CN110308435A - 一种像素级的时间和强度数字转换电路 - Google Patents

一种像素级的时间和强度数字转换电路 Download PDF

Info

Publication number
CN110308435A
CN110308435A CN201910715897.9A CN201910715897A CN110308435A CN 110308435 A CN110308435 A CN 110308435A CN 201910715897 A CN201910715897 A CN 201910715897A CN 110308435 A CN110308435 A CN 110308435A
Authority
CN
China
Prior art keywords
signal
circuit
pixel
stage
type flip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910715897.9A
Other languages
English (en)
Other versions
CN110308435B (zh
Inventor
白涛
刘小淮
陈远金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China North Industries Group Corp No 214 Research Institute Suzhou R&D Center
Original Assignee
China North Industries Group Corp No 214 Research Institute Suzhou R&D Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China North Industries Group Corp No 214 Research Institute Suzhou R&D Center filed Critical China North Industries Group Corp No 214 Research Institute Suzhou R&D Center
Priority to CN201910715897.9A priority Critical patent/CN110308435B/zh
Publication of CN110308435A publication Critical patent/CN110308435A/zh
Application granted granted Critical
Publication of CN110308435B publication Critical patent/CN110308435B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本发明公开了一种像素级的时间和强度数字转换电路。本发明实现一种像素级的时间和强度数字转换电路,对于一次激光脉冲,所有的像素单元均可给出回波信号的时间信息和强度信息,在数据读出阶段,无需行列选择控制电路,各行所有像元信息被依次读出,极大提高了面阵读出电路的工作频率;代表回波信号的时间和强度的信息直接以数字格式输出,无需片上ADC进行2次量化,降低了片上***设计的难度。

Description

一种像素级的时间和强度数字转换电路
技术领域
本发明涉及一种时间和强度数字转换电路,属于电路技术领域。
背景技术
激光雷达是一种可以精确快速地获取地面或大气三维空间信息的主动探测技术,可以用来进行测距测角等,因此其在军事和民用领域得到了广泛的应用。成像激光雷达分为多种工作模式,如采用单元或线列探测器的扫描成像与采用阵列探测器的非扫描成像。采用单元或线列探测器的扫描成像作用距离可以很远,但成像速率会受到一定的限制;而阵列探测器的成像速度非常快,同时克服了扫描式体积大、质量重、可靠性差的缺点,在实时性和体积要求较高的空间目标相对导航应用中起着至关重要的作用,目前已成为许多国家研究的重点和热点。
APD阵列具有全固态结构、高量子效率等特点,且可以在高增益下保持良好的信噪比。基于APD阵列的激光三维成像雷达采用激光对目标场景进行泛光照射,一次激光脉冲即可获得目标的三维图像。当APD的偏置电压低于其雪崩电压时,对入射光电子起到线性放大作用,这种工作状态称为线性模式。在线性模式下,反向电压越高,增益就越大。线性APD对输入的光电子进行等增益放大后形成连续电流,获得带有时间信息和强度信息的激光连续回波信号。
大面阵的线性APD探测器需要配套大面阵激光雷达读出电路,而目前国内激光雷达读出电路还是以分立器件或小面阵为主,分辨率及成像速率较低。当APD规模达到64×64像元甚至更大时,激光雷达读出电路只能采用单片集成的方法实现。基于标准的CMOS工艺实现大面阵激光雷达读出电路芯片,可以缩小控制***的体积、减轻重量、降低功耗、提高抗干扰能力、增加可靠性,在实现对目标高帧频率捕获的同时获得高精度的时间分辨率。
目前大面阵三维成像激光读出电路一般只有计时测距功能,即每个像元内集成一个高精度时间数字转换电路,因此,对于一次激光脉冲,读出电路只能提取回波信号的时间信息。目前常用的提取目标回波的强度信息的手段是选取部分像素单元,在像素阵列外部通过峰值保持电路和模数转换电路进行强度量化,这是因为受限于像素单元面积,无法在每个像素单元的内部集成峰值保持电路。
发明内容
本发明所要解决的技术问题是克服现有技术的缺陷,提供一种像素级的时间和强度数字转换电路,不再受限于像素单元面积,对于一次激光脉冲,所有的像素单元均可给出回波信号的时间信息和强度信息,在数据读出阶段,无需行列选择控制电路各行所有像元的信息被依次读出,极大提高了面阵读出电路的工作频率,降低了片上***设计的难度。
为解决上述技术问题,本发明采用的技术方案如下:
一种像素级的时间和强度数字转换电路,包括多个D触发器、锁存电路、双路选择电路和比较器电路;
比较器电路的反相输入端和同相输入端分别输入预设的比较器阈值电压和输入激光窄脉冲回波信号转换而成的电压信号;
其中的N个D触发器依次连接构成触发器组;计时阶段,做为计数器,记录时钟信号的个数;数据读出阶段,做为移位寄存器;
其中的M个D触发器与触发器组依次连接;计时阶段,做为存储器,存储各时钟信号相位状态;数据读出阶段,做为移位寄存器;
其余的D触发器与M个D触发器依次连接;计时阶段,做为存储器,存储激光窄脉冲回波信号的强度信息;数据读出阶段,做为移位寄存器;
锁存电路用于锁存时钟信号的相位状态以及比较器电路输出状态,并将锁存的信号存储至M个D触发器和其余的D触发器中;
双路选择电路在控制信号控制下,根据所处的计时阶段或数据读出阶段选择传输对应的一路数据。
进一步地,当控制信号CONTROL=0时,进入数据读出阶段,双路选择电路选择发送对应的一路数据,在时钟信号触发下,从所有的D触发器依次读出回波信号的时间信息和强度信息数据。
进一步地,控制信号CONTROL=1时,进入计时阶段,触发器组开始计数,在输入激光窄脉冲回波信号转换而成的电压信号VIN到来时,比较器电路的输出信号由低电平转为高电平,触发器组停止计数。
进一步地,比较器电路包括三个并联的比较器,三个比较器的反相输入端和同相输入端分别输入预设的比较器阈值电压和输入激光窄脉冲回波信号转换而成的电压信号。
进一步地,其中一个比较器输出信号用于在计时阶段触发作为计数器的触发器组停止计数。
进一步地,另外两个比较器输出信号在计时阶段经逻辑组合后由锁存电路锁存至其余的D触发器中存储。
进一步地,所述时钟信号包括基准时钟信号和经多个延迟单元延迟形成的多个时钟信号。
本发明所达到的有益效果:
本发明实现一种像素级的时间和强度数字转换电路,对于一次激光脉冲,所有的像素单元均可给出回波信号的时间信息和强度信息,在数据信息的读出阶段,无需行列选择控制电路,各行像元的信息被依次读出,极大提高了面阵读出电路的工作频率;代表回波信号的时间和强度的信息直接以数字格式输出,无需片上ADC进行2次量化,降低了片上***设计的难度。
附图说明
图1是像素级时间和强度数字转换电路。
具体实施方式
下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
如图1所示,本实施例中由D触发器1D~16D、锁存电路、延迟单元DL、双路选择电路、比较器电路和组合逻辑电路等构成。
G1为时钟信号;VT1、VT2和 VT3为比较器阈值电压;控制信号CONTROL控制双路选择电路。
1D~16D均为时钟信号G11下降沿触发的D触发器。
D触发器1D~11D构成触发器组,各D触发器依次连接,前一个触发器的输出端与后一个触发器的输入端相连。计时阶段,做为计数器使用,记录时钟的个数;数据读出期间,做移位寄存器使用。该类D触发器个数可以根据数据量大小进行增减。
三个D触发器12D~14D:计时阶段,做为存储器使用,存储各时钟信号相位状态;数据读出期间,做移位寄存器使用。该类D触发器个数可以根据时钟周期进行配置。
两个D触发器15D~16D:计时阶段,做为存储器使用,存储回波信号的强度信息;数据读出阶段,做移位寄存器使用。该类D触发器个数可以根据比较器com的个数决定。
DL为延迟单元。时钟信号G2为时钟信号G1经延时单元DL得到;时钟信号G3为时钟信号G2再经一延时单元DL得到。时钟信号G4为时钟信号G3再经一延时单元DL得到。
锁存电路用来锁存时钟信号G1、G2、G3和G4的相位状态以及比较器电路COM输出状态S1和S2。
比较器电路COM中的三个比较器COM1、COM2、COM3的反相输入端分别接一比较器阈值电压VT1、VT2和VT3; 三个比较器的同相输入端均接激光窄脉冲回波信号转换而成的电压信号VIN。
控制信号CONTROL=1时,双路选择电路选择A端;控制信号CONTROL=0时,双路选择电路选择B端。A端数据为组合逻辑2输出数据,B端数据为前一个像元数据。
工作原理:
线性APD光敏芯片将接收到的激光窄脉冲回波信号转换成电流信号,经跨阻放大器放大并转换成一定幅度的电压信号VIN,该电压信号VIN代表激光回波信号的强度,本发明的时间强度转换电路把该电压信号VIN进行数字量化处理,方便与回波信号的时间信息整合以实现快速传输。
当控制信号CONTROL=1时,进入计时阶段,触发器1D~11D开始计数,在输入激光窄脉冲回波信号转换而成的电压信号VIN到来时,比较器COM1输出信号STOP由0升高为1时,各D触发器1D~11D停止计数,同时,锁存电路分别锁存时钟信号G1、G2、G3和G4的相位状态,并经组合逻辑1组合实现时间信息的细量化后存储至三个D触发器12D~14D中,此过程实现了回波时间信息的计量和存储;同时分别锁存比较器COM2、COM3输出信号经组合逻辑3组合实现强度信息的量化后的输出状态S1和S2至两个D触发器15D、16D中,此过程实现了回波强度的计量和存储。因此,每个像元均给出了回波的强度和时间信息。控制信号CONTROL=1时,双路选择电路选择A端,对组合逻辑2输出数据进行输出。
当控制信号CONTROL=0时,进入数据读出阶段,各D触发器1D~16D做移位寄存器使用,在16个G1的时钟信号下降沿作用下,前一个像元的回波信号的时间信息和强度信息数据在时钟沿的作用下被依次读出。
组合逻辑是由与非门或非门等门电路组成的逻辑电路。
组合逻辑1实现时间信息的细量化。
组合逻辑2和D触发器组实现了像元最大计数长度,即D触发器1D~11D和组合逻辑2构成了最大计数电路方法,可实现211-1个计数。
组合逻辑3实现强度信息的量化整理。
精确计数器的计数精度可根据延迟单元DL进行调节。时钟信号及锁存电路的数量是根据延迟单元的数量来配合设置。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (7)

1.一种像素级的时间和强度数字转换电路,其特征是,包括多个D触发器、锁存电路、双路选择电路和比较器电路;
比较器电路的反相输入端和同相输入端分别输入预设的比较器阈值电压和输入激光窄脉冲回波信号转换而成的电压信号;
其中的N个D触发器依次连接构成触发器组;计时阶段,做为计数器,记录时钟信号的个数;数据读出阶段,做为移位寄存器;
其中的M个D触发器与触发器组依次连接;计时阶段,做为存储器,存储各时钟信号相位状态;数据读出阶段,做为移位寄存器;
其余的D触发器与M个D触发器依次连接;计时阶段,做为存储器,存储激光窄脉冲回波信号的强度信息;数据读出阶段,做为移位寄存器;
锁存电路用于锁存时钟信号的相位状态以及比较器电路输出状态,并将锁存的信号存储至M个D触发器和其余的D触发器中;
双路选择电路在控制信号控制下,根据所处的计时阶段或数据读出阶段选择传输对应的一路数据。
2.根据权利要求1所述的一种像素级的时间和强度数字转换电路,其特征是,当控制信号CONTROL=0时,进入数据读出阶段,双路选择电路选择发送对应的一路数据,在时钟信号触发下,从所有的D触发器依次读出回波信号的时间信息和强度信息数据。
3.根据权利要求1所述的一种像素级的时间和强度数字转换电路,其特征是,控制信号CONTROL=1时,进入计时阶段,触发器组开始计数,在输入激光窄脉冲回波信号转换而成的电压信号VIN到来时,比较器电路的输出信号由低电平转为高电平,触发器组停止计数。
4.根据权利要求1所述的一种像素级的时间和强度数字转换电路,其特征是,比较器电路包括三个并联的比较器,三个比较器的反相输入端和同相输入端分别输入预设的比较器阈值电压和输入激光窄脉冲回波信号转换而成的电压信号。
5.根据权利要求4所述的一种像素级的时间和强度数字转换电路,其特征是,其中一个比较器输出信号用于在计时阶段触发作为计数器的触发器组停止计数。
6.根据权利要求4或5所述的一种像素级的时间和强度数字转换电路,其特征是,另外两个比较器输出信号在计时阶段经逻辑组合后由锁存电路锁存至其余的D触发器中存储。
7.根据权利要求1所述的一种像素级的时间和强度数字转换电路,其特征是,所述时钟信号包括基准时钟信号和经多个延迟单元延迟形成的多个时钟信号。
CN201910715897.9A 2019-08-05 2019-08-05 一种像素级的时间和强度数字转换电路 Active CN110308435B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910715897.9A CN110308435B (zh) 2019-08-05 2019-08-05 一种像素级的时间和强度数字转换电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910715897.9A CN110308435B (zh) 2019-08-05 2019-08-05 一种像素级的时间和强度数字转换电路

Publications (2)

Publication Number Publication Date
CN110308435A true CN110308435A (zh) 2019-10-08
CN110308435B CN110308435B (zh) 2024-02-20

Family

ID=68082942

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910715897.9A Active CN110308435B (zh) 2019-08-05 2019-08-05 一种像素级的时间和强度数字转换电路

Country Status (1)

Country Link
CN (1) CN110308435B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113126473A (zh) * 2020-01-14 2021-07-16 半导体元件工业有限责任公司 用于时间数字转换器的方法和装置

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6414746B1 (en) * 1999-11-24 2002-07-02 Advanced Scientific Concepts, Inc. 3-D imaging multiple target laser radar
US20060232760A1 (en) * 2005-04-18 2006-10-19 Asbrock James F Readout integrated circuit (ROIC) for laser detection and ranging (LADAR) system and method for using same
CN101650223A (zh) * 2009-09-10 2010-02-17 天津大学 数字化光电探测器读出电路
JP2010141929A (ja) * 2010-03-10 2010-06-24 Semiconductor Energy Lab Co Ltd Mos型センサ及びその駆動方法
CN102333195A (zh) * 2011-09-23 2012-01-25 东南大学 一种工作于线性模式apd阵列的主、被动成像读出电路
EP2512125A2 (en) * 2011-04-13 2012-10-17 Semi-Conductor Devices - An Elbit Systems - Rafael Partnership A detector pixel signal readout circuit and an imaging method thereof
CN105467377A (zh) * 2015-11-30 2016-04-06 天津大学 一种基于自混频探测器的三维激光成像雷达读出电路
CN105974395A (zh) * 2016-05-16 2016-09-28 中国兵器工业集团第二四研究所苏州研发中心 一种基于cmos工艺的高速窄脉冲电流放大器
US20170090019A1 (en) * 2015-09-29 2017-03-30 Qualcomm Incorporated Lidar system with reflected signal strength measurement
CN108614255A (zh) * 2018-06-28 2018-10-02 中国电子科技集团公司信息科学研究院 一种读出电路
CN109115334A (zh) * 2017-06-22 2019-01-01 株式会社电装 光检测装置
US20190235061A1 (en) * 2018-02-01 2019-08-01 Optixpan, Inc. Pulsed time-of-flight sensor, pulsed time-of-flight pixel array and operation method therefor
CN210690812U (zh) * 2019-08-05 2020-06-05 中国兵器工业集团第二一四研究所苏州研发中心 一种像素级的时间和强度数字转换电路

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6414746B1 (en) * 1999-11-24 2002-07-02 Advanced Scientific Concepts, Inc. 3-D imaging multiple target laser radar
US20060232760A1 (en) * 2005-04-18 2006-10-19 Asbrock James F Readout integrated circuit (ROIC) for laser detection and ranging (LADAR) system and method for using same
CN101650223A (zh) * 2009-09-10 2010-02-17 天津大学 数字化光电探测器读出电路
JP2010141929A (ja) * 2010-03-10 2010-06-24 Semiconductor Energy Lab Co Ltd Mos型センサ及びその駆動方法
CN102740012A (zh) * 2011-04-13 2012-10-17 半导体器件-埃尔法特***-拉法合伙公司 检测器像素信号读出电路及其成像方法
EP2512125A2 (en) * 2011-04-13 2012-10-17 Semi-Conductor Devices - An Elbit Systems - Rafael Partnership A detector pixel signal readout circuit and an imaging method thereof
CN102333195A (zh) * 2011-09-23 2012-01-25 东南大学 一种工作于线性模式apd阵列的主、被动成像读出电路
US20170090019A1 (en) * 2015-09-29 2017-03-30 Qualcomm Incorporated Lidar system with reflected signal strength measurement
CN105467377A (zh) * 2015-11-30 2016-04-06 天津大学 一种基于自混频探测器的三维激光成像雷达读出电路
CN105974395A (zh) * 2016-05-16 2016-09-28 中国兵器工业集团第二四研究所苏州研发中心 一种基于cmos工艺的高速窄脉冲电流放大器
CN109115334A (zh) * 2017-06-22 2019-01-01 株式会社电装 光检测装置
US20190235061A1 (en) * 2018-02-01 2019-08-01 Optixpan, Inc. Pulsed time-of-flight sensor, pulsed time-of-flight pixel array and operation method therefor
CN108614255A (zh) * 2018-06-28 2018-10-02 中国电子科技集团公司信息科学研究院 一种读出电路
CN210690812U (zh) * 2019-08-05 2020-06-05 中国兵器工业集团第二一四研究所苏州研发中心 一种像素级的时间和强度数字转换电路

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
HELOU, JN: "0.18 μm CMOS fully differential CTIA for a 32x16 ROIC for 3D ladar imaging systems", 《 INFRARED AND PHOTOELECTRONIC IMAGERS AND DETECTOR DEVICES II》, vol. 6294, pages 1 - 14 *
LEE, EG: "Low-power CMOS Front-end ROIC using Inverter-feedback RGC TIA for 3-D Flash LADAR Sensor", 《JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE》, vol. 18, no. 1, pages 57 - 64 *
LONG SHANLI: "Design of a 1.8 V 10-bit 160 MS/s CMOS Sample-and-hold Circuit", 《 MICROELECTRONICS》, vol. 40, no. 6, pages 792 - 795 *
刘强: "128×128元非制冷红外焦平面结型探测器阵列信号读出关键电路设计", 《中国优秀硕士学位论文全文数据库信息科技辑》 *
郑丽霞: "盖革模式雪崩光电二极管阵列读出电路的研究与实现", 《中国优秀博士学位论文全文数据库信息科技辑》 *
郑洋德: "单通道时间-幅度转换电路设计", 《核电子学与探测技术》, vol. 37, no. 07, pages 663 - 666 *
郑炯卫: "基于双斜坡采样的像素级时间幅度变换器", 《电子与封装》, vol. 18, no. 7, pages 22 - 27 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113126473A (zh) * 2020-01-14 2021-07-16 半导体元件工业有限责任公司 用于时间数字转换器的方法和装置

Also Published As

Publication number Publication date
CN110308435B (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
CN105652259B (zh) 基于盖革模式apd阵列的激光测距读出时序电路及方法
CN107907873B (zh) 一种针对阵列apd的回波采集***及其方法
CN203775318U (zh) 基于像素级模数转换的紫外焦平面读出电路
CN103856730A (zh) 基于像素级模数转换的紫外焦平面读出电路及其读出方法
CN110943714B (zh) 带时钟门控的数据读出接口电路
US8363140B2 (en) Vision sensor for measuring contrasts and method for making such measure
CN107105177B (zh) 单光子雪崩光电二极管时间延迟积分cmos图像传感器
CN102801930A (zh) 低功耗时间延时积分型 cmos 图像传感器
CN102595068B (zh) 数字域累加cmos-tdi图像传感器
CN107449516A (zh) 一种自适应探测模式的光子计数线阵读出电路及方法
CN101776749B (zh) 机载凝视成像激光雷达同步触发***
US11626446B2 (en) Pixel circuit and method of operating the same in an always-on mode
CN104122561A (zh) 一种非扫描型3d激光成像雷达
CN209517348U (zh) 一种新型相关多采样电路
CN103618860A (zh) 一种用于图像传感器的模数转换器
CN107907885A (zh) 一种基于单光子计数方法的水下目标探测装置
CN109151293B (zh) 具有增益补偿的hdr图像传感器、读出电路及方法
CN107340508B (zh) 用于采集处理激光信号的焦平面芯片、像素单元及阵列
Manuzzato et al. A $64\times 64$-Pixel Flash LiDAR SPAD Imager with Distributed Pixel-to-Pixel Correlation for Background Rejection, Tunable Automatic Pixel Sensitivity and First-Last Event Detection Strategies for Space Applications
CN110308435A (zh) 一种像素级的时间和强度数字转换电路
Incoronato et al. Single-shot pulsed-lidar spad sensor with on-chip peak detection for background rejection
CN210690812U (zh) 一种像素级的时间和强度数字转换电路
CN111048540B (zh) 一种门控式像素单元以及3d图像传感器
CN108848326B (zh) 一种高动态范围mcp探测器前端读出电路及其读出方法
CN116962904A (zh) 基于事件模式与灰度模式融合输出的动态视觉读出电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant