CN110280313B - 一种三维结构负载TiO2-x材料的制备方法 - Google Patents

一种三维结构负载TiO2-x材料的制备方法 Download PDF

Info

Publication number
CN110280313B
CN110280313B CN201910624758.5A CN201910624758A CN110280313B CN 110280313 B CN110280313 B CN 110280313B CN 201910624758 A CN201910624758 A CN 201910624758A CN 110280313 B CN110280313 B CN 110280313B
Authority
CN
China
Prior art keywords
tio
solution
dimensional structure
cone
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910624758.5A
Other languages
English (en)
Other versions
CN110280313A (zh
Inventor
卢松涛
吴晓宏
李杨
秦伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HARBIN QINHAO TECHNOLOGY Co.,Ltd.
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201910624758.5A priority Critical patent/CN110280313B/zh
Publication of CN110280313A publication Critical patent/CN110280313A/zh
Application granted granted Critical
Publication of CN110280313B publication Critical patent/CN110280313B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/295Heating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation

Abstract

一种三维结构负载TiO2‑x材料的制备方法,属于光催化技术领域。本发明要解决TiO2光催化效率低以及粉体难回收的技术问题。本发明方法:一、制备CB/TiO2‑x粉体;二、以聚碳酸酯(PC)为原料制备PC锥体;三、将步骤一CB/TiO2‑x粉体溶于有机溶剂中,超声处理,得到CB/TiO2‑x悬浊液,将悬浊液倒入喷枪中,均匀喷涂至少3层在PC锥体上,随后用去离子水冲洗,真空干燥。本发明提高TiO2的光催化性能的同时赋予其太阳能驱动水蒸发性能,用于生产清洁水,不仅可以最大限度地利用太阳能,还可以实现双功能高效的水处理。

Description

一种三维结构负载TiO2-x材料的制备方法
技术领域
本发明属于光催化技术领域;具体涉及聚碳酸酯负载CB/TiO2-x材料的制备方法。
背景技术
全球水资源匮乏及污染问题严重影响了人类社会的发展。目前用于污水净化的技术多种多样,而单一原理的净水方法往往无法达到高效的净化效果,并且还会消耗大量的财力物力。利用太阳能进行废水处理,包括光催化降解有机污染物和太阳能驱动水蒸发,是解决这一问题的有效途径。
光催化降解和太阳能驱动水蒸发被认为是解决清洁水资源短缺问题的最有前景的技术。尽管已投入许多努力来探索高效生产清洁水,但现有技术存在成本高昂、去污功能单一和效率低下等诸多问题,进而显著局限了其推广与应用。因此双功能(光催化和水蒸发) 被整合到同一复合材料中用于生产清洁水,不仅可以最大限度的利用太阳能,还可以实现双功能高效的水处理。
TiO2作为一种光催化剂,因其环保无毒、稳定性好且具有高活性位点,在光催化领域引起人们的广泛关注。但由于TiO2禁带宽度较大,导致其光响应范围窄、量子效率低,严重影响光催化活性,并且TiO2粉体催化剂的回收问题,极大影响了其催化效果和实用性。虽然通过将光催化剂固化可以避免其回收的问题,但是实现有效固载仍需要探索,光催化性能还有待提高。
发明内容
本发明要解决TiO2光催化效率低以及粉体难回收的技术问题;提供了一种三维结构负载TiO2-x材料的制备方法。
本发明提高TiO2的光催化性能的同时赋予其太阳能驱动水蒸发性能,用于生产清洁水,不仅可以最大限度地利用太阳能,还可以实现双功能高效的水处理。
为解决上述技术问题,本发明中一种三维结构负载TiO2-x材料的制备方法是按下述步骤进行的:
步骤一、将碳黑(CB)加入Tris缓冲液(pH=8.5,50mM)中,超声处理30min,并对其进行搅拌,随后加入TiO2-x,继续搅拌,待混合液均匀后,加入浓度为2mg/mL的盐酸多巴胺混合搅拌均匀,然后置于摇床内,边震荡边通入空气,处理12h,用去离子水洗涤数次,60℃真空烘干,得到CB/TiO2-x粉体;
步骤二、以聚碳酸酯(PC)为原料,3D打印空心圆锥体,依次进行去应力、除油处理,然后用去离子水冲洗干净,然后浸渍无水乙醇中处理10min,取出后直接转移至浓度为50mM的Tris-HCl缓冲液内,随后加入盐酸多巴胺(2mg/mL),真空干燥,得到PC锥体;
步骤三、将步骤一CB/TiO2-x粉体溶于有机溶剂中,超声处理,配置10~20mg/mL浓度的CB/TiO2-x悬浊液,将悬浊液倒入喷枪中,均匀喷涂至少3层在PC锥体上,随后用去离子水冲洗,在30℃下真空干燥4h,即得到三维结构负载TiO2-x材料的制备方法。
进一步限定,步骤一所述TiO2-x是按下述步骤制备的:
步骤1:取0.6gP25溶于60mL浓度为10mol/L的NaOH溶液中,超声30min后转移至水热釜中,在200℃下水热处理12~48h,然后用0.1M的盐酸洗涤至pH值至2.0±0.2,用去离子水洗涤多次后用无水乙醇洗涤多次,在60℃真空条件下干燥12h,然后放入管式炉,在500℃下煅烧4h,自然冷却降至室温,得到白色TiO2纳米带;
步骤2:取0.2g步骤一制得的白色TiO2纳米带,加入0.4g硼氢化钠,充分研磨混合均匀后,放入管式炉中,在氩气氛围中,以5℃·min-1的升温速度升温至300~450℃,保温3h,自然冷却至室温,将混合物溶于去离子水,抽滤、洗涤、70℃真空干燥12h,制得黑色TiO2-x纳米带。
进一步限定,步骤2中以5℃·min-1的升温速度升温至360℃。
进一步限定,步骤一中CB与TiO2-x的质量比为1:(1~5),CB质量与Tris缓冲液体积的比为(0.05~0.5)g:(10~100)mL,CB质量与盐酸多巴胺体积的比为(2~10)g:1mL。
进一步限定,步骤二中3D打印空心圆锥体的具体步骤如下:
打印前将PC丝材放入60℃真空干燥处理12h,利用3D Max(3D Studio Max)软件设计出目标打印基底结构,在3D打印机识别此文件后进行打印操作,打印机的喷嘴直径为0.4mm,喷嘴温度设定为260℃,打印机平台设定为90℃,室温为80℃,不使用任何粘合剂,通过两个夹送辊将1.75mm单丝送入FDM打印机,层打印速度保持在1.5m/min,层高设定为0.05mm,然后逐层印刷,得到空心圆锥体。
进一步限定,步骤二中所述空心圆锥体的顶角为60°~120°。
进一步限定,步骤二中在45℃下真空干燥12h。
进一步限定,步骤三中有机溶剂为无水乙醇。
进一步限定,步骤三中喷涂后PC锥体上的涂层厚度为6μm。
进一步限定,步骤三在30℃下真空干燥4h。
本发明三维结构负载TiO2-x材料可在2min内实现对MG溶液的高效降解(99.94%),经过20次循环后其催化活性未发生明显变化,作为光催化材料十分稳定。
本发明三维结构负载TiO2-x材料由于TiO2-x纳米带结构、CB的存在、以及Ti3+和氧空位的引入的协同作用,使其具有较优异的光催化性能。
本发明三维结构负载TiO2-x材料具有良好的太阳能驱动水蒸发能力,由于超强光吸收性能(99.68%),在3倍太阳光下水蒸发速率为4.5371kg/(m2h),光热转化效率达93.52%。用CB/TiO2-x/PC进行海水淡化实验,收集的蒸发水中离子(Na+、Mg2+、K+、Ca2+)浓度显示出4个数量级递减(2.1mg/L),优于WHO所规定的饮用水标准。
附图说明
图1是实施例1制备TiO2-x的TEM照片;a)2μmTEM照,b)200nmTEM照片;c) 50nmHRTEM照片,d)5nmHRTEM照片;
图2是样品TiO2(P25)、TiO2、TiO2-x的UV-Vis-NIR吸收图谱;
图3是不同合成质量比的CB/TiO2-x的SEM照片,a)CB与TiO2-x的质量比为1:1, b)CB与TiO2-x的质量比为1:2,c)CB与TiO2-x的质量比为1:3,d)CB与TiO2-x的质量比为1:4,e)CB与TiO2-x的质量比为1:5;
图4是CB/TiO2-x的SEM照片和相应mapping a)CB/TiO2-x图;b)Ti;c)O;d)C;
图5是不同合成质量比的CB/TiO2-x的UV-Vis-NIR吸收图谱;
图6是CB/TiO2-x光催化机理示意图;
图7是不同顶角的PC锥的实物图,a)顶角60°,b)顶角90°,c)顶角120°;
图8是不同打印工艺下PC 3D锥的实物图和SEM照片a),b),c)为工艺1,3 和5的实物图;d),e),f)为工艺1,3和5的SEM图;
图9实施例1喷涂后的CB/TiO2-x/PC的UV-Vis-NIR吸收谱图;
图10是光照下不同样品的光催化活性;
图11是不同CB/TiO2-x喷涂层数对应的CB/TiO2-x/PC催化性能;
图12是不同样品的水蒸发质量损失变化曲线;
图13是脱盐前后Na+,Ca2+,K+和Mg2+的盐度;
图14是CB/TiO2-x/PC的催化降解稳定性;
图15是CB/TiO2-x/PC的水蒸发性能稳定性;
图16是CB/TiO2-x/PC的高效净水机理示意图。
具体实施方式
实施例1:本实施例中原料TiO2-x是按下述步骤制备的:
步骤1:取0.6gP25溶于60mL浓度为10mol/L的NaOH溶液中,超声30min后转移至水热釜中,在200℃下水热处理36h,然后用0.1M的盐酸洗涤至pH值至2.0±0.2,用去离子水洗涤多次后用无水乙醇洗涤多次,在60℃真空条件下干燥12h,然后放入管式炉,在500℃下煅烧4h,自然冷却降至室温,得到白色TiO2纳米带,生长较均匀,形貌是大小约为4μm带状结构;
步骤2:取0.2g步骤一制得的白色TiO2纳米带,加入0.4g硼氢化钠,充分研磨混合均匀后,放入管式炉中,在氩气氛围中,以5℃·min-1的升温速度升温至350℃,保温 3h,自然冷却至室温,将混合物溶于去离子水,抽滤、洗涤、70℃真空干燥12h,制得黑色TiO2-x纳米带,带状形貌,且含有Ti3+和氧空位,可在40min内将孔雀石绿溶液降解 (99.94%),降解速率符合一级动力学方程,速率常数k为0.05692min-1,约为TiO2(NBs) 的5倍。
本实施例中一种三维结构负载TiO2-x材料的制备方法是按下述步骤进行的:
步骤一、将碳黑(CB)加入Tris缓冲液(pH=8.5,50mM)中,超声处理30min,并对其进行搅拌,随后加入上述方法制得的TiO2-x,继续搅拌,待混合液均匀后,加入浓度为2mg/mL的盐酸多巴胺混合搅拌均匀,然后置于摇床内,边震荡边通入空气,处理 12h,用去离子水洗涤数次,60℃真空烘干,得到CB/TiO2-x粉体;
步骤一中CB质量与Tris缓冲液体积的比为0.1g:50mL,CB质量与盐酸多巴胺体积的比为5g:1mL。
3min内可实现对MG溶液降解99.95%。经五次循环后,催化活性仍保持在89%以上,催化剂性能较稳定
步骤二、以聚碳酸酯(PC)为原料,3D打印空心圆锥体,依次进行去应力、除油处理,然后用去离子水冲洗干净,然后浸渍无水乙醇中处理10min,取出后直接转移至浓度为50mM的Tris-HCl缓冲液内,随后加入盐酸多巴胺(2mg/mL),在45℃下真空干燥12h,得到PC锥体;
步骤三、将步骤一CB/TiO2-x粉体溶于无水乙醇中,超声处理,配置15mg/mL浓度的CB/TiO2-x悬浊液,将悬浊液倒入喷枪中,均匀喷涂3层在PC锥体上,随后用去离子水冲洗,在30℃下真空干燥4h,即得到三维结构负载TiO2-x材料的制备方法(标记为 CB/TiO2-x/PC);
其中步骤二中3D打印空心圆锥体的具体步骤如下:
打印前将PC丝材放入60℃真空干燥处理12h,利用3D Max(3D Studio Max)软件设计出目标打印基底结构,在3D打印机识别此文件后进行打印操作,打印机的喷嘴直径为0.4mm,喷嘴温度设定为260℃,打印机平台设定为90℃,室温为80℃,不使用任何粘合剂,通过两个夹送辊将1.75mm单丝送入FDM打印机,层打印速度保持在1.5m/min,层高设定为0.05mm,然后逐层印刷,得到顶角为60°的空心圆锥体。
本实施例所得的CB/TiO2-x/PC可在2min内实现对MG溶液的高效降解(99.94%),经过20次循环后其催化活性未发生明显变化,作为光催化材料十分稳定。
本实施例所得的CB/TiO2-x/PC具有良好的太阳能驱动水蒸发能力,由于超强光吸收性能(99.68%),在3倍太阳光下水蒸发速率为4.5371kg/(m2h),光热转化效率达93.52%。用CB/TiO2-x/PC进行海水淡化实验,收集的蒸发水中离子(Na+、Mg2+、K+、Ca2+)浓度显示出4个数量级递减(2.1mg/L),优于WHO所规定的饮用水标准。
本实施例方法得到TiO2-x的TEM照片如图1所示。可以看出样品呈现的是带状的结构,在TiO2-x的HRTEM图像,发现可以在高倍放大图像中观察到TiO2的晶格条纹和无定形外壳,发现的0.35nm晶格条纹对应的是TiO2(100)的晶面。TiO2-x的无定形外壳有助于促进电子转移和分离,从而促进催化剂的光催化性能。
本实施例方法得到TiO2-x的UV-Vis-NIR吸收图谱如图2所示。TiO2-x在400nm-2500nm 相较于TiO2和TiO2都有较强的吸收,对光的响应拓宽到整个太阳光波谱范围,说明自掺杂改性后的TiO2-x光吸收性能发生了较大的改变,这种强吸收可归因于存在Ti3+的自掺杂,使 TiO2-x的禁带宽度有所降低。
不同合成质量比的CB/TiO2-x的SEM照片如图3所示,整体来看在PDA作用下CB均实现了与TiO2-x的复合,但由于初始加入CB比例的不同致使负载的情况有所区别。如图3a所示,CB发生较大规模的团聚现象,主要归因于初始加入的CB的量较多,另外由于 PDA的作用使CB发生了较大程度的团聚。随着加入CB量的减少,团聚现象得到不同程度的减弱,图3b为1:2时的SEM图像可以看出CB成功的负载于TiO2-x,且相对来说负载的较均匀,对其光催化降解性能较有利,这一点在接下来的性能测试中可以得到证实。图c是CB与TiO2-x负载比例为1:3时的SEM图像,观察到CB的量有明显减少,且团聚现象得到明显的改善。图3d,e分别对应的是负载质量比例为1:4和1:5时的SEM图像, CB的量此时已大量减少,但仍可以观察到CB成功的负载于TiO2-x上,相对来说还是较均匀的。根据图3a、b、c、d、e的形貌变化可以看出,随着初始CB量的不同,其负载效果不同,但从外观上来看均呈黑色,其光吸收性能会有所不同。
本实施例步骤一中得到CB/TiO2-x的SEM照片和相应的mapping如图4所示。可以明显的看出CB/TiO2-x是由Ti、O、C三种元素组成的,也可看出Ti和O元素的分布与其对应的SEM图中的TiO2-x形貌一致,并且C元素均匀分布在TiO2-x所在的区域,这一测试结果表明CB成功与TiO2-x进行了负载,成功制得了CB/TiO2-x
本实施例步骤三中得到CB/TiO2-x的UV-Vis-NIR吸收图谱如图5所示。可以观察到CB 在400nm-2500nm的吸收是较强的,当CB与TiO2-x成功复合之后,它们彼此相互作用,二者的吸光性能都得到了改善,成功负载后的CB/TiO2-x吸光性能相较于未负载之前的二者吸光性能均有所提高,并且在250nm-2500nm处全谱段的光吸收性能都很均衡。并且发现随着CB含量的增加其吸光性能在逐渐增强,但并不是CB的含量越高其吸光性能越强。
本实施例步骤三中得到CB/TiO2-x的光催化机理如图6所示,随着Ti3+和氧空位的引入,在CB/TiO2-x的导带下方形成新的杂质能级,这将使CB/TiO2-x的带隙变窄,从而增强对太阳光的光响应。另一方面,碳黑(CB)也是提高光催化效率不应忽视的重要因素,因为它在增强吸附能力,电子转移和光生电子-空穴对的分离中起着至关重要的作用。当催化剂暴露于光照下时,在TiO2-x的价带(VB)中将产生大量的光生电子,并立即转移到TiO2-x中的Ti3+缺陷和氧空位中,在VB中的留下空穴。TiO2-x中被激发到Ti3+缺陷和氧空位中的e-,会被快速转移到CB上,并最终与溶液中的OH-和H2O反应生成·OH自由基。同时,OH-和H2O被TiO2-x的VB中的空穴捕获,生成·OH自由基。最后,有机污染物会与自由基如·OH、·O2 -反应生成对环境无害的小分子物质。这种光生电子-空穴对的快速循环***加速了电子的转移,降低了电子和空穴的复合速率。在催化反应过程中,氧空位可以提供悬挂键用于反应底物的吸附;由于具有局域富电子的特性,氧空位还可以对吸附底物的惰性化学键进行活化,调控其电子结构,从而极大地影响光催化过程。此外, TiO2-x纳米带形貌也有助于提高光催化活性,因为它具有较大的比表面积,能够增加表面活性位,有利于污染物的吸附,并最大限度地提高采光效率。因此,TiO2-x纳米带结构、 CB的存在、Ti3+和氧空位的引入的协同作用有助于提高CB/TiO2-x的光催化性能。
不同顶角的PC锥的实物图如图7所示。
本实施例步骤四中的PC 3D锥的打印工艺参数如表1所示。不同打印工艺下PC 3D锥的实物图和SEM照片如图8所示。图8中a、b、c分别在工艺1,工艺3和工艺5这三种工艺条件下制得的,通过比较可看出图c外观上更光滑,更密实,并且表面没有出现因冷却不及时而造成的坑坑洼洼的现象,为了更加明了准确的看出其微观结构,通过它们对应的SEM图片可以发现在本实施例条件下打印出的微观样品的的微观结构更加的有纹路且条理更加清晰,打印出来的材料表面的相对较平整,层次感较强,符合FDM打印技术的特点。
表1 PC 3D锥的打印工艺参数
Figure BDA0002126711200000071
本实施例步骤三中得到最佳喷涂工艺后的CB/TiO2-x/PC的UV-Vis-NIR吸收图谱如图 9所示。经过一系列的喷涂参数的筛选,本申请确定了最佳的喷涂参数,采用浓度为15mg/mL的CB/TiO2-x的乙醇分散液对PC三维结构进行喷涂,喷涂层数3层。喷涂后的光吸收性能如图9所示,显示了喷涂前后PC锥的光吸收性能的变化,未喷涂前的PC三维结构在250nm-2500nm的平均光吸收率达到了约97%,而负载了CB/TiO2-x的PC三维结构的CB/TiO2-x/PC复合催化剂在太阳波谱全波段的光吸收率达到了99.67%,具有较优异的吸光性能。
本实施例步骤五中得到的CB/TiO2-x/PC光催化性能分析如图10所示,从图10(a)可以看出空白的PC因经过PDA的亲水性处理后具有一定的污染吸附能力,但是将CB与其进行负载后,其催化性能并未发生明显的提高,这主要是因为CB不具有光催化降解能力,但将CB/TiO2、CB/TiO2/PC三维结构负载后,发现其催化降解能力均有所提升,这主要是由于与PC三维结构负后其光吸收性能具有所增强。与此不同的是将CB/TiO2-x/PC三维结构复载后,发现CB/TiO2-x/PC的催化降解能力相较于CB/TiO2-x有改善,可在2min降解99.94%MG,主要是因为MG污染物的降解与温度有关,而通过测试在催化过程中 CB/TiO2-x/PC的温度可达72℃左右。因此其对MG的催化降解并未达到较好的有所改善。如图10(b)为不同催化剂样品在2min内对MG的降解百分比,从图中可以清晰的比较出 2min内各催化剂的降解程度,此时唯有CB/TiO2-x/PC实现了99.94%。图10(c)是各催化剂对MG有机污染物的降解动力学曲线,由图可以说明此降解过程符合一级动力学方程,且CB/TiO2-x/PC的表观速率常数k远大于TiO2/PC。
不同CB/TiO2-x喷涂层数对应的CB/TiO2-x/PC催化性能如图11所示,从图11中不同样品对应的降解曲线变化可以看出CB/TiO2-x/PC对MG溶液催化降解能力,当喷涂 CB/TiO2-x层数在一定范围内变化时,CB/TiO2-x/PC对MG溶液的降解性能会随着喷涂层数的增加而逐渐增强,但是当喷涂层数超过这一范围后,CB/TiO2-x/PC对MG溶液的降解性能将不再发生改变。这主要是因为当催化剂的量在一定范围内增多时,可以为反应提供更多活性位点;同时,单位时间内产生更多的电子-空穴对;因此,同一时间内可以有更多数量的有机物分子参与反应,这无疑会提高光催化降解反应的效率。但当催化剂用量增大到一定程度后,此时再增大催化剂的量,光催化活性将不再发生改变,这主要是因为,将催化剂喷涂到基底上后存在吸附饱和的情况,当达到吸附饱和后再增加催化剂的量,对催化反应的进行速率无明显促进作用。当CB/TiO2-x的喷涂层数从1层变化到5层的过程中,发现当催化剂喷涂层数为3层时,在Xe灯光源照射下,可在2min内将浓度为10mg/mL 的MG溶液降解99.94%。当喷涂层数大于3层时,CB/TiO2-x/PC对MG溶液的降解性能并未发生明显改变;当喷涂层数在1到3层变化,可明显观察到其对MG降解性能的改变;喷涂层数为1、2层时,可分别在15min、10min降解99.92%、99.93%的MG。
本实施例步骤五中得到的CB/TiO2-x/PC水蒸发性能分析如图12所示,以Xe灯光源模拟太阳光照射下不同样品的单位面积水蒸发量随时间的变化曲线。本申请测试了黑暗环境下MG溶液的蒸发速率为0.07037kg/(m2·h),不含任何催化剂样品的MG溶液在氙灯光照射下的水蒸发速率为1.05kg/(m2·h),仅含CB/TiO2-x催化剂的MG溶液的水蒸发速率为1.61kg/(m2·h),而当PC锥存在时水蒸发速率相较于TiO2-x催化剂的有较显著的提高,其水蒸发速率为2.29kg/(m2·h)。更显著的是当CB/TiO2-x与PC锥进行负载后,其水蒸发速率可达4.53kg/(m2·h)得到大幅度的提高,这主要是由于CB/TiO2-x与PC复合后其光吸收性能得到了提升进而导致了光热转换效率的增强。在氙灯光源照射下(约3 倍太阳光)CB/TiO2-x/PC的光热转换效率根据公式计算结果为93.52%。本发明还用 CB/TiO2-x/PC做了处理盐的相关实验,与此形成对比,并对处理前的盐水以及收集到的冷凝水进行了相关离子浓度的检验。证明了CB/TiO2-x/PC具有较优异的太阳能驱动水蒸发净水性能,如图13所示。使用具有四种主要离子(Na+,K+,Ca2+和Mg2+)的盐水进行脱盐。从图中可以看出,在脱盐后,所有离子都显示出4个数量级的离子浓度递减,均降低到2.1mg/L以下,远低于世界卫生组织所规定的饮用水中这些离子含量标准,同时也低于美国环境保护署的饮用水离子含量标准。表明CB/TiO2-x/PC具有较优异的太阳能净水效果。
催化剂良好的稳定性是检验催化剂性能优异的重要标准,因为具有良好循环稳定性是催化剂能够保持长久的高效催化性能和经济效益的必备条件。本发明对CB/TiO2-x/PC降解 MG溶液光催化稳定性进行了测试,如图14所示,发现在其持续催化降解20个循环后,对污染物MG的降解能力几乎保持不变,降解百分比只发生较小幅度的改变,这表明 CB/TiO2-x/PC复合材料具有较好催化稳定性,再次证明了采用在处理后的PC三维结构上喷涂的方法实现的CB/TiO2-x在PC锥上的负载,具有较牢固的结合力,同时也为目前粉体催化剂在应用中存在的回收难问题提供了一种改善方法,并且也进一步证明了CB/TiO2-x/PC 复合材料在实际推广应用中的可能性。本发明还对CB/TiO2-x/PC进行了水蒸发性能的循环稳定性进行了测试,如图15所示,发现CB/TiO2-x/PC经过20次水蒸发性能测试后,其水蒸发速率有微小的波动,且整体来看依然保持稳定,这表明CB/TiO2-x/PC光热转换性能方面具有良好的稳定性。
CB/TiO2-x/PC的高效净水机理示意图如图16所示,CB/TiO2-x光催化剂由于TiO2-x纳米带结构、CB的存在、以及Ti3+和氧空位的引入的协同作用,使其具有较优异的光催化性能。当将CB/TiO2-x喷涂于PDA亲水改性后的PC锥表面后,获得的CB/TiO2-x/PC复合材料在整个太阳光谱范围内表现出十分优异的光吸收。在太阳能驱动水蒸发过程中,提供充足的水供应和低热损失,在光催化过程中,为催化剂提供出色的全光谱吸收。因此,这一结果充分证明了CB/TiO2-x/PC复合材料,不仅具有显著的太阳能驱动水蒸发性能,而且还具有优异的光催化性能。CB/TiO2-x/PC复合材料的高效双功能净水性能的应用,打破了以往水净化材料单一应用的局限性,为开发高效实用的水净化材料提供了新的策略。

Claims (8)

1.一种三维结构负载TiO2-x材料的制备方法,其特征在于所述制备方法是按下述步骤进行的:
步骤一、将碳黑加入pH=8.5且50 mM的Tris-HCl缓冲液中,超声处理30 min,并对其进行搅拌,随后加入TiO2-x ,继续搅拌,待混合液均匀后,加入浓度为2 mg/mL的盐酸多巴胺混合搅拌均匀,然后置于摇床内,边震荡边通入空气,处理12 h,用去离子水洗涤数次,60 ℃真空烘干,得到碳黑/TiO2-x 粉体;
步骤二、以聚碳酸酯为原料,3D打印空心圆锥体,依次进行去应力、除油处理,然后用去离子水冲洗干净,然后浸渍无水乙醇中处理10 min,取出后直接转移至浓度为50 mM的Tris-HCl缓冲液内,随后加入2 mg/mL的盐酸多巴胺,真空干燥,得到聚碳酸酯锥体;
步骤三、将步骤一碳黑/TiO2-x 粉体溶于有机溶剂中,超声处理,配置10~20 mg/mL浓度的碳黑/TiO2-x悬浊液,将悬浊液倒入喷枪中,均匀喷涂至少3层在聚碳酸酯锥体上,随后用去离子水冲洗,真空干燥,即得到三维结构负载TiO2-x材料;
其中,步骤一所述TiO2-x 是按下述步骤制备的:
步骤1:取0.6 gP25溶于60 mL浓度为10 mol/L的NaOH溶液中,超声30 min后转移至水热釜中,在200℃下水热处理12~48 h,然后用0.1 M的盐酸洗涤至pH值至2.0±0.2,用去离子水洗涤多次后用无水乙醇洗涤多次,在60℃真空条件下干燥12 h,然后放入管式炉,在500℃下煅烧4 h,自然冷却降至室温,得到白色TiO2纳米带;
步骤2:取0.2 g步骤1制得的白色TiO2纳米带,加入0.4 g硼氢化钠,充分研磨混合均匀后,放入管式炉中,在氩气氛围中,以5 ℃·min-1的升温速度升温至300~450℃,保温3 h,自然冷却至室温,将混合物溶于去离子水,抽滤、洗涤、70℃下真空干燥12 h,制得黑色TiO2-x纳米带;
步骤一中碳黑与TiO2-x 的质量比为1:(1~5),碳黑质量与Tris-HCl缓冲液体积的比为(0.05~0.5)g:(10~100)mL,碳黑质量与盐酸多巴胺体积的比为(2~10)g: 1 mL。
2.根据权利要求1所述一种三维结构负载TiO2-x材料的制备方法,其特征在于步骤2中以5 ℃·min-1的升温速度升温至360℃。
3.根据权利要求1所述一种三维结构负载TiO2-x材料的制备方法,其特征在于步骤二中3D打印空心圆锥体的具体步骤如下:打印前将聚碳酸酯丝材放入60 ℃真空干燥处理12 h,利用3D Max软件设计出目标打印基底结构,在3D打印机识别此文件后进行打印操作,打印机的喷嘴直径为0.4 mm,喷嘴温度设定为250℃~260 ℃,打印机平台设定为90 ℃,室温为80 ℃,不使用任何粘合剂,通过两个夹送辊将1.75 mm单丝送入FDM打印机,层打印速度保持在1.5 m/min,层高设定为0.05 mm,然后逐层印刷,得到空心圆锥体。
4.根据权利要求3所述一种三维结构负载TiO2-x材料的制备方法,其特征在于喷涂温度为260℃。
5.根据权利要求1所述一种三维结构负载TiO2-x材料的制备方法,其特征在于步骤二中所述空心圆锥体的顶角为60°~120°。
6.根据权利要求1所述一种三维结构负载TiO2-x材料的制备方法,其特征在于步骤二中在45℃下真空干燥12 h。
7.根据权利要求1所述一种三维结构负载TiO2-x材料的制备方法,其特征在于步骤三中有机溶剂为无水乙醇,在30℃下真空干燥4 h。
8.根据权利要求1所述一种三维结构负载TiO2-x材料的制备方法,其特征在于步骤三中喷涂3层在聚碳酸酯锥体上。
CN201910624758.5A 2019-07-11 2019-07-11 一种三维结构负载TiO2-x材料的制备方法 Active CN110280313B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910624758.5A CN110280313B (zh) 2019-07-11 2019-07-11 一种三维结构负载TiO2-x材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910624758.5A CN110280313B (zh) 2019-07-11 2019-07-11 一种三维结构负载TiO2-x材料的制备方法

Publications (2)

Publication Number Publication Date
CN110280313A CN110280313A (zh) 2019-09-27
CN110280313B true CN110280313B (zh) 2020-03-24

Family

ID=68022110

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910624758.5A Active CN110280313B (zh) 2019-07-11 2019-07-11 一种三维结构负载TiO2-x材料的制备方法

Country Status (1)

Country Link
CN (1) CN110280313B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111211232B (zh) * 2020-03-15 2022-04-05 西北工业大学 一种多巴胺螯合二氧化钛的钙钛矿太阳能电池的制备方法
CN115044186A (zh) * 2022-07-15 2022-09-13 山东金宝电子股份有限公司 一种黑色树脂胶液、半固化片的制备方法、覆铜板及应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100998937B (zh) * 2007-01-05 2010-11-03 华南理工大学 氟掺杂锐钛矿型TiO2溶胶光催化剂的制备方法
CN102239112A (zh) * 2008-06-18 2011-11-09 阿肯色大学理事会 碳-金属纳米复合物和其应用
CN101632943B (zh) * 2009-05-27 2011-11-30 吉首大学 多孔材料外负载TiO2-X/Csurf.复合体及其制备工艺
JP2012148920A (ja) * 2011-01-19 2012-08-09 Sumitomo Chemical Co Ltd 低原子価酸化チタン組成物、およびその製造方法
CN106000459A (zh) * 2016-06-06 2016-10-12 南京工业大学 一种负载型钯纳米催化剂的制备方法
CN107586470B (zh) * 2017-08-08 2020-05-12 电子科技大学 二氧化钛/聚多巴胺共包覆碳酸钙复合材料及其制备方法
CN108384204A (zh) * 2018-03-10 2018-08-10 福建师范大学 一种膨胀制孔的3d打印多孔材料及其制备方法
CN108465477A (zh) * 2018-04-03 2018-08-31 南京大学 三元复合光催化剂的制备方法及用途
CN108786491B (zh) * 2018-06-01 2020-09-04 浙江大学 一种聚多巴胺/三氯生/二氧化钛复合薄膜及其制备方法

Also Published As

Publication number Publication date
CN110280313A (zh) 2019-09-27

Similar Documents

Publication Publication Date Title
CN109126893B (zh) 一种碳氧化钛-金属有机框架复合材料及制备方法和应用
CN104959141B (zh) 一种负载Cu/Cu2O光催化剂的还原氧化石墨烯/无定形碳复合材料及其制备方法和应用
He et al. Diatomite-anchored g-C3N4 nanosheets for selective removal of organic dyes
Chu et al. Preparation and immobilization of Bi2WO6/BiOI/g-C3N4 nanoparticles for the photocatalytic degradation of tetracycline and municipal waste transfer station leachate
CN109331799B (zh) 一种粉煤灰负载二氧化钛光催化材料及其制备方法
CN110280313B (zh) 一种三维结构负载TiO2-x材料的制备方法
CN113145134B (zh) 一种基于矿物复合材料的可见光催化剂及其制备方法
CN110124655B (zh) 一种氧化锌/碳量子点复合光催化剂及其制备方法和应用
CN108654586A (zh) 一种石墨化介孔碳-TiO2复合光催化材料及其制备方法与应用
CN113333023B (zh) 一种高吸附碘氧化铋可见光催化剂及其应用
CN112619671A (zh) 一种二元复合纳米催化剂及其制备方法和应用
CN113198515B (zh) 一种三元光催化剂及其制备方法与应用
CN110479232A (zh) 一种还原氧化石墨烯基光催化气凝胶珠的制备方法
CN111068778B (zh) 一种光催化剂复合材料及其制作方法
CN113181949A (zh) 钴铁合金/氮硫共掺杂碳纳米复合材料及其制法与应用
CN112619684A (zh) 一种功能化凹凸棒石负载NiO-g-C3N4的光催化-吸附剂和制法
CN107486203B (zh) 一种可回收漂浮型复合光催化球及其制备方法和应用
CN110590175A (zh) 一种反蛋白石结构氧化铈及其制备方法与应用
CN107983377B (zh) 钨酸镉修饰的银/碘化银复合材料及其制备方法和应用
Chen et al. Wastewater treatment: application of new functional materials
CN109046437B (zh) 一种可全天使用的光催化剂及其制备方法与应用
CN109317111B (zh) 一种载纳米光催化剂的可漂浮型发泡吸附剂的制备方法
CN113578300A (zh) 一种Ag-g-C3N4/生物碳复合材料及其制备方法和应用
Dai et al. Study of various nanostructures Titania with graphene composites: The preparation and photocatalytic activities
Alsulmi et al. Rational engineering of S-scheme CeO2/g-C3N4 heterojunctions for effective photocatalytic destruction of rhodamine B dye under natural solar radiations

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210928

Address after: 150001 No. 92 West straight street, Nangang District, Heilongjiang, Harbin

Patentee after: HARBIN INSTITUTE OF TECHNOLOGY

Patentee after: HARBIN QINHAO TECHNOLOGY Co.,Ltd.

Address before: 150001 No. 92 West straight street, Nangang District, Heilongjiang, Harbin

Patentee before: HARBIN INSTITUTE OF TECHNOLOGY