CN110304917B - 用于骨组织工程的钛酸钡压电陶瓷支架及其制备方法 - Google Patents

用于骨组织工程的钛酸钡压电陶瓷支架及其制备方法 Download PDF

Info

Publication number
CN110304917B
CN110304917B CN201910670959.9A CN201910670959A CN110304917B CN 110304917 B CN110304917 B CN 110304917B CN 201910670959 A CN201910670959 A CN 201910670959A CN 110304917 B CN110304917 B CN 110304917B
Authority
CN
China
Prior art keywords
barium titanate
tissue engineering
bone tissue
bioactive glass
piezoelectric ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910670959.9A
Other languages
English (en)
Other versions
CN110304917A (zh
Inventor
朱敏
何鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201910670959.9A priority Critical patent/CN110304917B/zh
Publication of CN110304917A publication Critical patent/CN110304917A/zh
Application granted granted Critical
Publication of CN110304917B publication Critical patent/CN110304917B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/10Ceramics or glasses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0038Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by superficial sintering or bonding of particulate matter
    • C04B38/0041Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by superficial sintering or bonding of particulate matter the particulate matter having preselected particle sizes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6026Computer aided shaping, e.g. rapid prototyping
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明提供了一种用于骨组织工程的钛酸钡压电陶瓷支架,其特征在于,包括:将60‑80wt%的包覆生物活性玻璃的钛酸钡粉末、10‑20wt%乙醇、5‑15wt%的粘结剂聚乙烯吡咯烷酮混合,搅拌,得到打印墨水;使用三维建模软件设计50%‑90%孔隙率的多孔模型,进行三维打印,得到多孔支架素坯;将多孔支架素坯置于管式炉中烧结,得到用于骨组织工程的钛酸钡压电陶瓷支架。本发明以包覆生物活性玻璃的钛酸钡为原料,采用三维打印技术制备出多孔复合陶瓷支架,具有很好的生物活性和压电性,能够精确控制支架的内部结构,成型过程简单。

Description

用于骨组织工程的钛酸钡压电陶瓷支架及其制备方法
技术领域
本发明属于材料学领域,具体来说是一种用于骨组织工程的钛酸钡压电陶瓷支架及其制备方法。
背景技术
骨组织工程作为骨缺损修复领域最具有前景的方法得到了广泛的认可,它的提出和发展改变了传统的骨缺损修复治疗模式。骨组织工程包括三个基本要素—细胞、支架材料和信号分子,其中支架材料作为构建骨组织工程最基本的载体材料,在骨组织工程中扮演着非常重要的角色。除此以外,研究表明物理刺激如超声刺激、脉冲电刺激、直流电刺激等也具有促进骨缺损的修复,它们的作用机理是促进了与成骨相关基因的表达,增加了局部血流量、营养物质、生长因子的运输以及代谢废物的转移等。钛酸钡压电陶瓷作为支架材料已经证明具有很好的促成骨作用,而生物玻璃具有极佳的生物活性,并且其降解产物也是骨修复过程中所必须的。因此钛酸钡压电陶瓷支架因人体机械运动产生的压电效应协同生物玻璃优秀的生物活性具有很好的促成骨作用,加速骨缺损的修复。
传统制备陶瓷支架的方法主要为造孔剂法,冷冻干燥法和有机泡沫浸渍法。但是这些方法都不能精确调控支架的内部结构和孔的连通性。研究发现,支架的内部结构包括孔的大小、形状和连通性等都会影响支架的降解、离子释放、营养物质输送、细胞粘附及生长等情况,对细胞行为产生重要影响。
三维打印技术作为一种新型快速成型技术能够精确控制支架的外观以及内部孔的形状、大小和连通性,制备出有利于细胞生长和成骨的骨组织工程支架。此外,三维打印技术操作便捷、重复性强,对材料本身性质影响较小。
发明内容
本发明的目的是提供一种基于3D打印的骨组织工程的钛酸钡压电陶瓷支架的制备方法。
为了达到上述目的,本发明提供了一种用于骨组织工程的钛酸钡压电陶瓷支架,其特征在于,包括:
步骤1:将钛酸钡纳米颗粒分散在乙醇中,加入乙酸活化,搅拌,超声处理后,边搅拌边加入正硅酸四乙酯,加入氨水调节pH值为8-9.5,搅拌,再加入四水硝酸钙,35-45℃搅拌,离心收集所得固体并洗涤至中性,烘干,得到包覆生物活性玻璃的钛酸钡粉末(BTO@BG);
步骤2:将60-80wt%的包覆生物活性玻璃的钛酸钡粉末、10-20wt%乙醇、5-15wt%的粘结剂聚乙烯吡咯烷酮混合,搅拌,得到打印墨水;
步骤3:使用三维建模软件设计50%-90%孔隙率的多孔模型,并将所述的多孔模型数据导入到3D打印机配套软件中,对所述的多孔模型进行切片、调平,将步骤2得到的打印墨水装进三维打印机的料筒中;启动三维打印程序,将打印墨水以层层堆积的方式沉积在载物平台的玻璃培养皿中,打印完成后将所得的支架干燥,得到多孔支架素坯;
步骤4:将步骤3得到的多孔支架素坯置于管式炉中烧结,所述的烧结包括:先从室温以0.8-1.2℃/min的速度加热到300-500℃,保温1-2小时,然后以2.5-3.5℃/min的速度加热到1150-1250℃,保温1-3小时,最后自然冷却至室温,得到用于骨组织工程的钛酸钡压电陶瓷支架。
优选地,所述的3D打印机的针头直径为400-1000μm,三维打印的条件包括:气压为1-5bar,打印速度为1.0-12.0mm/s,墨水相邻两层走向夹角为45-90°。
优选地,所述的步骤1中的包覆生物活性玻璃的钛酸钡粉末用溶胶凝胶法制得。
优选地,所述的步骤1中的包覆生物活性玻璃的钛酸钡粉末中生物活性玻璃均匀地包覆在钛酸钡表面,钛酸钡和生物活性玻璃的质量比为100:5-20。
优选地,所述的钛酸钡纳米颗粒的粒径尺寸≤1微米。
优选地,所述的三维建模软件是Soild edge、SolidWorks、C4D或AUTOCAD。
优选地,所述的3D打印机是***3-D BioplotterTM(EnvisionTEC GmbH,Germany)打印机。
优选地,所述的钛酸钡纳米颗粒、正硅酸四乙酯以及四水硝酸钙的质量比为1:2.4-8:8.7-25。
与现有技术相比,本发明的有益效果是:
1、本发明以包覆生物活性玻璃的钛酸钡为原料,采用三维打印技术制备出多孔复合陶瓷支架,具有很好的生物活性和压电性,能够精确控制支架的内部结构,成型过程简单。
2、本发明的方法提高了支架的生物学性能并且实现电刺激促进成骨作用。
3、对所述多孔支架的理化性能和生物学性能检测得知,支架具有三维连通的大孔结构,孔径为50-1000微米,孔隙率在50-90%可调,力学性能良好(2-10MPa),并且对人体骨髓间质干细胞的增殖、分化和成骨起促进作用。本发明的多孔支架制备方法为骨组织工程陶瓷支架的制备提供了新的技术,有望为骨组织工程支架制备及骨缺损修复治疗带来新的策略。
4、本发明解决了目前3D打印钛酸钡过程中,打印过程复杂,不能精确调控支架的内部结构和孔的连通性的技术问题。
附图说明
图1是本发明实施例1所制备的多孔BTO@BG陶瓷支架的光学照片。
图2是本发明实施例1所制备的多孔BTO@BG陶瓷支架的SEM图。
图3是本发明实施例1所制备的多孔BTO@BG粉体的TEM图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
以下实施例中所用的3D打印机是***3-D BioplotterTM(EnvisionTEC GmbH,Germany)打印机。
以下实施例中所用到的各原料均为市售产品。
实施例1
一种用于骨组织工程的钛酸钡压电陶瓷支架,具体步骤为:
步骤1:将20g粒径尺寸≤1微米的钛酸钡纳米颗粒分散在100mL乙醇中,加入5mL摩尔浓度为17.5mol/L的乙酸活化,搅拌30min,超声处理30min后,边搅拌边加入8g正硅酸四乙酯,加入摩尔浓度为14.8mol/L的氨水调节pH值为9,搅拌,再加入2g四水硝酸钙,40℃搅拌4h,离心收集所得固体并洗涤至中性,60℃烘干,得到包覆生物活性玻璃的钛酸钡粉末(BTO@BG),生物活性玻璃均匀地包覆在钛酸钡表面,钛酸钡和生物活性玻璃质量比为100:15。
步骤2:将70wt%的包覆生物活性玻璃的钛酸钡粉末、20wt%乙醇、10wt%的粘结剂聚乙烯吡咯烷酮(K60)混合,迅速搅拌均匀,得到打印墨水;
步骤3:使用CAD三维建模软件设计多孔结构,得到50%孔隙率的多孔模型,并将所述的多孔模型数据导入到3D打印机配套软件中,调整参数对所述的多孔模型进行切片、调平,将步骤2得到的打印墨水装进三维打印机的料筒中,针头直径为400μm;启动三维打印程序,调节气压为2bar,打印速度为6.0mm/s,墨水相邻两层走向夹角为90°,将打印墨水以层层堆积的方式沉积在载物平台的玻璃培养皿中,打印完成后将所得的支架在37℃烘箱中干燥24小时,得到多孔支架素坯;
步骤4:将步骤3得到的多孔支架素坯置于管式炉中烧结,所述的烧结包括:先从室温以1℃/min的速度加热到300℃,保温2小时,然后以3℃/min的速度加热到1150℃,保温3小时,最后自然冷却至室温,得到用于骨组织工程的钛酸钡压电陶瓷支架,如图1-3所示。
将得到的钛酸钡支架进行极化,将支架放在极化装置中,温度设定为100℃,计划电压为3kV,极化时间为10min,极化后将支架清洗干净,烘干消毒后,分别进行CCK-8和碱性磷酸酶(ALP)检测,以此来判断支架的生物相容性和成骨分化情况,结果显示支架材料都具有很好的细胞相容性,并且具有生物玻璃包覆的支架比纯钛酸钡支架具有更好地促进干细胞成骨分化的作用。
实施例2
一种用于骨组织工程的钛酸钡压电陶瓷支架,具体步骤为:
步骤1:将20g粒径尺寸≤1微米的钛酸钡纳米颗粒分散在100mL乙醇中,加入5mL摩尔浓度为17.5mol/L的乙酸活化,搅拌30min,超声处理30min后,边搅拌边加入5g正硅酸四乙酯,加入摩尔浓度为14.8mol/L氨水调节pH值为9.5,搅拌,再加入1.5g四水硝酸钙,40℃搅拌4h,离心收集所得固体并洗涤至中性,60℃烘干,得到包覆生物活性玻璃的钛酸钡粉末(BTO@BG),生物活性玻璃均匀地包覆在钛酸钡表面,钛酸钡和生物活性玻璃质量比为100:10。
步骤2:将75wt%的包覆生物活性玻璃的钛酸钡粉末、10wt%乙醇、15wt%的粘结剂聚乙烯吡咯烷酮(K60)混合,迅速搅拌均匀,得到打印墨水;
步骤3:使用CAD三维建模软件设计多孔结构,得到60%孔隙率的多孔模型,并将所述的多孔模型数据导入到3D打印机配套软件中,调整参数对所述的多孔模型进行切片、调平,将步骤2得到的打印墨水装进三维打印机的料筒中,针头直径为600μm;启动三维打印程序,调节气压为2bar,打印速度为10mm/s,墨水相邻两层走向夹角为90°,将打印墨水以层层堆积的方式沉积在载物平台的玻璃培养皿中,打印完成后将所得的支架在37℃烘箱中干燥12小时,得到多孔支架素坯;
步骤4:将步骤3得到的多孔支架素坯置于管式炉中烧结,所述的烧结包括:先从室温以1℃/min的速度加热到300℃,保温2小时,然后以3℃/min的速度加热到1200℃,保温3小时,最后自然冷却至室温,得到用于骨组织工程的钛酸钡压电陶瓷支架。
将得到的钛酸钡支架进行极化,将支架放在极化装置中,温度设定为100℃,计划电压为3kV,极化时间为10min,极化后将支架清洗干净,烘干消毒后,分别进行CCK-8和碱性磷酸酶(ALP)检测,以此来判断支架的生物相容性和成骨分化情况,结果显示支架材料都具有很好的细胞相容性,并且具有生物玻璃包覆的支架比纯钛酸钡支架具有更好地促进干细胞成骨分化的作用。
实施例3
一种用于骨组织工程的钛酸钡压电陶瓷支架,具体步骤为:
步骤1:将20g粒径尺寸≤1微米的钛酸钡纳米颗粒分散在100mL乙醇中,加入5mL摩尔浓度为17.5mol/L的乙酸活化,搅拌30min,超声处理30min后,边搅拌边加入3g正硅酸四乙酯,加入摩尔浓度为14.8mol/L氨水调节pH值为8.5,搅拌,再加入0.8g四水硝酸钙,40℃搅拌4h,离心收集所得固体并洗涤至中性,60℃烘干,得到包覆生物活性玻璃的钛酸钡粉末(BTO@BG),生物活性玻璃均匀地包覆在钛酸钡表面,钛酸钡和生物活性玻璃质量比为100:20。
步骤2:将60wt%的包覆生物活性玻璃的钛酸钡粉末、15wt%乙醇、25wt%的粘结剂聚乙烯吡咯烷酮(K30)混合,迅速搅拌均匀,得到打印墨水;
步骤3:使用CAD三维建模软件设计多孔结构,得到70%孔隙率的多孔模型,并将所述的多孔模型数据导入到3D打印机配套软件中,调整参数对所述的多孔模型进行切片、调平,将步骤2得到的打印墨水装进三维打印机的料筒中,针头直径为400μm;启动三维打印程序,调节气压为1.5bar,打印速度为12.0mm/s,墨水相邻两层走向夹角为90°,将打印墨水以层层堆积的方式沉积在载物平台的玻璃培养皿中,打印完成后将所得的支架在37℃烘箱中干燥12小时,得到多孔支架素坯;
步骤4:将步骤3得到的多孔支架素坯置于管式炉中烧结,所述的烧结包括:先从室温以1℃/min的速度加热到300℃,保温2小时,然后以3℃/min的速度加热到1250℃,保温3小时,最后自然冷却至室温,得到用于骨组织工程的钛酸钡压电陶瓷支架。
将得到的钛酸钡支架进行极化,将支架放在极化装置中,温度设定为100℃,计划电压为3kV,极化时间为10min,极化后将支架清洗干净,烘干消毒后,分别进行CCK-8和碱性磷酸酶(ALP)检测,以此来判断支架的生物相容性和成骨分化情况,结果显示支架材料都具有很好的细胞相容性,并且具有生物玻璃包覆的支架比纯钛酸钡支架具有更好地促进干细胞成骨分化的作用。
上述内容详细描述了本发明较佳具体实例。应当理解,对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (4)

1.一种用于骨组织工程的钛酸钡压电陶瓷支架,其特征在于,包括:
步骤1:将钛酸钡纳米颗粒分散在乙醇中,加入乙酸活化,搅拌,超声处理后,边搅拌边加入正硅酸四乙酯,加入氨水调节pH值为8-9.5,搅拌,再加入四水硝酸钙,35-45℃搅拌,离心收集所得固体并洗涤至中性,烘干,得到包覆生物活性玻璃的钛酸钡粉末;所述包覆生物活性玻璃的钛酸钡粉末中生物活性玻璃均匀地包覆在钛酸钡表面,钛酸钡和生物活性玻璃的质量比为100:5-20;
步骤2:将60-80wt%的包覆生物活性玻璃的钛酸钡粉末、10-20wt%乙醇、5-15wt%的粘结剂聚乙烯吡咯烷酮混合,搅拌,得到打印墨水;所述包覆生物活性玻璃的钛酸钡粉末、乙醇和粘结剂聚乙烯吡咯烷酮的质量百分数之和为100%;
步骤3:使用三维建模软件设计50%-90%孔隙率的多孔模型,并将所述的多孔模型数据导入到3D打印机配套软件中,对所述的多孔模型进行切片、调平,将步骤2得到的打印墨水装进三维打印机的料筒中;启动三维打印程序,将打印墨水以层层堆积的方式沉积在载物平台的玻璃培养皿中,打印完成后将所得的支架干燥,得到多孔支架素坯;
步骤4:将步骤3得到的多孔支架素坯置于管式炉中烧结,所述的烧结包括:先从室温以0.8-1.2℃/min的速度加热到300-500℃,保温1-2小时,然后以2.5-3.5℃/min的速度加热到1150-1250℃,保温1-3小时,最后自然冷却至室温,得到用于骨组织工程的钛酸钡压电陶瓷支架。
2.如权利要求1所述的用于骨组织工程的钛酸钡压电陶瓷支架,其特征在于,所述的3D打印机的针头直径为400-1000μm,三维打印的条件包括:气压为1-5bar,打印速度为1.0-12.0mm/s,墨水相邻两层走向夹角为45-90°。
3.如权利要求1所述的用于骨组织工程的钛酸钡压电陶瓷支架,其特征在于,所述的三维建模软件是Soild edge、SolidWorks、C4D或AUTOCAD。
4.如权利要求1所述的用于骨组织工程的钛酸钡压电陶瓷支架,其特征在于,所述的3D打印机是*** 3-D Bioplotter™打印机。
CN201910670959.9A 2019-07-24 2019-07-24 用于骨组织工程的钛酸钡压电陶瓷支架及其制备方法 Active CN110304917B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910670959.9A CN110304917B (zh) 2019-07-24 2019-07-24 用于骨组织工程的钛酸钡压电陶瓷支架及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910670959.9A CN110304917B (zh) 2019-07-24 2019-07-24 用于骨组织工程的钛酸钡压电陶瓷支架及其制备方法

Publications (2)

Publication Number Publication Date
CN110304917A CN110304917A (zh) 2019-10-08
CN110304917B true CN110304917B (zh) 2021-11-26

Family

ID=68080481

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910670959.9A Active CN110304917B (zh) 2019-07-24 2019-07-24 用于骨组织工程的钛酸钡压电陶瓷支架及其制备方法

Country Status (1)

Country Link
CN (1) CN110304917B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112773939A (zh) * 2020-12-24 2021-05-11 广州医科大学附属口腔医院(广州医科大学羊城医院) 一种低钛酸钡含量骨修复3d打印材料及其制备方法和应用
CN113845700B (zh) * 2021-09-28 2022-10-14 四川大学 一种钛酸钡基体复合材料及其diw打印成型方法和应用
CN115074314A (zh) * 2022-03-28 2022-09-20 北京大学口腔医学院 一种调控干细胞成骨分化的材料及其制备方法和应用
CN117731830A (zh) * 2022-09-14 2024-03-22 华东理工大学 一种具有高效促成骨作用的压电多孔支架及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102793949A (zh) * 2012-08-23 2012-11-28 东华大学 一种具有生物活性的CaO-SiO2/PAA复合膜材料的制备方法
CN106178101A (zh) * 2016-07-20 2016-12-07 上海理工大学 一种多孔生物活性玻璃陶瓷支架的制备方法
CN106237392A (zh) * 2016-08-26 2016-12-21 华南理工大学 一种仿骨压电性的三维陶瓷支架材料及其制备方法与应用
CN109453426A (zh) * 2018-09-03 2019-03-12 北京化工大学 一种骨修复用生物活性陶瓷纤维复合支架及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090198345A1 (en) * 2008-02-04 2009-08-06 Chung Shan Medical University Calcium silicate-based composite cement and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102793949A (zh) * 2012-08-23 2012-11-28 东华大学 一种具有生物活性的CaO-SiO2/PAA复合膜材料的制备方法
CN106178101A (zh) * 2016-07-20 2016-12-07 上海理工大学 一种多孔生物活性玻璃陶瓷支架的制备方法
CN106237392A (zh) * 2016-08-26 2016-12-21 华南理工大学 一种仿骨压电性的三维陶瓷支架材料及其制备方法与应用
CN109453426A (zh) * 2018-09-03 2019-03-12 北京化工大学 一种骨修复用生物活性陶瓷纤维复合支架及其制备方法

Also Published As

Publication number Publication date
CN110304917A (zh) 2019-10-08

Similar Documents

Publication Publication Date Title
CN110304917B (zh) 用于骨组织工程的钛酸钡压电陶瓷支架及其制备方法
Kumar et al. Additive manufacturing methods for producing hydroxyapatite and hydroxyapatite-based composite scaffolds: a review
Feng et al. Structural and functional adaptive artificial bone: materials, fabrications, and properties
CN105196398B (zh) 用于气压挤出式三维打印的陶瓷浆料及生物陶瓷支架的制备方法
CN113336536B (zh) 一种无机非金属纳米颗粒组装的水凝胶材料及其在增材制造技术中的应用
CN105031718B (zh) 基于3D‑Bioplotter打印技术的骨修复多孔复合支架及其制备方法
CN105311673B (zh) 3d打印介孔生物活性玻璃改性的生物陶瓷支架及其制备方法和用途
CN108187149A (zh) 一种基于3d打印的降解可控骨组织工程支架及制备方法
CN107235721B (zh) 一种三维打印多孔白硅钙石生物陶瓷支架及其制备方法与应用
CN105381505A (zh) 一种骨缺损修复支架的3d打印制备方法
CN107376007A (zh) 一种仿生非均一结构生物玻璃支架及其制备方法
CN114452439A (zh) 一种仿生天然骨矿组成的羟基磷灰石/白磷钙石生物活性陶瓷支架及其制备方法
KR101481988B1 (ko) 다공성 세라믹 지지체의 제조방법
CN108144113A (zh) 一种生物活性玻璃多孔骨修复体材料及其制备方法
CN105477687A (zh) 一种多孔人工骨及其制备方法
CN107050513A (zh) 一种梯度浸涂HA制备ZrO2骨修复生物陶瓷支架材料的方法
KR20180062132A (ko) 이중 공극이 형성된 3차원 세라믹 인공 지지체용 조성물
EP3366319B1 (en) Three-dimensional structures based on hydroxyapatite and polyurethane diol obtained through 3d printing technology
CN108638494B (zh) 一种磷酸钙多孔支架的制备方法
Yang et al. Fabrication of β-TCP scaffold with pre-designed internal pore architecture by rapid prototyping of mask projection stereolithography
CN114014647B (zh) 一种硅酸锌复合磷酸三钙陶瓷支架及其制备方法与应用
CN104958787A (zh) 一种表面接种骨细胞的多孔生物陶瓷微球骨支架制备方法
Sa et al. Fabrication and evaluation of 3D β-TCP scaffold by novel direct-write assembly method
Izquierdo‐Barba Scaffold designing
Qin et al. Preparation and characterization of different micro/nano structures on the surface of bredigite scaffolds

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant