)Alcaligenes sp.) PR-DN2, Acinetobacter (A)Acinetobacter sp.) PR-DN3, Bacillus cereus (B.cereus)Bacillus cereus.) PR-DN4, Microbacterium (A)Exiguobacterium sp.) The ratio of the viable count of the PR-DN5 five strains is 1-10: 1-5: 1-5: 1-10: 1-5.
The application of the denitrifier in treating wastewater discharge in the production process of hydroxyethyl cellulose.
The method is used for treating wastewater discharged in the production process of hydroxyethyl cellulose and comprises the following specific steps: and (3) adding a denitrification microbial inoculum into a biochemical treatment system for discharging wastewater in the production process of hydroxyethyl cellulose, and performing denitrification treatment.
In the method, the nitrogen-containing wastewater is wastewater discharged in the production process of hydroxyethyl cellulose, and NH in the wastewater3N concentration of 1-20mg/L, NO3 -The concentration of-N is 200-800mg/L, NO2 -The concentration of-N is 10-50mg/L, CODCrThe concentration is 900-2000 mg/L, the pH is 6.0-9.0, and the biodegradation is not facilitated.
In the method, the biochemical treatment system for the wastewater discharged in the hydroxyethyl cellulose production process is an existing biochemical treatment system by an activated sludge process, namely an A/O process. The sewage treatment temperature is 25-40 deg.C, dissolved oxygen is 0.2-7mg/L, pH is 6-10, preferably pH is 7-9.
In the method, aeromonas PR-DN1 in the denitrifier is heterotrophic nitrification aerobic denitrifying bacteria, and can simultaneously degrade ammonia nitrogen, nitrate nitrogen and nitrite nitrogen with total nitrogen concentration lower than 2500 mg/L. The bacillus pumilus PR-DN2, the bacillus cereus PR-DN3 and the acinetobacter have strong denitrification capability and can degrade nitrate nitrogen and nitrite nitrogen at the same time. The strain can remove COD while denitrifying.
In the method, the denitrifier grows quickly, and the biological synergistic effect is obvious after the denitrifier is added, so that the denitrifier is added under the condition that the concentration of the activated sludge of the system is lower than 6000 mg/L, and sludge discharge is not recommended within 7 days for keeping the biological synergistic effect.
In the method, the denitrification microbial inoculum is added in a one-time or batch manner. When the raw materials are fed in batches, the raw materials are fed for 1 time every 1 day until the total nitrogen concentration of effluent is lower than 20mg/L, preferably lower than 10 mg/L, the operation can be stably carried out for more than 10 days, and the feeding can be stopped.
In the method, the sewage treatment agent is added at one time, and the adding amount is 1-10% of the sewage treatment volume per hour. The adding is carried out in batches, the adding amount for the first time is 0.2-1% of the sewage treatment volume, the adding amount is gradually decreased later, and the adding amount is reduced by 20-40% each time compared with the adding amount of the bacteria for the last time. After the sewage treatment system is added, the sludge can not be discharged within 1 month. For a batch reactor, the hourly volume of wastewater treated is the average hourly volume of wastewater treated in each treatment cycle.
The denitrifier used in the method of the present invention may contain suitable additives, such as nutrients, preservation aids, etc., and the specific types and amounts of the additives are well known to those skilled in the art. For example Na+、Mg2+、Fe3+、Ca2+And the like.
The denitrifying microbial agent is mainly prepared from heterotrophic microorganisms with similar growth conditions, wherein the microorganisms responsible for denitrification can take nitrite as an electron acceptor, can degrade nitrite nitrogen in a system in time, reduce the biotoxicity effect of nitrite state, and realize short-range nitrification and denitrification.
Compared with the prior art, the invention has the following beneficial effects because the technology is adopted:
the invention can rapidly improve the degradation capability of the original biochemical system to nitrate nitrogen and nitrite nitrogen in a short time on the premise of not increasing the cost.
Detailed Description
The liquid microbial inoculum related to the treatment of the nitrogen-containing wastewater produced and discharged by the hydroxyethyl cellulose provided by the invention has the advantages of rapid growth, strong tolerance, applicability and impact resistance, and capability of removing organic pollutants difficult to treat while denitrifying; can be directly added into activated sludge of a sewage treatment plant for use, and realizes stable biological denitrification.
Example 1:
the denitrifying bacteria used in the present invention can be obtained by mixing the corresponding strains after amplification culture using a suitable medium, or by mixing the strains after amplification culture using a suitable medium, which is well known to those skilled in the art, such as LB medium, which comprises tryptone 10g/L, yeast powder 5g/L, NaCl 5g/L, pH 7.2.
The denitrogenation microbial inoculum comprises aeromonas (Aeromonas sp.) PR-DN1, Alcaligenes: (A)Alcaligenes sp.) PR-DN2, Acinetobacter (A)Acinetobacter sp.) PR-DN3, Bacillus cereus (B.cereus)Bacillus cereus.) PR-DN4, Microbacterium (A)Exiguobacterium sp.) PR-DN 5; the total viable count of the denitrifier is 1 multiplied by 109cfu/g-4×109cfu/g。
The preparation method of the denitrification microbial inoculum comprises the following steps: strains related to the treatment of the wastewater discharged from the production of hydroxyethyl cellulose are respectively inoculated in LB culture medium (the volume of the strains is 2-5% of that of the LB culture medium), shake-bed culture is carried out for 22h under the conditions of 30 ℃ and 180r/min, and then transfer culture is carried out according to the proportion of 2-10% of the volume of the culture medium, and the shake-bed culture conditions are 30 ℃, 180r/min and 48 h. Obtaining bacterial sludge after culturing, centrifuging for 15min in a centrifugal machine with the speed of 5000r/min, removing supernatant, centrifuging for 15min in the centrifugal machine with the speed of 5000r/min by using 9g/L physiological saline, removing supernatant, obtaining bacterial sludge, preparing bacterial liquid suspension by using 9g/L physiological saline, measuring the number of viable bacteria, and preparing the bacterial liquid suspension into the microbial denitrification fungicide according to a proper proportion. The denitrifier contains conventional additives such as a nutrient, a preservation aid, a carrier and the like, and the sum of the volumes of the five bacteria in the denitrifier accounts for 20-50% of the total volume of the denitrifier.
Example 2:
the microbial denitrifying bacteria comprise:
aeromonas (A) bacterium (A)Aeromonas sp.)PR-DN1:5×108cfu/mL
Alcaligenes (A), (B) and (C)Alcaligenes sp.)PR-DN2:2.5×108cfu/mL
Acinetobacter (A), (B), (C)Acinetobacter sp.)PR-DN3:2.5×108cfu/mL
Bacillus cereus (A), (B) and (C)Bacillus cereus.)PR-DN4:5×108cfu/mL
Micro-bacterium (A), (B)Exiguobacterium sp.)PR-DN5:2.5×108cfu/mL
The total viable count is: 1.75X 109cfu/mL
The denitrifier was prepared according to the method of example 1. The nitrogen-containing wastewater produced by certain hydroxyethyl cellulose is treated by adopting an A/O process. NH in wastewater3-N concentration 20mg/L, NO3 -N concentration 390mg/L, NO2 -N concentration of 5mg/L, CODCrThe concentration was 1000 mg/L. The treated waste water can not be discharged after reaching the standard. The denitrification fungicide prepared by the method of example 1 is added into a sewage treatment system. In the adding process, the temperature in the system is 32 ℃, the dissolved oxygen is 0.1-0.3mg/L, and the pH is 7.8-8.5. The first adding amount is 0.5 percent of the amount of the treated sewage, the sewage is added into the sewage treatment system once every 1 day, the adding amount is reduced by 40 percent every time compared with the last adding amount, and the adding amount is totally added for 2 times. After the two times of addition, the nitrate nitrogen concentration of discharged water is lower than 5mg/L, the total nitrogen concentration is lower than 5mg/L, the operation is continuously carried out for 25 days, the nitrate nitrogen concentration and the total nitrogen concentration of discharged water are both lower than 5mg/L, and COD (chemical oxygen demand) isCrThe concentration is lower than 60mg/L, and the total nitrogen removal rate can reach 99 percent.
Example 3:
the microbial denitrifying bacteria comprise:
aeromonas (A) bacterium (A)Aeromonas sp.)PR-DN1:7×108cfu/mL
Alcaligenes (A), (B) and (C)Alcaligenes sp.)PR-DN2:5×108cfu/mL
Acinetobacter (A), (B), (C)Acinetobacter sp.)PR-DN3:5×108cfu/mL
Bacillus cereus (A), (B) and (C)Bacillus cereus.)PR-DN4:7×108cfu/mL
Micro-bacterium (A), (B)Exiguobacterium sp.)PR-DN5:2×108cfu/mL
The total viable count is: 2.6X 109cfu/mL
The denitrifier was prepared by the method of example 1. NH in nitrogen-containing wastewater produced by certain hydroxyethyl cellulose3N concentration 5mg/L, NO3 --N concentration of 260mg/L, NO2 -The concentration of N is 9mg/L, CODCrThe concentration was 800 mg/L. The treated waste water can not be discharged after reaching the standard. The denitrification fungicide prepared by the method of example 1 is added into a sewage treatment system. In the adding process, the temperature in the system is 29 ℃, the dissolved oxygen is 0.1-0.3mg/L, and the pH is 7.2-7.6. The first adding amount is 0.3 percent of the amount of the treated sewage, the sewage is added into the sewage treatment system once every 1 day, the adding amount is reduced by 30 percent every time compared with the last adding amount, and the adding amount is totally 3 times. After the two times of addition, the nitrate nitrogen concentration of discharged water is lower than 5mg/L, the total nitrogen concentration is lower than 5mg/L, the operation is continuously carried out for 25 days, the nitrate nitrogen and the total nitrogen of discharged water are both lower than 5mg/L, and CODCrThe concentration is lower than 60mg/L, and the total nitrogen removal rate can reach 99 percent.
Example 4:
the microbial denitrifying bacteria comprise:
aeromonas (A) bacterium (A)Aeromonas sp.)PR-DN1:9×108cfu/mL
Alcaligenes (A), (B) and (C)Alcaligenes sp.)PR-DN2:4×108cfu/mL
Acinetobacter (A), (B), (C)Acinetobacter sp.)PR-DN3:4×108cfu/mL
Bacillus cereus (A), (B) and (C)Bacillus cereus.)PR-DN4:5×108cfu/mL
Micro-bacterium (A), (B)Exiguobacterium sp.)PR-DN5:3×108cfu/mL
The total viable count is: 2.5X 109cfu/mL
The denitrifier was prepared by the method of example 1. NH in nitrogen-containing wastewater produced by certain hydroxyethyl cellulose3-N concentration 11mg/L, NO3 --N is concentratedDegree of 600mg/L, NO2 -The concentration of N is 12mg/L, CODCrThe concentration was 1500 mg/L. The treated waste water can not be discharged after reaching the standard. The denitrification fungicide prepared by the method of example 1 is added into a sewage treatment system. In the adding process, the temperature in the system is 33 ℃, the dissolved oxygen is 0.1-0.3mg/L, and the pH is 7.6-8.4. The first adding amount is 0.3 percent of the amount of the treated sewage, the sewage is added into the sewage treatment system once every 1 day, the adding amount is reduced by 30 percent every time compared with the last adding amount, and the adding amount is totally 5 times. After the two times of addition, the discharged nitrate nitrogen concentration is lower than 5mg/L, the total nitrogen concentration is lower than 5mg/L, the operation is continuously carried out for 25 days, and the discharged nitrate nitrogen and the total nitrogen are both lower than 5 mg/L. CODCrThe concentration is lower than 60mg/L, and the total nitrogen removal rate can reach 99 percent.
Attached: aeromonas (A) bacterium (A)Aeromonas sp.) PR-DN1 strain sequence (SEQ ID NO. 1)
ATCTACTTCTGGTGCAACCCACTCCCATGGTGTGACGGGCGGTGTGTACAAGGCCCGGGAACGTATTCACCGCAACATTCTGATTTGCGATTACTAGCGATTCCGACTTCATGGAGTCGAGTTGCAGACTCCAATCCGGACTACGACGCGCTTTTTGGGATTCGCTCACTATCGCTAGCTTGCAGCCCTCTGTACGCGCCATTGTAGCACGTGTGTAGCCCTGGCCGTAAGGGCCATGATGACTTGACGTCATCCCCACCTTCCTCCGGTTTATCACCGGCAGTCTCCCTTGAGTTCCCACCATTACGTGCTGGCAACAAAGGACAGGGGTTGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAGCCATGCAGCACCTGTGTTCTGATTCCCGAAGGCACTCCCGCATCTCTGCAGGATTCCAGACATGTCAAGGCCAGGTAAGGTTCTTCGCGTTGCATCGAATTAAACCACATGCTCCACCGCTTGTGCGGGCCCCCGTCAATTCATTTGAGTTTTAACCTTGCGGCCGTACTCCCCAGGCGGTCGATTTAACGCGTTAGCTCCGGAAGCCACGTCTCAAGGACACAGCCTCCAAATCGACATCGTTTACGGCGTGGACTACCAGGGTATCTAATCCTGTTTGCTCCCCACGCTTTCGCACCTGAGCGTCAGTCTTTGTCCAGGGGGCCGCCTTCGCCACCGGTATTCCTCCAGATCTCTACGCATTTCACCGCTACACCTGGAATTCTACCCCCCTCTACAAGACTCTAGCTGGACAGTTTTAAATGCAATTCCCAGGTTGAGCCCGGGGCTTTCACATCTAACTTATCCAACCGCCTGCGTGCGCTTTACGCCCAGTAATTCCGATTAACGCTTGCACCCTCCGTATTACCGCGGCTGCTGGCACGGAGTTAGCCGGTGCTTCTTCTGCGAGTAACGTCACAGTCAGCAGATATTAGCTACTGACCTTTCCTCCTCGCTGAAAGTGCTTTACAACCCGAAGGCCTTCTTCACACACGCGGCATGGCTGCATCAGGGTTTCCCCCATTGTGCAATATTCCCCACTGCTGCCTCCCGTAGGAGTCTGGACCGTGTCTCAGTTCCAGTGTGGCTGATCATCCTCTCAGACCAGCTAGGGATCGTCGCCTTGGTGAGCCATTACCTCACCAACTAGCTAATCCCACCTGGGCATATCCAATCGCGCAAGGCCCGAAGGTCCCCTGCTTTCCCCCGTAGGGCGTATGCGGTATTAGCAGTCGTTTCCAACTGTTATCCCCCTCGACTGGGCAATTTCCCAGGCATTACTCACCCGTCCGCCGCTCGCCGGCAAAAGTAGCAAGCTACTTTC
Alcaligenes sp PR-DN2 strain sequence (SEQ ID NO. 2)
ACGGCAGCACGAGAGAGCTTGCTCTCTTGGTGGCGAGTGGCGGACGGGTGAGTAATATATCGGAACGTGCCCAGTAGCGGGGGATAACTACTCGAAAGAGTGGCTAATACCGCATACGCCCTACGGGGGAAAGGGGGGGATTCTTCGGAACCTCTCACTATTGGAGCGGCCGATATCGGATTAGCTAGTTGGTGGGGTAAAGGCTCACCAAGGCAACGATCCGTAGCTGGTTTGAGAGGACGACCAGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATTTTGGACAATGGGGGAAACCCTGATCCAGCCATCCCGCGTGTATGATGAAGGCCTTCGGGTTGTAAAGTACTTTTGGCAGAGAAGAAAAGGTATCTCCTAATACGAGATACTGCTGACGGTATCTGCAGAATAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGTGTGTAGGCGGTTCGGAAAGAAAGATGTGAAATCCCAGGGCTCAACCTTGGAACTGCATTTTTAACTGCCGAGCTAGAGTATGTCAGAGGGGGGTAGAATTCCACGTGTAGCAGTGAAATGCGTAGATATGTGGAGGAATACCGATGGCGAAGGCAGCCCCCTGGGATAATACTGACGCTCAGACACGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGATGTCAACTAGCTGTTGGGGCCGTTAGGCCTTAGTAGCGCAGCTAACGCGTGAAGTTGACCGCCTGGGGAGTACGGTCGCAAGATTAAAACTCAAAGGAATTGACGGGGACCCGCACAAGCGGTGGATGATGTGGATTAATTCGATGCAACGCGAAAAACCTTACCTACCCTTGACATGTCTGGAATCCCGAAGAGATTTGGGAGTGCTCGCAAGAGAACCGGAACACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTCATTAGTTGCTACGCAAGAGCACTCTAATGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAGTCCTCATGGCCCTTATGGGTAGGGCTTCACACGTCATACAATGGTCGGGACAGAGGGTCGCCAACCCGCGAGGGGGAGCCAATCTCAGAAACCCGATCGTAGTCCGGATCGCAGTCTGCAACTCGACTGCGTGAAGTCGGAATCGCTAGTAATCGCGGATCAGAATGTCGCGGTGAAATACGTTCCCGGGTCTTGTACACACCGCCCGTCACACCATGGGAGTGGGTTTCACCAGAAGTAGGTAGCCTAACC
Acinetobacter (Acinetobacter sp.) PR-DN3 strain sequence (SEQ ID NO. 3)
AGCTCGCTACTGGACCTAGCGGCGGACGGGTGAGTAATGCTTAGGAATCTGCCTATTAGTGGGGGACAACATTCCGAAAGGAATGCTAATACCGCATACGTCCTACGGGAGAAAGCAGGGGACCTTCGGGCCTTGCGCTAATAGATGAGCCTAAGTCGGATTAGCTAGTTGGTGGGGTAAAGGCCTACCAAGGCGACGATCTGTAGCGGGTCTGAGAGGATGATCCGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGGGGGAACCCTGATCCAGCCATGCCGCGTGTGTGAAGAAGGCCTTATGGTTGTAAAGCACTTTAAGCGAGGAGGAGGCTACTAGTATTAATACTACTGGATAGTGGACGTTACTCGCAGAATAAGCACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATACAGAGGGTGCGAGCGTTAATCGGATTTACTGGGCGTAAAGCGTGCGTAGGCGGCCATTTAAGTCAAATGTGAAATCCCCGAGCTTAACTTGGGAATTGCATTCGATACTGGATGGCTAGAGTATGGGAGAGGATGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGATGGCGAAGGCAGCCATCTGGCCTAATACTGACGCTGAGGTACGAAAGCATGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCATGCCGTAAACGATGTCTACTAGCCGTTGGGGCCTTTGAGGCTTTAGTGGCGCAGCTAACGCGATAAGTAGACCGCCTGGGGAGTACGGTCGCAAGACTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCTGGCCTTGACATACTAGAAACTTTCCAGAGATGGATTGGTGCCTTCGGGAATCTAGATACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTTTCCTTACTTGCCAGCATTTCGGATGGGAACTTTAAGGATACTGCCAGTGACAAACTGGAGGAAGGCGGGGACGACGTCAAGTCATCATGGCCCTTACGGCCAGGGCTACACACGTGCTACAATGGTCGGTACAAAGGGTTGCTACCTAGCGATAGGATGCTAATCTCAAAAAGCCGATCGTAGTCCGGATTGGAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGCGGATCAGAATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGGAGTTTGTTGCACCAGAAGTAGGTAGTCTAACCGC
Bacillus cereus (Bacillus cereus) PR-DN4 strain sequence (SEQ ID NO. 4)
CCACCGACTTCGGGTGTTACAAACTCTCGTGGTGTGACGGGCGGTGTGTACAAGGCCCGGGAACGTATTCACCGCGGCATGCTGATCCGCGATTACTAGCGATTCCAGCTTCATGTAGGCGAGTTGCAGCCTACAATCCGAACTGAGAACGGTTTTATGAGATTAGCTCCACCTCGCGGTCTTGCAGCTCTTTGTACCGTCCATTGTAGCACGTGTGTAGCCCAGGTCATAAGGGGCATGATGATTTGACGTCATCCCCACCTTCCTCCGGTTTGTCACCGGCAGTCACCTTAGAGTGCCCAACTTAATGATGGCAACTAAGATCAAGGGTTGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAACCATGCACCACCTGTCACTCTGCTCCCGAAGGAGAAGCCCTATCTCTAGGGTTTTCAGAGGATGTCAAGACCTGGTAAGGTTCTTCGCGTTGCTTCGAATTAAACCACATGCTCCACCGCTTGTGCGGGCCCCCGTCAATTCCTTTGAGTTTCAGCCTTGCGGCCGTACTCCCCAGGCGGAGTGCTTAATGCGTTAACTTCAGCACTAAAGGGCGGAAACCCTCTAACACTTAGCACTCATCGTTTACGGCGTGGACTACCAGGGTATCTAATCCTGTTTGCTCCCCACGCTTTCGCGCCTCAGTGTCAGTTACAGACCAGAAAGTCGCCTTCGCCACTGGTGTTCCTCCATATCTCTACGCATTTCACCGCTACACATGGAATTCCACTTTCCTCTTCTGCACTCAAGTCTCCCAGTTTCCAATGACCCTCCACGGTTGAGCCGTGGGCTTTCACATCAGACTTAAGAAACCACCTGCGCGCGCTTTACGCCCAATAATTCCGGATAACGCTTGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTAGCCGTGGCTTTCTGGTTAGGTACCGTCAAGGTGCCAGCTTATTCAACTAGCACTTGTTCTTCCCTAACAACAGAGTTTTACGACCCGAAAGCCTTCATCACTCACGCGGCGTTGCTCCGTCAGACTTTCGTCCATTGCGGAAGATTCCCTACTGCTGCCTCCCGTAGGAGTCTGGGCCGTGTCTCAGTCCCAGTGTGGCCGATCACCCTCTCAGGTCGGCTACGCATCGTTGCCTTGGTGAGCCGTTACCTCACCAACTAGCTAATGCGACGCGGGTCCATCCATAAGTGACAGCCGAAGCCGCCTTTCAATTTCGAACCATGCGGTTCAAAATGTTATCCGGTATTAGCCCCGGTTTCCCGGAGTTATCCCAGTCTTATGGGCAGGTTACCCACGTGTTACTCACCCGTCCGCCGCTAACTTCATAAGAGCAAGCTCTTAA
Microbacterium (Exiguobacterium sp.) PR-DN5 strain sequence (SEQ ID NO. 5)
CCGGCTTCGGGTGTTGCAAACTCTCGTGGTGTGACGGGCGGTGTGTACAAGACCCGGGAACGTATTCACCGCAGTATGCTGACCTGCGATTACTAGCGATTCCGACTTCATGCAGGCGAGTTGCAGCCTGCAATCCGAACTGGGAACGGCTTTATGGGATTGGCTCCACCTCGCGGTCTCGCTGCCCTTTGTACCGTCCATTGTAGCACGTGTGTAGCCCAACTCATAAGGGGCATGATGATTTGACGTCATCCCCACCTTCCTCCGGTTTGTCACCGGCAGTCTCCCTAGAGTGCCCAACTGAATGCTGGCAACTAAGGATAGGGGTTGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAACCATGCACCACCTGTCACCATTGTCCCCGAAGGGAAAACTTGATCTCTCAAGCGGTCAATGGGATGTCAAGAGTTGGTAAGGTTCTTCGCGTTGCTTCGAATTAAACCACATGCTCCACCGCTTGTGCGGGTCCCCGTCAATTCCTTTGAGTTTCAGCCTTGCGGCCGTACTCCCCAGGCGGAGTGCTTAATGCGTTAGCTTCAGCACTGAGGGGCGGAAACCCCCCCAACACTAGCACTCATCGTTTACGGCGTGGACTACCAGGGTATCTAATCCTGTTTGCTCCCCACGCTTTCGCGCCTCAGCGTCAGTTACAGACCAAAGAGTCGCCTTCGCCACTGGTGTTCCTCCACATCTCTACGCATTTCACCGCTACACGTGGAATTCCACTCTTCTCTTCTGTACTCAAGCCTTCCAGTTTCCAATGGCCCTCCCCGGTTGAGCCGGGGGCTTTCACATCAGACTTAAAAGGCCGCCTGCGCGCGCTTTACGCCCAATAATTCCGGACAACGCTTGCCACCTACGTATTACCGCGGCTGCTGGCACGTAGTTAGCCGTGGCTTTCTCGTAAGGTACCGTCAAGGTACGAGCATTCCCTCTCGTACGTGTTCTTCCCTTACAACAGAGTTTTACGATCCGAAAACCTTCATCACTCACGCGGCGTTGCTCCATCAGACTTTCGTCCATTGTGGAAGATTCCCTACTGCTGCCTCCCGTAGGAGTCTGGGCCGTGTCTCAGTCCCAGTGTGGCCGATCACCCTCTCAGGTCGGCTATGCATCGTCGCCTTGGTGGGCCGTTACCCCACCAACTAGCTAATGCACCGCAAGGCCATCTCAAGGTGACGCCGGAGCGCCTTTCATCAGCGGACCATGCGGTCCGATGAACTATCCGGTATTAGCTCCGATTTCTCGGAGTTATCCCAATCCTTGAGGCAGGTTCCTTACGTGTTACTCACCCGTCCGCCGCTCATTCCGCTGCCTTCCCTCCGAAGAGTTCCGTC
The above-mentioned embodiments are merely preferred embodiments of the present invention, and should not be construed as limiting the present invention, and the scope of the present invention should be defined by the claims, and equivalents including technical features of the claims, i.e., equivalent modifications within the scope of the present invention.
Sequence listing
<110> Bordea environmental group, Inc
<120> denitrification method for wastewater discharged in hydroxyethyl cellulose production process
<160> 5
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1368
<212> DNA
<213> Aeromonas PR-DN1(Aeromonas sp. PR-DN1)
<400> 1
atctacttct ggtgcaaccc actcccatgg tgtgacgggc ggtgtgtaca aggcccggga 60
acgtattcac cgcaacattc tgatttgcga ttactagcga ttccgacttc atggagtcga 120
gttgcagact ccaatccgga ctacgacgcg ctttttggga ttcgctcact atcgctagct 180
tgcagccctc tgtacgcgcc attgtagcac gtgtgtagcc ctggccgtaa gggccatgat 240
gacttgacgt catccccacc ttcctccggt ttatcaccgg cagtctccct tgagttccca 300
ccattacgtg ctggcaacaa aggacagggg ttgcgctcgt tgcgggactt aacccaacat 360
ctcacgacac gagctgacga cagccatgca gcacctgtgt tctgattccc gaaggcactc 420
ccgcatctct gcaggattcc agacatgtca aggccaggta aggttcttcg cgttgcatcg 480
aattaaacca catgctccac cgcttgtgcg ggcccccgtc aattcatttg agttttaacc 540
ttgcggccgt actccccagg cggtcgattt aacgcgttag ctccggaagc cacgtctcaa 600
ggacacagcc tccaaatcga catcgtttac ggcgtggact accagggtat ctaatcctgt 660
ttgctcccca cgctttcgca cctgagcgtc agtctttgtc cagggggccg ccttcgccac 720
cggtattcct ccagatctct acgcatttca ccgctacacc tggaattcta cccccctcta 780
caagactcta gctggacagt tttaaatgca attcccaggt tgagcccggg gctttcacat 840
ctaacttatc caaccgcctg cgtgcgcttt acgcccagta attccgatta acgcttgcac 900
cctccgtatt accgcggctg ctggcacgga gttagccggt gcttcttctg cgagtaacgt 960
cacagtcagc agatattagc tactgacctt tcctcctcgc tgaaagtgct ttacaacccg 1020
aaggccttct tcacacacgc ggcatggctg catcagggtt tcccccattg tgcaatattc 1080
cccactgctg cctcccgtag gagtctggac cgtgtctcag ttccagtgtg gctgatcatc 1140
ctctcagacc agctagggat cgtcgccttg gtgagccatt acctcaccaa ctagctaatc 1200
ccacctgggc atatccaatc gcgcaaggcc cgaaggtccc ctgctttccc ccgtagggcg 1260
tatgcggtat tagcagtcgt ttccaactgt tatccccctc gactgggcaa tttcccaggc 1320
attactcacc cgtccgccgc tcgccggcaa aagtagcaag ctactttc 1368
<210> 2
<211> 1382
<212> DNA
<213> Alcaligenes PR-DN2(Alcaligenes sp. PR-DN2)
<400> 2
acggcagcac gagagagctt gctctcttgg tggcgagtgg cggacgggtg agtaatatat 60
cggaacgtgc ccagtagcgg gggataacta ctcgaaagag tggctaatac cgcatacgcc 120
ctacggggga aaggggggga ttcttcggaa cctctcacta ttggagcggc cgatatcgga 180
ttagctagtt ggtggggtaa aggctcacca aggcaacgat ccgtagctgg tttgagagga 240
cgaccagcca cactgggact gagacacggc ccagactcct acgggaggca gcagtgggga 300
attttggaca atgggggaaa ccctgatcca gccatcccgc gtgtatgatg aaggccttcg 360
ggttgtaaag tacttttggc agagaagaaa aggtatctcc taatacgaga tactgctgac 420
ggtatctgca gaataagcac cggctaacta cgtgccagca gccgcggtaa tacgtagggt 480
gcaagcgtta atcggaatta ctgggcgtaa agcgtgtgta ggcggttcgg aaagaaagat 540
gtgaaatccc agggctcaac cttggaactg catttttaac tgccgagcta gagtatgtca 600
gaggggggta gaattccacg tgtagcagtg aaatgcgtag atatgtggag gaataccgat 660
ggcgaaggca gccccctggg ataatactga cgctcagaca cgaaagcgtg gggagcaaac 720
aggattagat accctggtag tccacgccct aaacgatgtc aactagctgt tggggccgtt 780
aggccttagt agcgcagcta acgcgtgaag ttgaccgcct ggggagtacg gtcgcaagat 840
taaaactcaa aggaattgac ggggacccgc acaagcggtg gatgatgtgg attaattcga 900
tgcaacgcga aaaaccttac ctacccttga catgtctgga atcccgaaga gatttgggag 960
tgctcgcaag agaaccggaa cacaggtgct gcatggctgt cgtcagctcg tgtcgtgaga 1020
tgttgggtta agtcccgcaa cgagcgcaac ccttgtcatt agttgctacg caagagcact 1080
ctaatgagac tgccggtgac aaaccggagg aaggtgggga tgacgtcaag tcctcatggc 1140
ccttatgggt agggcttcac acgtcataca atggtcggga cagagggtcg ccaacccgcg 1200
agggggagcc aatctcagaa acccgatcgt agtccggatc gcagtctgca actcgactgc 1260
gtgaagtcgg aatcgctagt aatcgcggat cagaatgtcg cggtgaaata cgttcccggg 1320
tcttgtacac accgcccgtc acaccatggg agtgggtttc accagaagta ggtagcctaa 1380
cc 1382
<210> 3
<211> 1369
<212> DNA
<213> Acinetobacter PR-DN3(Acinetobacter sp. PR-DN3)
<400> 3
agctcgctac tggacctagc ggcggacggg tgagtaatgc ttaggaatct gcctattagt 60
gggggacaac attccgaaag gaatgctaat accgcatacg tcctacggga gaaagcaggg 120
gaccttcggg ccttgcgcta atagatgagc ctaagtcgga ttagctagtt ggtggggtaa 180
aggcctacca aggcgacgat ctgtagcggg tctgagagga tgatccgcca cactgggact 240
gagacacggc ccagactcct acgggaggca gcagtgggga atattggaca atggggggaa 300
ccctgatcca gccatgccgc gtgtgtgaag aaggccttat ggttgtaaag cactttaagc 360
gaggaggagg ctactagtat taatactact ggatagtgga cgttactcgc agaataagca 420
ccggctaact ctgtgccagc agccgcggta atacagaggg tgcgagcgtt aatcggattt 480
actgggcgta aagcgtgcgt aggcggccat ttaagtcaaa tgtgaaatcc ccgagcttaa 540
cttgggaatt gcattcgata ctggatggct agagtatggg agaggatggt agaattccag 600
gtgtagcggt gaaatgcgta gagatctgga ggaataccga tggcgaaggc agccatctgg 660
cctaatactg acgctgaggt acgaaagcat ggggagcaaa caggattaga taccctggta 720
gtccatgccg taaacgatgt ctactagccg ttggggcctt tgaggcttta gtggcgcagc 780
taacgcgata agtagaccgc ctggggagta cggtcgcaag actaaaactc aaatgaattg 840
acgggggccc gcacaagcgg tggagcatgt ggtttaattc gatgcaacgc gaagaacctt 900
acctggcctt gacatactag aaactttcca gagatggatt ggtgccttcg ggaatctaga 960
tacaggtgct gcatggctgt cgtcagctcg tgtcgtgaga tgttgggtta agtcccgcaa 1020
cgagcgcaac ccttttcctt acttgccagc atttcggatg ggaactttaa ggatactgcc 1080
agtgacaaac tggaggaagg cggggacgac gtcaagtcat catggccctt acggccaggg 1140
ctacacacgt gctacaatgg tcggtacaaa gggttgctac ctagcgatag gatgctaatc 1200
tcaaaaagcc gatcgtagtc cggattggag tctgcaactc gactccatga agtcggaatc 1260
gctagtaatc gcggatcaga atgccgcggt gaatacgttc ccgggccttg tacacaccgc 1320
ccgtcacacc atgggagttt gttgcaccag aagtaggtag tctaaccgc 1369
<210> 4
<211> 1377
<212> DNA
<213> Bacillus cereus PR-DN4(Bacillus cereus. PR-DN4)
<400> 4
ccaccgactt cgggtgttac aaactctcgt ggtgtgacgg gcggtgtgta caaggcccgg 60
gaacgtattc accgcggcat gctgatccgc gattactagc gattccagct tcatgtaggc 120
gagttgcagc ctacaatccg aactgagaac ggttttatga gattagctcc acctcgcggt 180
cttgcagctc tttgtaccgt ccattgtagc acgtgtgtag cccaggtcat aaggggcatg 240
atgatttgac gtcatcccca ccttcctccg gtttgtcacc ggcagtcacc ttagagtgcc 300
caacttaatg atggcaacta agatcaaggg ttgcgctcgt tgcgggactt aacccaacat 360
ctcacgacac gagctgacga caaccatgca ccacctgtca ctctgctccc gaaggagaag 420
ccctatctct agggttttca gaggatgtca agacctggta aggttcttcg cgttgcttcg 480
aattaaacca catgctccac cgcttgtgcg ggcccccgtc aattcctttg agtttcagcc 540
ttgcggccgt actccccagg cggagtgctt aatgcgttaa cttcagcact aaagggcgga 600
aaccctctaa cacttagcac tcatcgttta cggcgtggac taccagggta tctaatcctg 660
tttgctcccc acgctttcgc gcctcagtgt cagttacaga ccagaaagtc gccttcgcca 720
ctggtgttcc tccatatctc tacgcatttc accgctacac atggaattcc actttcctct 780
tctgcactca agtctcccag tttccaatga ccctccacgg ttgagccgtg ggctttcaca 840
tcagacttaa gaaaccacct gcgcgcgctt tacgcccaat aattccggat aacgcttgcc 900
acctacgtat taccgcggct gctggcacgt agttagccgt ggctttctgg ttaggtaccg 960
tcaaggtgcc agcttattca actagcactt gttcttccct aacaacagag ttttacgacc 1020
cgaaagcctt catcactcac gcggcgttgc tccgtcagac tttcgtccat tgcggaagat 1080
tccctactgc tgcctcccgt aggagtctgg gccgtgtctc agtcccagtg tggccgatca 1140
ccctctcagg tcggctacgc atcgttgcct tggtgagccg ttacctcacc aactagctaa 1200
tgcgacgcgg gtccatccat aagtgacagc cgaagccgcc tttcaatttc gaaccatgcg 1260
gttcaaaatg ttatccggta ttagccccgg tttcccggag ttatcccagt cttatgggca 1320
ggttacccac gtgttactca cccgtccgcc gctaacttca taagagcaag ctcttaa 1377
<210> 5
<211> 1382
<212> DNA
<213> Microbacterium PR-DN5(Exiguobacterium sp. PR-DN5)
<400> 5
ccggcttcgg gtgttgcaaa ctctcgtggt gtgacgggcg gtgtgtacaa gacccgggaa 60
cgtattcacc gcagtatgct gacctgcgat tactagcgat tccgacttca tgcaggcgag 120
ttgcagcctg caatccgaac tgggaacggc tttatgggat tggctccacc tcgcggtctc 180
gctgcccttt gtaccgtcca ttgtagcacg tgtgtagccc aactcataag gggcatgatg 240
atttgacgtc atccccacct tcctccggtt tgtcaccggc agtctcccta gagtgcccaa 300
ctgaatgctg gcaactaagg ataggggttg cgctcgttgc gggacttaac ccaacatctc 360
acgacacgag ctgacgacaa ccatgcacca cctgtcacca ttgtccccga agggaaaact 420
tgatctctca agcggtcaat gggatgtcaa gagttggtaa ggttcttcgc gttgcttcga 480
attaaaccac atgctccacc gcttgtgcgg gtccccgtca attcctttga gtttcagcct 540
tgcggccgta ctccccaggc ggagtgctta atgcgttagc ttcagcactg aggggcggaa 600
acccccccaa cactagcact catcgtttac ggcgtggact accagggtat ctaatcctgt 660
ttgctcccca cgctttcgcg cctcagcgtc agttacagac caaagagtcg ccttcgccac 720
tggtgttcct ccacatctct acgcatttca ccgctacacg tggaattcca ctcttctctt 780
ctgtactcaa gccttccagt ttccaatggc cctccccggt tgagccgggg gctttcacat 840
cagacttaaa aggccgcctg cgcgcgcttt acgcccaata attccggaca acgcttgcca 900
cctacgtatt accgcggctg ctggcacgta gttagccgtg gctttctcgt aaggtaccgt 960
caaggtacga gcattccctc tcgtacgtgt tcttccctta caacagagtt ttacgatccg 1020
aaaaccttca tcactcacgc ggcgttgctc catcagactt tcgtccattg tggaagattc 1080
cctactgctg cctcccgtag gagtctgggc cgtgtctcag tcccagtgtg gccgatcacc 1140
ctctcaggtc ggctatgcat cgtcgccttg gtgggccgtt accccaccaa ctagctaatg 1200
caccgcaagg ccatctcaag gtgacgccgg agcgcctttc atcagcggac catgcggtcc 1260
gatgaactat ccggtattag ctccgatttc tcggagttat cccaatcctt gaggcaggtt 1320
ccttacgtgt tactcacccg tccgccgctc attccgctgc cttccctccg aagagttccg 1380
tc 1382

Claims (8)

1. The application of the denitrifier in treating wastewater discharged in the production process of hydroxyethyl cellulose is characterized in that: the denitrifying bacteria agent comprises aeromonas (Aeromonas sp.) PR-DN1, Alcaligenes: (A)Alcaligenes sp.) PR-DN2, Acinetobacter (A)Acinetobacter sp.) PR-DN3, Bacillus cereus (B.cereus)Bacillus cereus) PR-DN4 and Microbacterium (A)Exiguobacterium sp.) PR-DN 5; the five strains are respectivelyThe culture is preserved in China center for type culture Collection in 2019, 4 and 15 days in 2019, 5 and 20 days in 2019 and 31 days in 2019, and the preservation number of PR-DN1 is CCTCC NO: the preservation number of M2019255 and PR-DN2 is CCTCC NO: the preservation number of M2019372, PR-DN3 is CCTCC NO: the preservation number of M2019373 and PR-DN4 is CCTCC NO: the preservation number of M2019374 and PR-DN5 is CCTCC NO: m2019413;
the total viable count of the denitrifier is 1 multiplied by 109cfu/g-4×109cfu/g。
2. Use according to claim 1, characterized in that: the denitrogenation microbial inoculum also comprises a nutrient, a preservation auxiliary agent and a carrier.
3. Use according to claim 2, characterized in that: the sum of the volumes of the five strains in the denitrification microbial inoculum is 20-50 percent of the total volume of the denitrification microbial inoculum.
4. The use according to any one of claims 1 to 3, characterized in that the denitrification fungicide production process comprises the following steps:
(1) separately collecting aeromonas obtained by fermentationAeromonas sp.) PR-DN1, Alcaligenes: (A)Alcaligenes sp.) PR-DN2, Acinetobacter (A)Acinetobacter sp.) PR-DN3, Bacillus cereus (B.cereus)Bacillus cereus) PR-DN4 and Microbacterium (A)Exiguobacterium sp.)PR-DN5;
(2) Putting the five bacteria obtained in the step (1) into a centrifugal machine respectively, centrifuging for 15min at the speed of 5000r/min, and removing supernatant;
(3) respectively adding physiological saline into the five strains obtained after centrifugation in the step (2), centrifuging for 15min at 5000r/min in a centrifuge, and removing supernatant;
(4) and (4) respectively adding physiological saline into the five strains obtained after centrifugation in the step (3), preparing a bacterium liquid suspension, measuring the number of viable bacteria, and preparing the five strains into the microbial denitrification fungicide according to the ratio of the number of the viable bacteria.
5. Use according to claim 4, characterized in that: aeromonas (ii) in the step (4)Aeromonas sp.) PR-DN1, Alcaligenes: (A)Alcaligenes sp.) PR-DN2, Acinetobacter (A)Acinetobacter sp.) PR-DN3, Bacillus cereus (B.cereus)Bacillus cereus) PR-DN4 and Microbacterium (A)Exiguobacterium sp.) The ratio of the viable count of the PR-DN5 five strains is 1-10: 1-5: 1-5: 1-10: 1-5.
6. The application of claim 1, comprising the following steps: and adding the denitrification fungicide into a biochemical treatment system of wastewater discharged in the production process of hydroxyethyl cellulose, and performing denitrification treatment.
7. Use according to claim 1, characterized in that: the treatment temperature of the wastewater is 25-40 ℃, the dissolved oxygen is 0.2-7mg/L, and the pH value is 6-10.
8. Use according to claim 1, characterized in that: NH in the discharged wastewater3N concentration of 1-20mg/L, NO3 -The concentration of-N is 200-800mg/L, NO2 -The concentration of-N is 10-50mg/L, CODCrThe concentration is 900-2000 mg/L, and the pH is 6.0-9.0.
CN201910545924.2A 2019-06-23 2019-06-23 Denitrification method for wastewater discharged in hydroxyethyl cellulose production process Active CN110317751B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910545924.2A CN110317751B (en) 2019-06-23 2019-06-23 Denitrification method for wastewater discharged in hydroxyethyl cellulose production process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910545924.2A CN110317751B (en) 2019-06-23 2019-06-23 Denitrification method for wastewater discharged in hydroxyethyl cellulose production process

Publications (2)

Publication Number Publication Date
CN110317751A CN110317751A (en) 2019-10-11
CN110317751B true CN110317751B (en) 2022-01-11

Family

ID=68120127

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910545924.2A Active CN110317751B (en) 2019-06-23 2019-06-23 Denitrification method for wastewater discharged in hydroxyethyl cellulose production process

Country Status (1)

Country Link
CN (1) CN110317751B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111454865B (en) * 2020-04-16 2022-05-03 江苏兆鋆新材料股份有限公司 Microbacterium and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102363546A (en) * 2011-06-20 2012-02-29 上海明诺环境科技有限公司 High salinity pharmaceutical wastewater processing system
CN104649420A (en) * 2014-12-29 2015-05-27 南京大学 Method of removing nitrate nitrogen in water body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102363546A (en) * 2011-06-20 2012-02-29 上海明诺环境科技有限公司 High salinity pharmaceutical wastewater processing system
CN104649420A (en) * 2014-12-29 2015-05-27 南京大学 Method of removing nitrate nitrogen in water body

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Impact resistance of different factors on ammonia removal by heterotrophic nitrification–aerobic denitrification bacterium Aeromonas sp. HN-02;Maoxia Chen等;《Bioresource Technology》;20140619;第167卷;第456-461页,参见全文 *
异养硝化-好氧反硝化菌HN-02的筛选及其特性;陈茂霞等;《应用与环境生物学报》;20130825;第19卷(第4期);第688-693页,参见摘要、第689页右栏倒数第3段-第692页右栏第3段、图7 *
滇池可培养好氧反硝化细菌多样性及其脱氮特性;王永霞等;《微生物学报》;20180126;第58卷(第10期);第1764-1775页,参见摘要、第1765页左栏第1段、第1766页右栏第3段-第1767页右栏第1段、第1769页左栏第1段-右栏第1段、表1、图1 *

Also Published As

Publication number Publication date
CN110317751A (en) 2019-10-11

Similar Documents

Publication Publication Date Title
CN106701633B (en) Composite microbial inoculum for treating sewage and method for treating sewage by using same
CN110157639B (en) High-salt-tolerance denitrifying bacterium and preparation method and application of microbial inoculum thereof
CN110129224B (en) Salt-tolerant denitrifying bacterium and preparation method and application of microbial inoculum thereof
CN105036471B (en) A kind of method for removing leaded wastewater pollutants
CN108070543A (en) It is a kind of to be suitable for preparations and application of the low C/N than the denitrogenation bacteria preparation of wastewater treatment
CN110317752B (en) Denitrifying microbial inoculum and using method thereof
CN110317751B (en) Denitrification method for wastewater discharged in hydroxyethyl cellulose production process
CN105585133A (en) Bio-denitrification method for high-salt-content wastewater discharged from catalyst production process
CN110257288B (en) Culture medium for culturing composite bacteria for treating waste water from hydroxyethyl cellulose production and application thereof
CN105130100B (en) It is a kind of to remove the method containing cadmium wastewater pollutants
CN110511894A (en) A kind of composite bacteria agent and its preparation and application
CN110144308B (en) High-salt-tolerance denitrifying bacterium capable of efficiently degrading nitrate, and preparation and application thereof
CN106007244A (en) Method for removing chromium-containing sewage pollutants
CN106554125B (en) A kind of acrylic fiber production process process generates the processing method of waste water
CN105645666B (en) A kind of acrylic fiber production process process generates the processing method of waste water
CN117511828B (en) High-concentration domestic sewage treatment microbial inoculum after septic tank and preparation method thereof
CN106587506B (en) A method of removal wastewater pollutants containing arsenic
CN105130101A (en) Method of removing pollutant from mercury-containing sewage
CN111100794A (en) Method for separating and screening high-efficiency denitrifying bacteria from sequencing batch pyridine wastewater activated sludge
CN105645665B (en) A kind of processing method of organic wastewater with difficult degradation thereby
CN114045229A (en) Directional amplification method for bioremediation indigenous microorganisms of rivers and lakes and application
CN116040814A (en) Rapid culture method of autotrophic denitrification granular sludge
You et al. Identification the microbial diversity in a municipal wastewater treatment plant using non‐cultured based methods
Qing et al. Community Diversity of Nitrosobacteria in SBR Denitrified System for Treating the Livestock Wastewater

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant