CN110311415B - 一种可再生能源发电基地的暂态稳定裕度评估方法 - Google Patents

一种可再生能源发电基地的暂态稳定裕度评估方法 Download PDF

Info

Publication number
CN110311415B
CN110311415B CN201910726872.9A CN201910726872A CN110311415B CN 110311415 B CN110311415 B CN 110311415B CN 201910726872 A CN201910726872 A CN 201910726872A CN 110311415 B CN110311415 B CN 110311415B
Authority
CN
China
Prior art keywords
power generation
renewable energy
grid
energy power
generation base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910726872.9A
Other languages
English (en)
Other versions
CN110311415A (zh
Inventor
姚骏
裴金鑫
孙鹏
刘远
赵阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201910726872.9A priority Critical patent/CN110311415B/zh
Publication of CN110311415A publication Critical patent/CN110311415A/zh
Application granted granted Critical
Publication of CN110311415B publication Critical patent/CN110311415B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • H02J3/383
    • H02J3/386
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种适用于可再生能源发电基地在低电压穿越期间的暂态稳定裕度评估方法,先获取电网故障点电压幅值|Uf|、可再生能源发电基地向并网点注入的总有功电流指令
Figure DDA0002159213330000011
和总无功电流指令
Figure DDA0002159213330000012
再计算可再生能源发电基地向并网点注入的总电流指令I*、指令电流角
Figure DDA0002159213330000013
和输电线阻抗角θZ:基于得到的|Uf|、I*
Figure DDA0002159213330000014
和θZ,计算暂态失稳边界Amax:再计算可再生能源发电基地在故障期间的暂态稳定裕度:即
Figure DDA0002159213330000015
如果MTVA≥0,则稳定;否则失稳。本发明既可以作为电网故障下可再生能源发电基地的暂态失稳判据,也可以量化衡量其暂态稳定裕度。

Description

一种可再生能源发电基地的暂态稳定裕度评估方法
技术领域
本发明涉及一种用于双馈感应风电并网***、逆变器型风电并网***(如永磁直驱风电***)以及光伏发电并网***在电网短路故障下的暂态失稳判据及其暂态稳定裕度量化评估方法,提出了低电压穿越过程中可再生能源发电基地的暂态失稳判据和可量化的暂态稳定裕度指标。
背景技术
随着风电、光伏等可再生能源的快速发展,大规模风电场和光伏发电站的规划和建设越来越多。但是可再生能源发电设备的电力电子化程度较高,其运行特性与传统同步发电机迥异,为可再生能源发电基地的稳定性分析带来了极大的复杂性。尤其在电网发生短路故障时,传统电力***的暂态失稳判据及其暂态稳定裕度评判方法很难适用于可再生能源发电基地本身。因此,亟需提出一种适用于可再生能源发电基地的暂态失稳判据和暂态稳定裕度量化评估方法。目前国内外学者已展开了相关研究,如已公开的下列文献:
[1]Jiabing Hu,Bo Wang,Weisheng Wang,Haiyan Tang,Yongning Chi,and QiHu.Small Signal Dynamics of DFIG-Based Wind Turbines During Riding ThroughSymmetrical Faults in WeakAC Grid[J].IEEE Transactions on Energy Conversion,2017,32(2):720-730.
[2]Bo Wen,Dong Dong,Dushan Boroyevich,Rolando Burgos,PaoloMattavelli,and Zhiyu Shen.Impedance-based analysis of grid-synchronizationstability for three-phase paralleled converters[J].IEEE Transactions on PowerElectronics,2016,31(1):26-38.
文献[1]利用复转矩系数法分析了双馈并网***的锁相环及电流环控制参数对弱电网严重故障下双馈风力发电***小信号稳定性的影响。文献[2]利用阻抗建模法评估了锁相环的动态性能对并网逆变器***动态稳定性的影响。上述文献均着眼于可再生能源发电设备的小信号稳定性,并没有涉及***的暂态稳定性的分析与评估。实际上,在电网发生严重短路故障时,可再生能源发电基地的输出潮流与线路阻抗的交互作用可能导致***不存在平衡点,从而导致可再生能源发电基地发生暂态失稳,进而崩溃脱网。
发明内容
针对现有技术存在的上述不足,本发明的目的在于提出一种适用于可再生能源发电基地在低电压穿越期间的暂态稳定裕度评估方法,本方法能够根据电网电压跌落程度、可再生能源发电基地的有功无功电流指令以及输电线路阻抗,判断***是否会发生暂态失稳,并计算出***的暂态稳定裕度值,为可再生能源发电基地暂态稳定性的量化评估提供依据。
本发明的技术方案是这样实现的:
一种适用于可再生能源发电基地在低电压穿越期间的暂态稳定裕度评估方法,用于判断在电网短路故障下双馈感应风电并网***、逆变器型风电并网***以及光伏发电并网***的暂态稳定性,并量化评估其暂态稳定裕度;其特征在于:具体评估步骤如下;
A1)故障期间可再生能源发电基地采用电网电压d轴定向方式,采集电网故障点电压幅值|Uf|,可再生能源发电基地向并网点注入的总有功电流指令为
Figure GDA0002731344150000021
和总无功电流指令为
Figure GDA0002731344150000022
A2)将步骤A1)得到的
Figure GDA0002731344150000023
Figure GDA0002731344150000024
按照下式计算可再生能源发电基地向并网点注入的总电流指令I*、指令电流角θI*和输电线阻抗角θZ
Figure GDA0002731344150000025
其中,X和R分别为并网点到故障点传输线路的等效感抗和电阻;
A3)将步骤A1)得到的|Uf|和步骤A2)得到的I*、θI*和θZ,按照下式计算暂态失稳边界Amax
Figure GDA0002731344150000026
其中,Z为并网点到故障点传输线路的阻抗,Z=R+jX;
A4)将步骤A3)得到的Amax按照下式来量化计算可再生能源发电基地在故障期间的暂态稳定裕度:
Figure GDA0002731344150000027
其中,MTVA值为可再生能源发电基地在故障期间的暂态稳定裕度评估值,MTVA值越大,***的暂态稳定裕度越大,失稳风险越小;
A5)按照下式作为可再生能源发电基地在故障期间发生暂态失稳的判据:
Figure GDA0002731344150000028
与现有技术相比,本发明具有如下有益效果:
本发明能够根据电网电压跌落程度、可再生能源发电基地的有功无功电流指令以及输电线路阻抗,判断***是否会发生暂态失稳,并计算出***的暂态稳定裕度值,可用于双馈感应风电并网***、逆变器型风电并网***(如永磁直驱风电***)以及光伏发电并网***在电网短路故障下的暂态失稳判据,及其暂态稳定裕度量化评估,为可再生能源的发展、规划、建设以及电网的调度指令提供了指导性的建议。
附图说明
图1为双馈感应风电场接入电力***的结构示意图。
图2为电网电压跌落到20%,MTVA=-0.2°时,双馈型风电基地的仿真波形图。
图3为电网电压跌落到20%,MTVA=28.2°时,双馈型风电基地的仿真波形图。
具体实施方式
以下结合附图对本发明的具体实施方案做详细描述。
以双馈型风电场为例,图1为200MVA双馈型风电***接入电力***的结构示意图。
本发明一种适用于可再生能源发电基地在低电压穿越期间的暂态稳定裕度评估方法,用于判断在电网短路故障下双馈感应风电并网***、逆变器型风电并网***以及光伏发电并网***的暂态稳定性,并量化评估其暂态稳定裕度。本评估方法综合考虑了暂态电压稳定性与暂态功角稳定性,具体评估步骤如下;
A1)故障期间可再生能源发电基地采用电网电压d轴定向方式,采集电网故障点电压幅值|Uf|,可再生能源发电基地向并网点(PCC)注入的总有功电流指令为
Figure GDA0002731344150000031
和总无功电流指令为
Figure GDA0002731344150000032
A2)将步骤A1)得到的
Figure GDA0002731344150000033
Figure GDA0002731344150000034
按照下式计算可再生能源发电基地向并网点PCC注入的总电流指令I*、指令电流角
Figure GDA0002731344150000035
和输电线阻抗角θZ
Figure GDA0002731344150000036
其中,X和R分别为并网点PCC到故障点传输线路的等效感抗和电阻;
A3)将步骤A1)得到的|Uf|,和步骤A2)得到的I*
Figure GDA0002731344150000037
和θZ,按照下式计算暂态失稳边界Amax
Figure GDA0002731344150000041
其中,Z为并网点到故障点传输线路的阻抗,Z=R+jX;
A4)将步骤A3)得到的Amax按照下式来量化计算可再生能源发电基地在故障期间的暂态稳定裕度:
Figure GDA0002731344150000042
其中,MTVA值为可再生能源发电基地在故障期间的暂态稳定裕度评估值,MTVA值越大,***的暂态稳定裕度越大,失稳风险越小;
A5)按照下式作为可再生能源发电基地在故障期间发生暂态失稳的判据:
Figure GDA0002731344150000043
本发明效果说明:
图2和图3分别给出了电网电压跌落到20%,MTVA=-0.2°和MTVA=28.2°时双馈风电基地的仿真波形对比图。图中0.4s电网发生三相短路故障,0.5s~1.1s为故障持续阶段,由图2可知,当MTVA<0时,双馈风电基地发生暂态失稳,严重威胁了电网的安全稳定运行能力。由图3可知,当MTVA>0时,***处于暂态稳定运行区域,并拥有28.2°的暂态稳定裕度,双馈风电基地能够在低电压穿越期间实现安全稳定运行。
综上,本发明所述的一种适用于可再生能源发电基地在低电压穿越期间的暂态稳定裕度评估方法既可以作为电网故障下可再生能源发电基地的暂态失稳判据,也可以量化衡量其暂态稳定裕度。
最后需要说明的是,本发明的上述实例仅仅是为说明本发明所作的举例,而并非是对本发明的实施方式的限定。尽管申请人参照较佳实施例对本发明进行了详细说明,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化和变动。这里无法对所有的实施方式予以穷举。凡是属于本发明的技术方案所引申出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (1)

1.一种适用于可再生能源发电基地在低电压穿越期间的暂态稳定裕度评估方法,用于判断在电网短路故障下双馈感应风电并网***、逆变器型风电并网***以及光伏发电并网***的暂态稳定性,并量化评估其暂态稳定裕度;其特征在于:具体评估步骤如下;
A1)故障期间可再生能源发电基地采用电网电压d轴定向方式,采集电网故障点电压幅值|Uf|,可再生能源发电基地向并网点注入的总有功电流指令为
Figure FDA0002159213300000011
和总无功电流指令为
Figure FDA0002159213300000012
A2)将步骤A1)得到的
Figure FDA0002159213300000013
Figure FDA0002159213300000014
按照下式计算可再生能源发电基地向并网点注入的总电流指令I*、指令电流角
Figure FDA0002159213300000015
和输电线阻抗角θZ
Figure FDA0002159213300000016
其中,X和R分别为并网点到故障点传输线路的等效感抗和电阻;
A3)将步骤A1)得到的|Uf|和步骤A2)得到的I*
Figure FDA0002159213300000017
和θZ,按照下式计算暂态失稳边界Amax
Figure FDA0002159213300000018
其中,Z为并网点到故障点传输线路的阻抗,Z=R+jX;
A4)将步骤A3)得到的Amax按照下式来量化计算可再生能源发电基地在故障期间的暂态稳定裕度:
Figure FDA0002159213300000019
其中,MTVA值为可再生能源发电基地在故障期间的暂态稳定裕度评估值,MTVA值越大,***的暂态稳定裕度越大,失稳风险越小;
A5)按照下式作为可再生能源发电基地在故障期间发生暂态失稳的判据:
Figure FDA00021592133000000110
CN201910726872.9A 2019-08-07 2019-08-07 一种可再生能源发电基地的暂态稳定裕度评估方法 Active CN110311415B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910726872.9A CN110311415B (zh) 2019-08-07 2019-08-07 一种可再生能源发电基地的暂态稳定裕度评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910726872.9A CN110311415B (zh) 2019-08-07 2019-08-07 一种可再生能源发电基地的暂态稳定裕度评估方法

