CN1103102A - 去除沥青的有效烃组合物 - Google Patents

去除沥青的有效烃组合物 Download PDF

Info

Publication number
CN1103102A
CN1103102A CN94115337.1A CN94115337A CN1103102A CN 1103102 A CN1103102 A CN 1103102A CN 94115337 A CN94115337 A CN 94115337A CN 1103102 A CN1103102 A CN 1103102A
Authority
CN
China
Prior art keywords
summit
aromatic hydrocarbons
polycyclic aromatic
point
hydrocarbons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN94115337.1A
Other languages
English (en)
Other versions
CN1068372C (zh
Inventor
A·德尔比安柯
F·斯特鲁帕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGIP SA
Agip SpA
Eni Tecnologie SpA
Original Assignee
AGIP SA
Eni Tecnologie SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGIP SA, Eni Tecnologie SpA filed Critical AGIP SA
Publication of CN1103102A publication Critical patent/CN1103102A/zh
Application granted granted Critical
Publication of CN1068372C publication Critical patent/CN1068372C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/52Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning
    • C09K8/524Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning organic depositions, e.g. paraffins or asphaltenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/927Well cleaning fluid
    • Y10S507/929Cleaning organic contaminant
    • Y10S507/93Organic contaminant is asphaltic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Working-Up Tar And Pitch (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

由饱和物质、烷基苯和多环芳烃构成的特殊烃组 合物,它用于溶解油井中存在的残余沥青。

Description

本发明涉及用于溶解沥青残留物的烃组合物及用该烃组合物处理油井从而除去沥青沉积物的方法。
原油是由烷烃、环烷烃及芳香烃构成的一种复杂的混合物,原油组分的特性范围宽,实事上,原油中存在的物质,从流体到蜡状固体及粘度很高的焦油。
在固体或非常粘稠的组分中,沥青占绝大多数。沥青是由不同成分的稠合芳烃多环化合物构成。
由于沥青中含有多种金属及诸如氧、氮和硫等多种原子,故沥青在原油中属强极性物质。
原油中,沥青颗粒易于形成胶束,通常形成的胶束为球形,其直径介于30至60埃(A),沥青为该胶束的中心。
包围胶束中心的是轻芳烃或极性物质,这些物质有助于原油中沥青的溶解。
地质结构岩层中所含原油回收常常因固体沥青沉积而受阻。事实上,在油井的开采过程中,高分子量沥青化合物经常与蜡状固体一起沉淀。
这些固体往往导致封闭油岩的孔道,而且阻塞油井套管,通道及钻井中使用的后续设备。其结果是油井产量下降,在极端情况下,油井全部丧失生产能力。
去除上述固体沉积物熟知的几个有效方法是机械刮削、热油处理及用含水表面活性剂处理。然而,使用最广的是能溶解上述沥青沉积物的有机溶剂。
为此目的,通常使用的溶剂是轻芳烃,即:苯、甲苯和二甲苯。
除费用太高外,上述轻芳烃溶剂由于其高挥发性和低闪点,导致了这些溶剂在使用中显示出很严重的缺陷。此外,由于它们溶解沥青残留物的能力差及非常低的溶解动力学,故上述芳烃组分不尽如意。
本发明涉及用于溶解油井中存在的沥青残留物的有效组合物及用该组合物处理油井的方法,该组合物克服了上述缺陷。
参照图1的三元曲线图可以更好地解释本发明的组合物,图1中表示的烃组分是由饱和类物质、烷基苯(Z=-6)和多芳烃物(Z<-6)构成。
上述三角形的顶点(A)代表100%Z<-6的多环芳烃,顶点(B)代表100%的饱和物质,顶点(C)代表100%的烷基苯。
因此,本发明的第一目的涉及用于溶解油井中沥青残留物的有效烃组合物,其特征在于该组合物基本上由上述定义的三元曲线图上介于下列三点之间组分组成:
顶点(A),即100%多环芳烃,其Z<-6;
沿AB边上对应于77%Z<-6的多环芳烃和23%的饱和物的点,优选对应于80%Z<-6的多环芳烃和20%的饱和组分的点;
沿AC边上对应于45%的烷基苯和55%Z<-6的多环芳烃组分的点,优选对应于42%的烷基苯和58%Z<-6的多环芳烃组分的点;
进一步的限制是上述烃组合物的初馏点高于150℃,最好是高于180℃。
参照图1可更好地说明该烃组合物的组分,图1中,本发明的组分位于阴影区域内。
以百分比表示的数据为重量百分比。
参数“Z”来自通式CnH2n+z,它表示烃分子的稠合或不饱和程度。即,对非环饱和烃,Z=+2;对苯及烷基化衍生物,Z=-6;对环烷苯和多环芳烃,Z<-6。为简便起见,以下所有的饱和烃将用“饱和物质”来表示,饱和烃包括Z=0和Z=-2的环烷烃,烷基苯代表Z=-6的芳香烃,而“多环芳烃”则代表Z<-6的物质。
上述烃分类法也隐含着包括含有杂原子的烃,特别是含氧、硫和氮的烃。
根据上述定义,饱和物质类由饱和的直链或支链脂肪烃和环烷烃组成。
Z=-6,也称“烷基苯”类是由苯及其烷基化衍生物组成。
Z<-6,亦称“多环芳烃”类通常是由环烷苯和多环芳烃组成,另外也包括其相应的烷基化衍生物。
按照ASTM标准D2887,“初馏点”意指蒸馏出0.5%时的温度。
满足本发明烃组合物必要条件的某些产品(或副产品)来自化工或石化过程,或这些过程中的某些蒸馏馏分。
比如,来自减压斯油催化裂化过程的轻质催化裂化油可能满足上述组合物的必要条件。“轻质催化裂化油”是指沸点介于200℃至350℃之间的馏分。然而,由于轻质催化裂化油的化学成分是裂解原料和裂解条件的函数,因此,并非所有的轻质催化裂化油都具有满足前述限制条件的成分。
满足上述必要条件的另一馏分(该馏分现为一种石化原料)是以蒸汽裂解(以下称“FOK”)燃料油中得到的瓦斯油。
此燃料油的产率随裂解操作条件而变,但主要是取决于裂解原料的种类。一般地说,以瓦斯油为原料,则燃料油的产率为15~20%,而以石脑油为原料时,则燃料油的产率为2~5%。化学成分也可能随上述所述参数的函数不则而略有变化。在任何情况下,产品都含有至少70%的芳烃成分,通常为80~90%,其余部分为饱和类和极性类成分。按照ASTM标准D2549,用柱中色层分离法确定产品的成分。
FOK的芳烃部分是由分子中含有两个或两个以上稠合环的芳烃和烷基芳香烃构成,其含量至少为75%。
就溶解沥青而言,本发明的烃组合物与迄今所用过的组合物相比显示出一些重要的优点。
事实上,本发明的组合物除具有极强的溶解沥青的能力外,还在很短的时间内达到溶解饱和值。
本发明的组合物除了在经济上比甲苯和二甲苯这类的芳烃具有明显的优势外,它还具有很高沸点之优点,因而它具有较高的闪点,因此,将与运输,尤其是与油井操作相关的危险降到最小。
本发明的另一目的是溶解油井中沥青生成物的方法,该方法包括将上述公开的组合物注入油井中。
将本发明的烃组合物按照精通这一领域的人们熟知的常规技术注入油井。应该注意到,通常这些技术意味着注入用于选择溶解沥青的组合物后,油井便停车。这种非生产的时间是必要的,以便于沥青沉积物与溶剂接触。运用本发明的组合物,可大大缩短这种非生产时间,这不仅是由于本发明的组合物对沥青具有很高的溶解度,而且还由于它与传统的溶剂相比,在较短的时间内还可达到溶解度。
油井中沥青生成物的溶解是通过将本发明的组合物泵入到生成物中实现的,然后将油井放置几小时,然后冲净。
通过下述各实施例可更好地说明本发明。
实施例1与对比实施例2和3
沥青和烃成分的分析
在冲净油井过程中收集残留物,并对其进行测定。用正戊烷逆流洗涤产物以除去任何可能吸附的油。
用气相色谱测得上述残留物Mw为1550,数均分子量(Mn)为1030,其元素分析结果为:C=84.37%;H=5.47%;N=0.80%,S=1.86%。此外,芳烃碳原子与总碳原子比为0.68
对本发明的烃组合物(LCO1)和本发明以外的两个对比组合物(LCO2和LOC3)进行测定。
所述的三种组合物都是由催化裂化装置产生的轻质催化裂化油。有关的分析数据列于表1。
结果用Z表示,上述馏分的百分组成如下表(表2):
表2
组合物        饱和物质      Z=-6       Z<-6
LOC1           19.20%       3.56%      77.24%
LCO2           26.00%       4.74%      69.26%
LCO3           19.94%       9.94%      71.12%
上述组合物的蒸馏曲线列于表3。
Figure 941153371_IMG3
从表3可知,三种LCO馏分有很类似的蒸馏曲线和相同的初馏点,但其组成有很大差异,尤其是烷基苯差异更大。
溶解度测定
对每种溶剂,制备约10种沥青沉积物含量不同的混合物,然后用分光光度法测定溶解的沥青组分浓度,即可得到溶解度曲线。
为了正确进行测定,下列操作是必要的:
1.为了进行测定,制备已知溶解沥青物含量的溶液以给出标定直线,并对选定的三种波长(400、600和800毫微米)将吸光度与浓度进行关联。该溶液是由约含100毫克沉积物的100毫升溶剂混合物的过滤母级而制得。由于被测定的沥青物为组分的连续介质,因此可见紫外光波长处的光谱是溶解物的性质和溶解量的函数。在测得溶解度曲线的过程中,与溶解物浓度有关的数据的计算是通过计算所述三种波长处测得的吸收度平均值来求得的。
考虑到仪器的限制和波长低于400毫微米时,溶剂可能吸收光。,进行测定的波长范围应尽可能宽。
在考虑的大多数情况中,在试验的浓度范围内,标定直线显示出非常好的线性度。
利用线性回归计算法,可以计算与每种波长相关的衰减系数。当测定溶解度曲线时,将会用到衰减系数以计算浓度。
2.通过测定不同沉积物与溶剂比率的混合物中溶解的沥青物量,则可得到用于评价溶剂能力的溶解度曲线。
通过实验制得一组混合物,混合物含有已知量的沉积物和体积逐渐增加的溶剂。这组混合物先用声振20分钟,然后在伴有机械搅拌的情况下放置过夜。用装有孔径为0.5微米的特氟隆过滤器的唧筒加压过滤所得到的悬浮液并测定滤液的吸光度,根据滤液的吸光度即可求得溶解的有机物的浓度。
表3A中列出了溶解度数据,为比较起见,在表3A中也列出一些与LCO2、LCO3和甲苯相关的点。
溶解动力学
在这些实施例中,室温下通过可见紫外光(波长为400、600和800毫微米)吸收来测定从浸在溶剂中的沉积物试样(圆片状)溶解下来的沥青物浓度的方法获得溶解动力学数据,溶解动力学是试样浸饱时间的涵数。
为得到直径为13毫米和厚度为0.7毫米的小片,用佩金-艾尔默(Perkin-Elmer)压制机在10000千克/厘米2压力下挤压精确称重的100毫克样品,即可制得圆片试样。将上述圆片放入样品托架内并浸入1升溶剂中备分析,样品托架由三角架支撑的两个线网构成。
沉积物与溶剂比的确定是基于经过无限长时间每一种溶剂都应达到其最大溶解度(以克沉积物/升溶剂表示)。
试验过程中,用磁锚轻轻搅拌溶液以确保溶液的均匀,同时避免圆片破碎。
表4列出了以LCO1、LCO2和甲苯作溶剂时,溶解动力学试验中被溶解物质的百分数。
试验结果表明,在8小时内,LCO1能溶解80%以上的沉积物,对油田调停来说,8小时在其合理的时间间隔内。
实施例4和5
实施4涉及气体洗油(OLG),气体洗油由焦炉焦油的蒸馏馏分构成。实施例5涉及来自蒸汽裂解燃料油(FOK)的瓦斯油馏分。
上述两种烃组各物的蒸馏曲线如下(表5)。
Figure 941153371_IMG6
以化学成分表示,这两种混合物由下列组分构成:
*LOG:饱和物质:无
Z=-6:1.3%
Z<-6:98.7%
*FOK 饱和物质:无
Z=-6:6.80%
Z<-6:93.20%
按前面实施例中描述的沥青的在上述溶剂中的溶解度为其在LOG和FOK瓦斯油馏分中的95%。
实施例6~9
在这些实施例中,阐述了具有不同组成的一些组合物的溶解特性。一些上述组合物其组成属本发明范围内(MIX1,2和3),但其中有一个(溶剂A)在本发明范围外。在此情况下,表明本发明的组合物能溶解大量沥青,相反,组成在本发明范围外的溶剂A,其溶解沥青的能力差。
上述组合物的组成及所述组合物中沥青的溶解度分别列于表6和标在图1中(所有的数据按重量百分比表示,且为浓度1克沉积物/升溶剂时的值)。
Figure 941153371_IMG7

Claims (6)

1、用于溶解油井中沥青残留物的有效烃组合物,其特征在于该组合物基本上由在三元曲线图介于下例三点之间的组分组成,其中三元曲线图中,顶点(A)代表100%的多环芳烃基Z<-6;顶点(B)代表100%的饱和物质;顶点(C)代表100%的烷基苯,Z=-6;
顶点(A),即100%的多芳烃,其Z<-6;
沿AB边上对应于77%Z<-6的多环芳烃和23%的饱和物质的点;
沿AC边上对应于45%的烷基苯和55%的Z<-6的多环芳烃的点;
进一步限制是上述烃掺合物的初饱点高于150℃。
2、根据权利要求1的烃组合物,其特征在于该组合物基本是由介于下列三点间的组分组成。
顶点(A),即100%的多环芳烃,其Z<-6;
沿AB边上对应于80%多环芳烃的点;
沿AC边上对应于42%烷基苯的点。
3、根据权利要求1的烃组合物,其特征在于它的初饱点高于180℃。
4、溶解油井中沥青生成物的方法,该方法是将烃组合物注入油井,该组合物具有下列特征:
初饱点高于150℃;
它基本上是从构成三元曲线图的组分中选出来的,三元曲线图中,顶点(A)代表100%的多环芳烃,其Z<-6;顶点(B)代表100%的饱物物质;顶点(C)代表(C)100%的烷基苯,其Z<-6,构成三元曲线图的组分位于如下定义的三角形所确定的区域内:
顶点(A),即100%的多环芳烃,其Z<-6;
沿AB边上对应于77%,Z<-6的多环芳烃和23%的饱和物质的点;
沿AC上对应于42%烷基苯和58%的Z<-6的多环芳烃的点。
5、根据权利要求4的方法,其特征在于所述烃组合物为:
初馏点高于180℃;
其组分为三元曲线图上位于如下定义的三角形所确定的区域内:
顶点(A),即100%多环芳烃,其Z<-6;
沿AB边上对应于80%Z<-6的多环芳烃和20%的饱和物质的点;
沿AC上对应于45%烷基苯和55%Z<-6的多环芳烃的点,在三元曲线图中,顶点(A)代表100%Z<-6的多环芳烃,顶点(B)代表100%饱和物,顶点(C)代表100%Z=-6的烷基苯。
6、根据权利要求1的烃组合物在溶解油井中沥青生成物的应用。
CN94115337.1A 1993-09-17 1994-09-15 油解油井中沥青残留物的烃组合物及其用途 Expired - Lifetime CN1068372C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITMI932008A IT1271473B (it) 1993-09-17 1993-09-17 Miscela idrocarburica efficace nella rimozione degli asfalteni
IT002008A/93 1993-09-17
IT002008A/1993 1993-09-17

Publications (2)

Publication Number Publication Date
CN1103102A true CN1103102A (zh) 1995-05-31
CN1068372C CN1068372C (zh) 2001-07-11

Family

ID=11366916

Family Applications (1)

Application Number Title Priority Date Filing Date
CN94115337.1A Expired - Lifetime CN1068372C (zh) 1993-09-17 1994-09-15 油解油井中沥青残留物的烃组合物及其用途

Country Status (11)

Country Link
US (2) US5382728A (zh)
EP (1) EP0644315B1 (zh)
JP (1) JPH07108103A (zh)
CN (1) CN1068372C (zh)
BR (1) BR9403754A (zh)
CA (1) CA2130591C (zh)
DK (1) DK0644315T3 (zh)
ES (1) ES2137318T3 (zh)
IT (1) IT1271473B (zh)
NO (1) NO314266B1 (zh)
RU (1) RU2141027C1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7760989B2 (en) 2003-07-01 2010-07-20 Lg Electronics Inc. Recording medium having data structure including graphic data and recording and reproducing methods and apparatuses
US7769275B2 (en) 2002-10-04 2010-08-03 Lg Electronics, Inc. Recording medium having a data structure for managing reproduction of graphic data and recording and reproducing methods and apparatuses
US7778522B2 (en) 2003-12-23 2010-08-17 Lg Electronics, Inc. Recording medium having a data structure for managing graphic information and recording and reproducing methods and apparatuses
US8146118B2 (en) 2000-06-09 2012-03-27 Lg Electronics Inc. Recording medium having a data structure for managing reproduction of menu data and recording and reproducing apparatuses and methods
CN113884356A (zh) * 2021-09-29 2022-01-04 中国石油大学(北京) 一种基于原油裂解确定储层中固体沥青含量与分布特征的方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2142625C (en) * 1994-02-14 2006-04-25 Donald A. Thorssen Oil and gas well operation fluid used for the solvation of waxes and asphaltenes, and method of use thereof
IT1273513B (it) * 1995-04-07 1997-07-08 Agip Spa Composizione efficace nella rimozione degli asfalteni
IT1275447B (it) * 1995-05-26 1997-08-07 Snam Progetti Procedimento per la conversione di greggi pesanti e residui di distillazione a distillati
US5827803A (en) * 1997-05-07 1998-10-27 Loree; Dwight N. Well treatment fluid
US7438797B2 (en) * 2001-07-31 2008-10-21 Ic16 Limited Method of controlling asphaltene precipitation in a fluid
US7087189B2 (en) * 2002-03-18 2006-08-08 National Starch Chemical Investment Holding Co Multifunctional calcium carbonate and calcium phosphate scale inhibitor
US7976640B2 (en) * 2005-04-04 2011-07-12 Exxonmobil Research & Engineering Company On-line heat exchanger cleaning method
CZ2005797A3 (cs) * 2005-12-20 2007-01-10 Vysoká škola chemicko - technologická v Praze Prostředek pro odstraňování vysokomolekulárních organických úsad z ropy a zemního plynu
US8734634B2 (en) * 2008-04-10 2014-05-27 Shell Oil Company Method for producing a crude product, method for preparing a diluted hydrocarbon composition, crude products, diluents and uses of such crude products and diluents
US8114806B2 (en) 2008-04-10 2012-02-14 Shell Oil Company Catalysts having selected pore size distributions, method of making such catalysts, methods of producing a crude product, products obtained from such methods, and uses of products obtained
GB2459471B (en) * 2008-04-23 2010-07-14 Schlumberger Holdings Forecasting asphaltic precipitation
GB2459470B (en) 2008-04-23 2010-07-21 Schlumberger Holdings Solvent assisted oil recovery
US10385259B2 (en) 2013-08-07 2019-08-20 Schlumberger Technology Corporation Method for removing bitumen to enhance formation permeability
US20160244657A1 (en) * 2013-11-29 2016-08-25 Halliburton Energy Services, Inc. Haloalkane composition for inhibiting or dissolving asphaltene or paraffin deposits
RS65298B1 (sr) 2015-04-03 2024-04-30 Versalis Spa Smeša rastvarača za uklanjanje asfaltena

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2711392A (en) * 1952-02-06 1955-06-21 August W Willert Jr Method for recovering the oil from oil wells
US3172473A (en) * 1962-06-28 1965-03-09 Crowley Tar Products Company I Method of improving well flow
US3276519A (en) * 1963-05-29 1966-10-04 Halliburton Co Paraffin control method
US3437146A (en) * 1968-01-11 1969-04-08 Midwest Chem & Processing Co I Method of removing paraffin from a well with heated solvent
DE2047684C3 (de) * 1970-09-28 1980-09-04 Texaco Trinidad Inc., New York, N.Y. (V.St.A.) Verfahren zur Behandlung von asphaltische Ablagerungen enthaltenden Bohrungen und Formationen
US3718586A (en) * 1971-12-02 1973-02-27 W Rollo Solvent for cleaning well bores,flowlines,etc.
US3998743A (en) * 1973-12-07 1976-12-21 Union Oil Company Of California Method and solvent composition for stimulating the production of oil from a producing well
CA1167022A (en) * 1981-01-21 1984-05-08 Harry E. Henderson Traction fluid lubricants derived from mineral oil
US4665275A (en) * 1984-07-05 1987-05-12 Nippon Oil Co., Ltd. Thermal medium oils
US4592424A (en) * 1984-08-13 1986-06-03 Texaco Inc. Secondary recovery procedure
US4604491A (en) * 1984-11-26 1986-08-05 Koppers Company, Inc. Synthetic oils
US5104556A (en) * 1989-07-12 1992-04-14 Mirada Bay Petroleum Products, Inc. Oil well treatment composition
GB2235696A (en) * 1989-09-06 1991-03-13 Shell Int Research Method of inhibiting asphalt precipitation in an oil production well

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8146118B2 (en) 2000-06-09 2012-03-27 Lg Electronics Inc. Recording medium having a data structure for managing reproduction of menu data and recording and reproducing apparatuses and methods
US7769275B2 (en) 2002-10-04 2010-08-03 Lg Electronics, Inc. Recording medium having a data structure for managing reproduction of graphic data and recording and reproducing methods and apparatuses
US7760989B2 (en) 2003-07-01 2010-07-20 Lg Electronics Inc. Recording medium having data structure including graphic data and recording and reproducing methods and apparatuses
US7778522B2 (en) 2003-12-23 2010-08-17 Lg Electronics, Inc. Recording medium having a data structure for managing graphic information and recording and reproducing methods and apparatuses
CN113884356A (zh) * 2021-09-29 2022-01-04 中国石油大学(北京) 一种基于原油裂解确定储层中固体沥青含量与分布特征的方法
CN113884356B (zh) * 2021-09-29 2022-06-14 中国石油大学(北京) 一种基于原油裂解确定储层中固体沥青含量与分布特征的方法

Also Published As

Publication number Publication date
IT1271473B (it) 1997-05-28
ITMI932008A0 (it) 1993-09-17
NO314266B1 (no) 2003-02-24
JPH07108103A (ja) 1995-04-25
US5438039A (en) 1995-08-01
CA2130591C (en) 2006-06-20
CA2130591A1 (en) 1995-03-18
ES2137318T3 (es) 1999-12-16
EP0644315A1 (en) 1995-03-22
US5382728A (en) 1995-01-17
RU94033476A (ru) 1996-10-27
DK0644315T3 (da) 2000-03-27
NO943426D0 (no) 1994-09-15
BR9403754A (pt) 1995-05-16
ITMI932008A1 (it) 1995-03-17
EP0644315B1 (en) 1999-09-15
RU2141027C1 (ru) 1999-11-10
CN1068372C (zh) 2001-07-11
NO943426L (no) 1995-03-20

Similar Documents

Publication Publication Date Title
CN1068372C (zh) 油解油井中沥青残留物的烃组合物及其用途
Yen Structure of petroleum asphaltene and its significance
Rudzinski et al. A review on extraction and identification of crude oil and related products using supercritical fluid technology
Speight Petroleum Asphaltenes-Part 1: Asphaltenes, resins and the structure of petroleum
CN1080755C (zh) 油井中沥青生成物的溶解方法
Niles et al. Molecular-level characterization of oil-soluble ketone/aldehyde photo-oxidation products by Fourier transform ion cyclotron resonance mass spectrometry reveals similarity between microcosm and field samples
Coleman et al. Compositional studies of a high-boiling 370-535. deg. distillate from Prudhoe Bay, Alaska, crude oil
Pina et al. Characterisation of asphaltenes and modelling of flocculation–state of the art
Vatti et al. Role of ionic liquid in asphaltene dissolution: a combined experimental and molecular dynamics study
Fakher et al. Roadmap to Asphaltene Characteristics, Properties, and Presence in Crude Oils Based on an Updated Database From Laboratory Studies
SOLEYMANI et al. Investigation of asphaltene stability in the Iranian crude oils
RU2522447C1 (ru) Уменьшение отложений при фракционировании бензина, в системе водяного охлаждения и секции извлечения продукта
Park et al. Characterization and Structural Classification of Heteroatom Components of Vacuum-Residue-Derived Asphaltenes Using APPI (+) FT-ICR Mass Spectrometry
Mansfield et al. Petroleum and coal
Wang et al. The Effects of Using Waste Engine Oil Bottom on Physical, Rheological Properties and Composite Modification Mechanism of SBS‐Modified Asphalt
Nciri et al. Laboratory methods for identification of geologic origins of natural asphalts with special emphasis on their potential uses: The case of Trinidad Pitch and Utah Bitumen
Santos et al. Solubility of Asphaltenes in Maltenes under Different Conditions
RU2652236C1 (ru) Способ обработки призабойной зоны скважины для удаления парафиновых асфальто-смолистых веществ
EP1633953B1 (en) Substances to stimulate the extraction of crude oil and a method of processing them
Shakir et al. Upgrading of Sharqy Baghdad Heavy Oil via N-Hexane Solvent
Alkafeef et al. Asphaltene remedial technology using advanced deasphalted oil
Liu et al. Analysis of the Contribution of Petroleum Acid Components to the Viscosity of Heavy Oils with High TAN
Coburn et al. Oil shale retorting: Part 2, variation in product oil chemistry during retorting of an oil shale block
Frenier Method and composition for removing sulfide-containing scale from metal surfaces
Okoye et al. Asphaltene Structure, Separation and Purification Steps: A Short Review

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CX01 Expiry of patent term

Expiration termination date: 20140915

Granted publication date: 20010711