Publications (2)

Publication Number Publication Date
CN110311415A CN110311415A (zh) 2019-10-08
CN110311415B true CN110311415B (zh) 2021-02-19

Family

ID=68082084

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910726872.9A Active CN110311415B (zh) 2019-08-07 2019-08-07 一种可再生能源发电基地的暂态稳定裕度评估方法

Country Status (1)

Country Link
CN (1) CN110311415B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111146809B (zh) * 2020-01-19 2023-03-24 重庆大学 一种基于改进锁相环的并网逆变器暂态致稳控制方法
CN113193598B (zh) * 2021-05-31 2022-09-30 重庆大学 一种新能源并网逆变器暂态稳定裕度评估方法
CN115663881B (zh) * 2022-09-07 2024-04-30 国网重庆市电力公司电力科学研究院 一种交流电网对称短路故障下电力***的电流控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102682358B (zh) * 2012-03-30 2016-08-10 中国电力科学研究院 一种评估风电并网规模与电网网架适应性的规划仿真方法
CN104124705B (zh) * 2014-07-15 2016-09-21 国家电网公司 基于风电并网***稳定特性的风电暂态响应方案优化方法
CN108258714B (zh) * 2018-01-19 2021-06-04 国电南瑞科技股份有限公司 一种电网开机方式优化方法

Also Published As

Publication number Publication date
CN110311415A (zh) 2019-10-08

Similar Documents

Publication Publication Date Title
CN110311415B (zh) 一种可再生能源发电基地的暂态稳定裕度评估方法
Li et al. Transient voltage control of sending-end wind farm using a synchronous condenser under commutation failure of HVDC transmission system
CN112217236A (zh) 一种不对称故障下双馈风电并网***虚拟阻抗控制方法
Li et al. Modeling of large wind farm systems for dynamic and harmonics analysis
CN107766596B (zh) 一种基于典型故障工况集的低电压穿越能力仿真评价方法
CN110417059B (zh) 一种可再生能源发电基地暂态稳定控制方法
CN103701389A (zh) 一种双馈感应发电机控制器参数辨识方法
CN110707728B (zh) 一种基于次同步振荡短路比指标的次同步振荡抑制方法
CN106897514B (zh) 一种全功率变换型新能源场站的短路电流计算模型的建立方法
CN113517715A (zh) 一种基于自动电流调整的风力发电并网***暂态致稳控制方法
CN102427228B (zh) 考虑电网电压跌落的风电***可靠性评估方法
CN116629016A (zh) 一种基于永磁直驱风机简化模型的风电场短路电流仿真方法
Li et al. Wind farm electromagnetic dynamic model and outgoing line protection relay RTDS testing
Li et al. Construction and equivalence of single-machine model of renewable energy for large-scale power system simulation
Shen et al. Modeling and Parameter Identification of the Photovoltaic Inverter based on VSG
CN106972510B (zh) 基于网侧控制回路延时的直驱风电次同步振荡分析方法
Chu et al. Sequence impedance modeling of DFIG wind farm via LCC-HVDC Transmission
Wang et al. Sequence Impedance Modeling of DFIG Wind Farm Via LCC-HVDC Transmission
Yang et al. Protection for AC transmission line between DFIG wind farm and MMC station
Shenghai et al. Research on the impact of voltage stability of power system with the direct drive wind farm
Shi et al. Integrated analysis and monitoring for large-scale wind farm connected with large capacity thermal power plant
CN116470522B (zh) 一种svg通用电磁暂态模型的控制参数识别方法及装置
Xu et al. An amplitude comparison protection for distribution networks with high permeability inverter-interfaced distributed generations
CN114914915B (zh) 一种具备负序主动补偿能力的dfig变流器控制方法
Wang et al. Analysis of subsynchronous oscillation characteristics of hybrid-based wind farm connected with fixed series compensation system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant