CN110280275B - Fe-doped trinickel selenide nanorod/nanosheet hierarchical array structure material, preparation method and application thereof - Google Patents
Fe-doped trinickel selenide nanorod/nanosheet hierarchical array structure material, preparation method and application thereof Download PDFInfo
- Publication number
- CN110280275B CN110280275B CN201910521779.4A CN201910521779A CN110280275B CN 110280275 B CN110280275 B CN 110280275B CN 201910521779 A CN201910521779 A CN 201910521779A CN 110280275 B CN110280275 B CN 110280275B
- Authority
- CN
- China
- Prior art keywords
- reaction
- doped
- preparation
- array structure
- nanorod
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/02—Sulfur, selenium or tellurium; Compounds thereof
- B01J27/057—Selenium or tellurium; Compounds thereof
- B01J27/0573—Selenium; Compounds thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/33—Electric or magnetic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/16—Reducing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/091—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- Metallurgy (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Catalysts (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
技术领域technical field
本发明属于纳米材料制备方法及电催化交叉应用领域,具体涉及一种Fe掺杂四硒化三镍纳米棒/纳米片分级阵列结构材料、制备方法及其应用。The invention belongs to the field of nanomaterial preparation method and electrocatalysis cross application, and particularly relates to a Fe-doped nickel tetraselenide nanorod/nanosheet hierarchical array structure material, preparation method and application thereof.
背景技术Background technique
电催化水分解产生清洁和可再生燃料包括阳极析氧反应(OER)和阴极析氢反应(HER)。该技术的进步需要活性、稳定和廉价的电催化剂以减小过电位并加速OER和HER的动力学。3d过渡金属化合物由于可通过精确控制其组成和结构获得良好的催化性能,被认为是理想的水分解电催化剂。其中,镍基化合物,如硒化镍,具有独特的电子结构,价格便宜且易于获得,被探索为OER和HER电催化剂。Electrocatalytic water splitting to produce clean and renewable fuels includes anodic oxygen evolution reaction (OER) and cathodic hydrogen evolution reaction (HER). Advances in this technology require active, stable, and inexpensive electrocatalysts to reduce overpotentials and accelerate OER and HER kinetics. 3d transition metal compounds are considered as ideal electrocatalysts for water splitting due to their excellent catalytic performance through precise control of their composition and structure. Among them, nickel-based compounds, such as nickel selenide, with unique electronic structures, inexpensive and readily available, have been explored as OER and HER electrocatalysts.
然而,硒化镍材料在电催化水分解时较高的过电位增加了能量消耗,长期使用后结构上易于变化,限制了其在电催化水分解上的实际应用。异质阳离子掺杂硒化镍可以调节其电子结构,增加暴露的活性位,能显著提升OER和全水分解性能。硒化物中,Ni3Se4比其他硒化物如NiSe和NiSe2具有更高的导电性,具有提高电催化水分解活性的潜力。但关于化学掺杂的Ni3Se4用于电催化全水分解应用的鲜有报道。因此精心构建一种明确的阳离子掺杂的Ni3Se4纳米结构,调控形貌和电子结构,增强导电性增加活性位以实现突出的电催化水分解活性和稳定性具有重要的意义。However, the high overpotential of nickel selenide in electrocatalytic water splitting increases energy consumption, and the structure is prone to change after long-term use, limiting its practical application in electrocatalytic water splitting. Heterocationic doping of nickel selenide can tune its electronic structure and increase the exposed active sites, which can significantly improve the OER and total water splitting performance. Among the selenides, Ni3Se4 has higher conductivity than other selenides such as NiSe and NiSe2 , and has the potential to improve the electrocatalytic water splitting activity. However, there are few reports on chemically doped Ni3Se4 for electrocatalytic total water splitting applications. Therefore, it is of great significance to carefully construct a well-defined cation - doped Ni3Se4 nanostructure, modulate the morphology and electronic structure, enhance the conductivity and increase the active sites to achieve outstanding electrocatalytic water splitting activity and stability.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种Fe掺杂四硒化三镍纳米棒/纳米片分级阵列结构材料及其制备方法,利用低温液相合成法,以泡沫镍为导电基底合成Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料,该合成方法简单、成本低。The purpose of the present invention is to provide a Fe-doped three-nickel tetraselenide nanorod/nanosheet hierarchical array structure material and a preparation method thereof. The low-temperature liquid phase synthesis method is used to synthesize Fe-doped Ni 3 Se with foamed nickel as a conductive substrate. 4. The nanorod/nanosheet hierarchical array structure material, the synthesis method is simple and the cost is low.
本发明还提供了一种Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料作为析氧反应(OER)、析氢反应(HER)或全水分解反应电催化剂的应用。The invention also provides the application of an Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure material as an electrocatalyst for oxygen evolution reaction (OER), hydrogen evolution reaction (HER) or total water splitting reaction.
本发明提供的一种Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料的制备方法,包括以下步骤:The present invention provides a preparation method of Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure material, comprising the following steps:
(1)将Se粉和还原剂溶解在氨水和去离子水的混合溶液中,超声搅拌,获得溶液A,然后将溶液A转移至反应釜中,把泡沫镍倾斜置于溶液A中,进行水热反应,自然冷却至室温,洗涤、干燥,制得有前驱体的泡沫镍;(1) Se powder and reducing agent are dissolved in the mixed solution of ammoniacal liquor and deionized water, ultrasonically stir, obtain solution A, then solution A is transferred in the reaction kettle, foam nickel is inclined and placed in solution A, carry out water Thermal reaction, naturally cooled to room temperature, washed and dried to obtain nickel foam with precursor;
(2)将铁盐溶解于乙醇和NaClO的混合溶液中,获得溶液B,然后将溶液B转移至反应釜中,把步骤(1)制备的有前驱体的泡沫镍斜放在溶液B中,进行溶剂热反应,待反应结束后自然冷却至室温,洗涤、干燥,制得Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料。(2) iron salt is dissolved in the mixed solution of ethanol and NaClO to obtain solution B, then solution B is transferred to the reactor, the nickel foam with precursor prepared in step (1) is placed obliquely in solution B, The solvothermal reaction is carried out, and after the reaction is finished, it is naturally cooled to room temperature, washed and dried to prepare the Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure material.
进一步地,步骤(1)中,所述Se粉和还原剂的物质的量之比为1:2.3-2.8,优选为1:2.5。Further, in step (1), the material ratio of the Se powder and the reducing agent is 1:2.3-2.8, preferably 1:2.5.
所述还原剂为NaBH4;所述铁盐为Fe(NO3)3·9H2O。The reducing agent is NaBH 4 ; the iron salt is Fe(NO 3 ) 3 ·9H 2 O.
步骤(1)中,所述氨水和去离子水的体积比为5-15:35-25;所述硒粉在溶液A中的浓度为20-30mM,优选为25mM。In step (1), the volume ratio of the ammonia water and deionized water is 5-15:35-25; the concentration of the selenium powder in the solution A is 20-30 mM, preferably 25 mM.
步骤(1)中,所述水热反应的条件为120℃下反应8-12h,优选为120℃反应8h。In step (1), the conditions of the hydrothermal reaction are 8-12 hours at 120°C, preferably 8 hours at 120°C.
步骤(1)中,所述泡沫镍使用前需进行清洗,具体清洗方法为:先用6M盐酸浸泡15min除去外层的氧化膜,然后用去离子水和无水乙醇清洗,使用时裁剪成2×3cm大小。In step (1), the nickel foam needs to be cleaned before use, and the specific cleaning method is as follows: first soaking in 6M hydrochloric acid for 15min to remove the oxide film of the outer layer, then cleaning with deionized water and absolute ethanol, and cutting into 2 ×3cm size.
步骤(1)中,所述水热反应在聚四氟乙烯内衬的不锈钢反应釜中进行;所述洗涤为:先用去离子水洗涤3-5次,再用无水乙醇洗涤3-5次;所述干燥为:55-60℃真空干燥箱中干燥6-12h。In step (1), the hydrothermal reaction is carried out in a stainless steel reaction kettle lined with polytetrafluoroethylene; the washing is as follows: first wash with deionized water for 3-5 times, and then wash with absolute ethanol for 3-5 times. times; the drying is as follows: drying in a vacuum drying oven at 55-60°C for 6-12 hours.
步骤(2)中,所述铁盐在溶液B中的浓度为20-30mM,优选为25.8mM。In step (2), the concentration of the iron salt in solution B is 20-30 mM, preferably 25.8 mM.
步骤(2)中,所述乙醇和NaClO的体积之比为150~180:1,优选为160:1。In step (2), the volume ratio of the ethanol and NaClO is 150-180:1, preferably 160:1.
步骤(2)中,所述溶剂热反应的条件为140℃下反应4-8h,优选为140℃下反应6h。In step (2), the conditions of the solvothermal reaction are 4-8 hours at 140°C, preferably 6 hours at 140°C.
步骤(2)中,所述溶剂热反应在聚四氟乙烯内衬的不锈钢反应釜中进行;所述洗涤为:先用去离子水洗涤3-5次,再用无水乙醇洗涤3-5次;所述干燥为:55-60℃真空干燥箱中干燥6-12h。In step (2), the solvothermal reaction is carried out in a stainless steel reaction kettle lined with polytetrafluoroethylene; the washing is as follows: first wash with deionized water for 3-5 times, and then wash with absolute ethanol for 3-5 times. times; the drying is as follows: drying in a vacuum drying oven at 55-60°C for 6-12 hours.
本发明还提供了一种如上述制备方法制备得到的Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料,所述Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料的形貌为在平均直径为50~70nm的纳米棒上生长横向尺寸为180~200nm的纳米片.The present invention also provides a Fe-doped Ni 3 Se 4 nanorod/nano sheet hierarchical array structure material prepared by the above preparation method, wherein the Fe-doped Ni 3 Se 4 nanorod/nano sheet hierarchical array structure material has a The morphology is that nanosheets with lateral dimensions of 180 to 200 nm are grown on nanorods with an average diameter of 50 to 70 nm.
本发明还提供了所述Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料作为析氧反应(OER)或析氢反应(HER)或全水分解反应的电催化剂的应用。The present invention also provides the application of the Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure material as an electrocatalyst for oxygen evolution reaction (OER) or hydrogen evolution reaction (HER) or total water splitting reaction.
所述Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料作为析氧反应(OER)或析氢反应(HER)的电催化剂的应用时,具体方法为:以所述Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料作为工作电极,用铂丝(OER反应)或碳棒(HER反应)和Ag/AgCl电极分别作为对电极和参比电极,电解液为1.0M KOH溶液,使用CHI760E电化学工作站进行电化学测试。线性扫描极化曲线(LSV)在2.0mV·s-1的扫描速率下进行,欧姆补偿为90%。通过在恒定电压下测定电流密度时间曲线获得稳定性。电化学活性面积(ECSA)通过在无明显法拉第区域不同扫描速率下(2,4,6,8,10和12mV·s-1)循环伏安测量电化学双层电容(Cdl)进行评估;电化学阻抗(EIS)在100kHz至0.1Hz的频率范围内对开路电压进行测试。以商业RuO2和Pt/C负载在泡沫镍上作为电极,分别测试OER和HER的性能作为比较。When the Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure material is used as an electrocatalyst for oxygen evolution reaction (OER) or hydrogen evolution reaction (HER), the specific method is as follows: doping Ni 3 with Fe Se4 nanorod/nanosheet hierarchical array structure material was used as working electrode, platinum wire (OER reaction) or carbon rod (HER reaction) and Ag/AgCl electrode were used as counter electrode and reference electrode, respectively, and the electrolyte was 1.0M KOH solution , using CHI760E electrochemical workstation for electrochemical testing. Linear sweep polarization curves (LSV) were performed at a scan rate of 2.0 mV·s −1 with 90% ohmic compensation. Stability was obtained by measuring the current density time curve at constant voltage. Electrochemically active area (ECSA) was evaluated by cyclic voltammetry measurement of electrochemical double layer capacitance (C dl ) at different scan rates (2, 4, 6, 8, 10 and 12 mV·s -1 ) with no apparent Faradaic region; Electrochemical Impedance (EIS) tests for open circuit voltage over a frequency range of 100kHz to 0.1Hz. Commercial RuO 2 and Pt/C were supported on nickel foam as electrodes, and the performances of OER and HER were tested for comparison.
所述Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料作为全水分解反应的电催化剂的应用时,具体方法为:以所述Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料分别作为阳极和阴极组装在双电极电解槽中,测试90%欧姆补偿下的线性扫描极化曲线(LSV)和恒定电压下电流密度时间稳定性。作为对比,研究了双电极电解槽中负载在泡沫镍上的贵金属RuO2作为阳极和Pt/C作为阴极的LSV极化曲线。When the Fe-doped Ni 3 Se 4 nanorod/nano sheet hierarchical array structure material is used as an electrocatalyst for a total water splitting reaction, the specific method is as follows: using the Fe-doped Ni 3 Se 4 nanorod/nano sheet to grade The array structure materials were assembled in a two-electrode electrolytic cell as anode and cathode, respectively, and the linear sweep polarization curve (LSV) under 90% ohmic compensation and the time stability of current density under constant voltage were tested. As a comparison, the LSV polarization curves of noble metal RuO2 supported on nickel foam as anode and Pt/C as cathode in a two-electrode electrolytic cell were investigated.
本发明提供的Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料,Fe掺杂调节了Ni3Se4的电子结构,显著增强了材料的导电性和质量转移行为。Fe3+离子掺杂进入Ni3Se4晶格能够暴露更大的催化活性位,提高与电解液之间的实际接触界面面积,保证了快速的界面电荷转移,有利于电催化反应。金属阳离子通过晶格内部的d-d轨道交叠,实现电荷的离域化,增进路易斯酸性,促进水的吸附和活化,增加吸附氧的亲电性,随后通过亲核进攻形成O-OH物种,再进一步通过吸电子诱导效应去质子化产生O2。阳离子间电荷离域化为氧气可逆吸附提供供体-受体化学吸附位,有利于OER催化反应。在强碱性电解液中,催化剂表面在电解过程中形成了表面氧化物层或表面氢氧化物层是实际的活性位,表面下更高导电性的Fe掺杂Ni3Se4纳米棒/纳米片分级结构能够加速电极和金属氧化物或金属氢氧化物壳层之间的电子转移。与此同时,表面薄的氧化物壳层或氢氧化物壳层能够作为保护层稳定Fe掺杂Ni3Se4纳米棒/纳米片分级结构。原位形成的大量固固界面促进氧和氢中间体的化学吸附,不仅能够增进OER活性而且也能够增进HER行为,从而具有优异的全水分解电催化性能。In the Fe-doped Ni 3 Se 4 nanorod/nano sheet hierarchical array structure material provided by the invention, Fe doping adjusts the electronic structure of Ni 3 Se 4 and significantly enhances the electrical conductivity and mass transfer behavior of the material. The doping of Fe 3+ ions into the Ni 3 Se 4 lattice can expose larger catalytic active sites, increase the actual contact interface area with the electrolyte, and ensure fast interfacial charge transfer, which is beneficial to the electrocatalytic reaction. The metal cations overlap the dd orbitals inside the lattice to achieve charge delocalization, enhance Lewis acidity, promote the adsorption and activation of water, increase the electrophilicity of adsorbed oxygen, and then form O-OH species through nucleophilic attack. Further deprotonation by electron withdrawing induced effect produces O 2 . Intercationic charge delocalization provides donor-acceptor chemisorption sites for reversible oxygen adsorption, which is beneficial for OER-catalyzed reactions. In the strong alkaline electrolyte, the surface oxide layer or surface hydroxide layer formed on the surface of the catalyst during the electrolysis process is the actual active site, and Fe - doped Ni3Se4 nanorods/nanometers with higher conductivity under the surface are actually active sites. The sheet hierarchy can accelerate electron transfer between the electrode and the metal oxide or metal hydroxide shell. At the same time, the thin oxide shell or hydroxide shell on the surface can act as a protective layer to stabilize the Fe - doped Ni3Se4 nanorod/nanosheet hierarchical structure. The abundant solid-solid interface formed in situ promotes the chemisorption of oxygen and hydrogen intermediates, which can not only enhance the OER activity but also the HER behavior, resulting in excellent electrocatalytic performance for total water splitting.
与现有技术比,本发明通过简单的化学液相法,用NaBH4还原Se粉形成Se2-离子,与泡沫镍表面的Ni反应生成NiSe种子,在氨水分子的配位作用下,NiSe种子取向生长获得硒化镍纳米棒前驱物。进一步ClO-离子将NiSe中的Ni2+部分氧化成Ni3+,形成Ni3Se4,纳米棒部分溶解外延生长成纳米片结构,同时Fe3+离子耦合进入Ni3Se4晶格中,原位合成了Fe3+离子掺杂的Ni3Se4纳米棒/纳米片分级阵列结构。本发明所提供的OER、HER和全水分解电催化剂材料的应用,具有高电流密度下过电位低,稳定性好以及制备工艺环境友好,简单,成本低廉的特点。Compared with the prior art, the present invention adopts a simple chemical liquid phase method to reduce Se powder with NaBH 4 to form Se 2- ions, which react with Ni on the surface of foamed nickel to generate NiSe seeds. Orientation growth to obtain nickel selenide nanorod precursors. Further ClO - ions oxidize Ni 2+ in NiSe to Ni 3+ to form Ni 3 Se 4 , the nanorods are partially dissolved and epitaxially grown into nano-sheet structure, and Fe 3+ ions are coupled into the Ni 3 Se 4 lattice at the same time. In situ synthesis of Fe3 + ion - doped Ni3Se4 nanorod/nanosheet hierarchical array structure. The application of the OER, HER and total water splitting electrocatalyst material provided by the present invention has the characteristics of low overpotential under high current density, good stability, environment-friendly preparation process, simplicity and low cost.
附图说明Description of drawings
图1为实施例1制备的前驱物NiSe纳米棒阵列结构材料的X-射线粉末衍射(XRD)图;1 is an X-ray powder diffraction (XRD) pattern of the precursor NiSe nanorod array structure material prepared in Example 1;
图2为实施例1制备的Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料的X-射线粉末衍射(XRD)图;2 is an X-ray powder diffraction (XRD) pattern of the Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure material prepared in Example 1;
图3为实施例1制备的前驱物NiSe纳米棒阵列结构材料的扫描电子显微镜(SEM)图;3 is a scanning electron microscope (SEM) image of the precursor NiSe nanorod array structure material prepared in Example 1;
图4为实施例1制备的Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料的扫描电子显微镜(SEM)图;4 is a scanning electron microscope (SEM) image of the Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure material prepared in Example 1;
图5为实施例1制备的Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料的能量色散X射线(EDX)光谱;5 is an energy dispersive X-ray (EDX) spectrum of the Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure material prepared in Example 1;
图6为实施例1制备的Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料的透射电子显微镜(TEM)图;6 is a transmission electron microscope (TEM) image of the Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure material prepared in Example 1;
图7为实施例1制备的Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料的高分辨晶格条纹(HRTEM)图像;7 is a high-resolution lattice fringe (HRTEM) image of the Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure material prepared in Example 1;
图8为比较例1制备的Fe掺杂NiSe纳米棒阵列结构材料的扫描电子显微镜(SEM)图;8 is a scanning electron microscope (SEM) image of the Fe-doped NiSe nanorod array structure material prepared in Comparative Example 1;
图9为实施例1制备的Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构和比较例1制备的Fe掺杂NiSe纳米棒阵列结构的OER极化曲线。9 shows the OER polarization curves of the Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure prepared in Example 1 and the Fe-doped NiSe nanorod array structure prepared in Comparative Example 1.
图10为实施例1制备的Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构和比较例1制备的Fe掺杂NiSe纳米棒阵列结构的HER极化曲线。10 shows the HER polarization curves of the Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure prepared in Example 1 and the Fe-doped NiSe nanorod array structure prepared in Comparative Example 1.
图11为实施例2中Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料OER的线性极化曲线图(插图为高电流密度下的极化曲线);11 is a linear polarization curve diagram of the Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure material OER in Example 2 (the inset is the polarization curve at high current density);
图12为实施例2中Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料OER的电流密度时间曲线图;12 is a current density time curve diagram of Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure material OER in Example 2;
图13为实施例2中Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料在不同扫速下的电容电流图;Fig. 13 is the capacitive current diagram of Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure material under different scanning speeds in Example 2;
图14为实施例2中Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料的阻抗图;Fig. 14 is the impedance diagram of Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure material in Example 2;
图15为实施例3中Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料HER的线性极化曲线图(插图为高电流密度下的极化曲线);15 is a linear polarization curve diagram of Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure material HER in Example 3 (the inset is the polarization curve at high current density);
图16为实施例3中Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料HER的电流密度时间曲线图;16 is a current density time curve diagram of Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure material HER in Example 3;
图17为实施例4中Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料在两电极***中全水分解的极化曲线图(插图为高电流密度下的极化曲线);17 is a polarization curve diagram of the Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure material in the two-electrode system for total water splitting in Example 4 (the inset is the polarization curve at high current density);
图18为实施例4中Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料在两电极***中全水分解的电流密度时间曲线图;18 is a current density-time curve diagram of the total water splitting of Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure material in a two-electrode system in Example 4;
图19为实施例5中Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料用一节1.5V干电池驱动的图(插图为两电极放大的图)。19 is a diagram of Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure material in Example 5 driven by a 1.5V dry cell (the inset is an enlarged diagram of two electrodes).
具体实施方式Detailed ways
下面结合实施例和说明书附图对本发明进行详细说明。The present invention will be described in detail below with reference to the embodiments and the accompanying drawings.
实施例1Example 1
一种Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料的制备方法,包括以下步骤:A preparation method of Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure material, comprising the following steps:
(1)将一片面积为2×3cm的泡沫镍(NF)放入6M盐酸中浸泡15min,然后用去离子水和无水乙醇各洗涤3次。量取15mL氨水加入25mL去离子水中,搅拌均匀后,准确称取1mmolSe粉和2.5mmol NaBH4加入上述混合溶液,超声搅拌30min,然后将红褐色溶液转移到50mL的聚四氟乙烯为内衬的不锈钢反应釜中,把预先处理好的泡沫镍斜放入溶液中,在120℃烘箱中反应8h。待反应结束后自然冷却至室温,将黑色样品覆盖的泡沫镍A1用去离子水及无水乙醇各清洗3遍,得到的前驱物样品放在真空干燥箱中60℃干燥10h。(1) A piece of nickel foam (NF) with an area of 2 × 3 cm was soaked in 6M hydrochloric acid for 15 min, and then washed three times with deionized water and absolute ethanol each. Measure 15mL of ammonia water and add it to 25mL of deionized water. After stirring evenly, accurately weigh 1mmolSe powder and 2.5mmol NaBH4 into the above mixed solution, ultrasonically stir for 30min, then transfer the reddish-brown solution to 50mL of polytetrafluoroethylene as a liner. In a stainless steel reaction kettle, the pre-treated nickel foam was inclined into the solution and reacted in an oven at 120°C for 8h. After the reaction was completed, it was naturally cooled to room temperature, and the nickel foam A1 covered by the black sample was washed three times with deionized water and absolute ethanol each, and the obtained precursor sample was dried in a vacuum drying box at 60 °C for 10 h.
(2)先量取40mL无水乙醇加入洁净的小烧杯中,再移取0.25mL次氯酸钠溶液加入无水乙醇中,搅拌均匀;称取1mmol Fe(NO3)3·9H2O加入上述混合溶液,搅拌溶解后,将溶液转移至50mL聚四氟乙烯为内衬的不锈钢反应釜中,然后把泡沫镍A1斜放入溶液中,在140℃烘箱中反应8h。待反应完全后自然冷却至室温,将覆盖样品的泡沫镍用去离子水及无水乙醇各清洗3遍,得到的样品A2放在真空干燥箱中60℃干燥10h,即可得到Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料。(2)
产物的结构和形貌表征:Structural and morphological characterization of the product:
用X-射线粉末衍射仪(XRD)对实施例1所得前驱物和最终产物进行物相鉴定,分别如图1、2所示。图1表明前驱物为六方相NiSe(JCPDS no.75-0610)和正交相NiSe(JCPDSno.29-0935)的混合相。图2表明,最终产物上所有的衍射峰与单斜晶系Ni3Se4吻合(JCPDSno.18-0890)。Phase identification of the precursor and final product obtained in Example 1 was carried out by using an X-ray powder diffractometer (XRD), as shown in Figures 1 and 2, respectively. Figure 1 shows that the precursor is a mixed phase of hexagonal NiSe (JCPDS no. 75-0610) and orthorhombic NiSe (JCPDS no. 29-0935). Figure 2 shows that all the diffraction peaks on the final product are consistent with the monoclinic Ni 3 Se 4 (JCPDS no. 18-0890).
用扫描电子显微镜(SEM)对实施例1所得前驱物和最终产物进行形貌分析,分别如图3、4所示。图3表明前驱物为纳米棒阵列结构,图4表明最终样品为大小一致,分布均匀的纳米棒/纳米片分级结构。Scanning electron microscope (SEM) was used to analyze the morphology of the precursor and final product obtained in Example 1, as shown in Figures 3 and 4, respectively. Figure 3 shows that the precursor is a nanorod array structure, and Figure 4 shows that the final sample is a hierarchical structure of nanorods/nanosheets with uniform size and uniform distribution.
采用能量色散X射线(EDX)光谱对最终产物成分进行分析。如图5所示,Fe元素成功地耦合到样品中,根据原子百分比计算出Fe元素的掺杂量为4.6%。The final product composition was analyzed using energy dispersive X-ray (EDX) spectroscopy. As shown in Fig. 5, Fe element was successfully coupled into the sample, and the doping amount of Fe element was calculated to be 4.6% based on atomic percentage.
最终产物的透射电子显微镜(TEM)图像如图6所示,表明纳米棒的直径为50-70nm,纳米片的横向尺寸为180-200nm。The transmission electron microscope (TEM) image of the final product is shown in Fig. 6, indicating that the diameter of the nanorods is 50-70 nm and the lateral dimension of the nanosheets is 180-200 nm.
最终产物的高分辨透射电子显微镜(HRTEM)图像如图7所示,晶面间距为0.22nm,对应于Ni3Se4的(211)晶面。The high-resolution transmission electron microscope (HRTEM) image of the final product is shown in Fig. 7 , with the interplanar spacing of 0.22 nm, corresponding to the (211) plane of Ni3Se4 .
比较例1Comparative Example 1
(1)将1mmol Se粉和2.5mmol NaBH4溶解在15mL氨水和25mL去离子水的混合溶液中,超声搅拌30min,获得溶液A,然后将溶液A转移至50mL聚四氟乙烯为内衬的不锈钢反应釜中,把泡沫镍倾斜置于溶液A中,在120℃烘箱中反应8h。待反应结束后自然冷却至室温,将黑色样品覆盖的泡沫镍A1用去离子水及无水乙醇各清洗3遍,得到的前驱物样品放在真空干燥箱中60℃干燥10h;( 1 ) Dissolve 1mmol Se powder and 2.5mmol NaBH in a mixed solution of 15mL ammonia water and 25mL deionized water, stir ultrasonically for 30min to obtain solution A, then transfer solution A to 50mL polytetrafluoroethylene lined stainless steel In the reaction kettle, the foamed nickel was placed in solution A at an angle, and reacted in an oven at 120 °C for 8 h. After the reaction was completed, it was naturally cooled to room temperature, and the nickel foam A 1 covered by the black sample was washed three times with deionized water and absolute ethanol each, and the obtained precursor sample was dried in a vacuum drying box at 60 °C for 10 h;
(2)将1mmol Fe(NO3)3·9H2O溶解于40mL无水乙醇中,获得溶液B,然后将溶液B转移至50mL聚四氟乙烯为内衬的不锈钢反应釜中,把步骤(1)制备的有前驱体的泡沫镍斜放在溶液B中,在140℃烘箱中反应8h,待反应结束后自然冷却至室温,洗涤、干燥,制得Fe掺杂NiSe纳米棒阵列结构材料。(2) 1mmol Fe(NO 3 ) 3.9H 2 O was dissolved in 40mL of absolute ethanol to obtain solution B, and then solution B was transferred to 50mL of polytetrafluoroethylene as a lined stainless steel reactor, and the step ( 1) The prepared nickel foam with precursor was placed obliquely in solution B, reacted in a 140°C oven for 8 hours, cooled to room temperature naturally after the reaction, washed and dried to obtain Fe-doped NiSe nanorod array structure material.
用扫描电子显微镜(SEM)对比较例1所得最终产物进行形貌分析。图8表明最终产物为纳米棒阵列结构。The final product obtained in Comparative Example 1 was subjected to morphological analysis by scanning electron microscope (SEM). Figure 8 shows that the final product is a nanorod array structure.
图9为实施例1得到的Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构和比较例1得到的Fe掺杂NiSe纳米棒阵列结构的OER极化曲线。表明Fe掺杂Ni3Se4样品优于Fe掺杂NiSe样品。9 shows the OER polarization curves of the Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure obtained in Example 1 and the Fe-doped NiSe nanorod array structure obtained in Comparative Example 1. It shows that the Fe-doped Ni 3 Se 4 sample is better than the Fe-doped NiSe sample.
图10为实施例1得到的Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构和比较例1得到的Fe掺杂NiSe纳米棒阵列结构的OER极化曲线。表明Fe掺杂Ni3Se4样品优于Fe掺杂NiSe样品。10 is the OER polarization curves of the Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure obtained in Example 1 and the Fe-doped NiSe nanorod array structure obtained in Comparative Example 1. It shows that the Fe-doped Ni 3 Se 4 sample is better than the Fe-doped NiSe sample.
实施例2Example 2
一种Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料作为析氧反应(OER)催化剂的应用。Application of a Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure material as an oxygen evolution reaction (OER) catalyst.
具体应用方法为:使用面积为0.5×0.5cm的Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料作为工作电极,用铂丝和Ag/AgCl电极分别作为对电极和参比电极。在1.0M KOH电解质溶液中使用CHI760E电化学工作站在室温(25℃)下进行电化学测试。以商业RuO2负载电极为基准,比较OER性能。采用线性扫描伏安法(LSV)在2.0mV·s-1的扫描速率且欧姆补偿为90%下获得极化曲线。如图11所示,Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构具有显著的OER活性,仅需220mV低的过电位就能达到100mA·cm-2的电流密度,分别比NiSe纳米棒(其为实施例1中的步骤(1)制备的前驱体)和商业RuO2催化剂的过电位小99mV和73mV;此外,Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构可以在253mV和264mV相当小的过电位下达到500mA·cm-2和800mA·cm-2的大电流密度。图12的电流密度时间曲线表明Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构在低、高电流密度下均表现出良好的稳定性,经过11h的测试后,电流密度均保持在96.8%以上。图13为不同扫速下的电容电流图,表明Fe掺杂Ni3Se4双电层电容为3.4mF·cm-2,大于NiSe的1.9mF·cm-2,因此Fe掺杂Ni3Se4具有更大的电化学活性面积。图14的电化学阻抗(EIS)图表明Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构的半圆直径小,直线斜率大,说明其电阻小,具有更快速的催化动力学。The specific application method is as follows: Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure material with an area of 0.5×0.5 cm is used as the working electrode, and platinum wire and Ag/AgCl electrode are used as the counter electrode and the reference electrode, respectively. Electrochemical tests were performed at room temperature (25°C) using a CHI760E electrochemical workstation in 1.0M KOH electrolyte solution. OER performance was compared against a commercial RuO2 loaded electrode. Polarization curves were obtained using linear sweep voltammetry (LSV) at a scan rate of 2.0 mV·s −1 and an ohmic compensation of 90%. As shown in Fig. 11, the Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure exhibits remarkable OER activity, and only requires a low overpotential of 220 mV to reach a current density of 100 mA cm -2 , which is higher than that of NiSe nanostructures, respectively. The overpotentials of rods (which are the precursors prepared in step (1) in Example 1 ) and commercial RuO catalysts are 99 mV and 73 mV smaller; in addition, the Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure can be Large current densities of 500 mA·cm -2 and 800 mA·cm -2 were achieved at relatively small overpotentials of 253 mV and 264 mV. The current density time curve in Fig. 12 shows that the Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure exhibits good stability at both low and high current densities. After 11h of testing, the current density remains at 96.8 %above. Fig. 13 shows the capacitance-current graphs at different scan rates, indicating that the electric double layer capacitance of Fe-doped Ni 3 Se 4 is 3.4 mF·cm -2 , which is greater than 1.9 mF·cm -2 of NiSe, so Fe-doped Ni 3 Se 4 has a capacitance of 3.4 mF·cm -2 . Has a larger electrochemically active area. The electrochemical impedance (EIS) diagram of FIG. 14 shows that the Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure has a small semicircle diameter and a large straight line slope, indicating its small resistance and faster catalytic kinetics.
实施例3Example 3
一种Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料作为析氢反应(HER)催化剂的应用。Application of a Fe - doped Ni3Se4 nanorod/nanosheet hierarchical array structure material as a hydrogen evolution reaction (HER) catalyst.
具体应用方法为:使用面积为0.5×0.5cm的Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料作为工作电极,用碳棒和Ag/AgCl电极分别作为对电极和参比电极。在1.0M KOH电解质溶液中使用CHI760E电化学工作站在室温(25℃)下进行电化学测试。采用线性扫描伏安法(LSV)在2.0mV·s-1的扫描速率且欧姆补偿为90%下获得。如图15所示,Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构具有出色的HER活性,仅需要153mV的低电位就能达到10mA·cm-2的电流密度,优于NiSe纳米棒的182mV。尽管商业Pt/C电极在低电流密度下具有更低的过电位,但在高电流密度下,材料极易脱落而影响活性。此外,Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构可以在233mV和269mV相当小的过电位下达到100mA·cm-2和500mA·cm-2的大电流密度。图16的电流密度时间曲线显示Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构在低、高电流密度下均显示出优异的稳定性,经过11h的测试后,电流密度均保持在96.2%以上。The specific application method is as follows: Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure material with an area of 0.5×0.5 cm is used as the working electrode, and the carbon rod and Ag/AgCl electrode are used as the counter electrode and the reference electrode, respectively. Electrochemical tests were performed at room temperature (25°C) using a CHI760E electrochemical workstation in 1.0M KOH electrolyte solution. Obtained using linear sweep voltammetry (LSV) at a scan rate of 2.0 mV·s −1 and an ohmic compensation of 90%. As shown in Fig. 15, the Fe - doped Ni3Se4 nanorod/nanosheet hierarchical array structure has excellent HER activity, only requiring a low potential of 153mV to achieve a current density of 10 mA cm -2 , which is superior to that of NiSe nanorods of 182mV. Although commercial Pt/C electrodes have lower overpotentials at low current densities, at high current densities, the material is easily exfoliated and affects the activity. Furthermore, the Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure can achieve large current densities of 100 mA·cm −2 and 500 mA·cm −2 with rather small overpotentials of 233 mV and 269 mV. The current density time curve in Fig. 16 shows that the Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure exhibits excellent stability at both low and high current densities. After 11h of testing, the current density remains at 96.2 %above.
实施例4Example 4
一种Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料作为全水分解反应电催化剂的应用。Application of a Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure material as an electrocatalyst for the total water splitting reaction.
具体应用方法为:将2个面积为0.5×0.5cm的Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料分别作为阴极和阳极组装在双电极电解槽中,在1.0M KOH电解质溶液中测试全水分解性能。采用线性扫描伏安法(LSV)在2.0mV·s-1的扫描速率且欧姆补偿为90%下获得极化曲线。如图17所示,Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料具有优异的电催化全水分解活性,在1.58V的电压下就能达到10mA·cm-2的电流密度,仅需要1.94V的电压就能驱动500mA·cm-2的大电流密度。尽管商业RuO2和Pt/C组成的电对在低电流密度下活性稍高,但因材料极易脱落而无法达到500mA·cm-2的大电流密度。图18的电流密度时间曲线表明Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构在低、高电流密度下均表现出良好的稳定性,经过11h的测试后,电流密度均保持在93.5%以上。The specific application method is as follows: 2 Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure materials with an area of 0.5 × 0.5 cm were assembled in a two-electrode electrolytic cell as cathode and anode, respectively, in a 1.0 M KOH electrolyte solution. The total water splitting performance was tested in . Polarization curves were obtained using linear sweep voltammetry (LSV) at a scan rate of 2.0 mV·s −1 and an ohmic compensation of 90%. As shown in Fig. 17, the Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure material has excellent electrocatalytic activity for total water splitting, which can reach a current density of 10 mA cm -2 at a voltage of 1.58 V. Only a voltage of 1.94V is required to drive a large current density of 500mA·cm -2 . Although the pair composed of commercial RuO 2 and Pt/C is slightly more active at low current densities, the high current density of 500 mA·cm -2 cannot be achieved due to the material's easy exfoliation. The current density time curve in Figure 18 shows that the Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure exhibits good stability at low and high current densities. After 11h of testing, the current density remains at 93.5 %above.
实施例5Example 5
将本发明制备的一种Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料剪成2个1×1cm大小,分别作为阴极和阳极组装在电解槽中,电解质溶液为1.0MKOH,用一节1.5V的干电池带动其工作,结果如图19所示。两电极上均可以持续产生气泡,证明Fe掺杂Ni3Se4纳米棒/纳米片分级阵列结构材料可以使用低电压持续驱动全水分解。A Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure material prepared by the present invention is cut into two pieces of 1×1 cm in size, which are respectively used as cathodes and anodes and assembled in an electrolytic cell. The electrolyte solution is 1.0MKOH, with A 1.5V dry battery drives it to work, and the result is shown in Figure 19. Bubbles can be continuously generated on both electrodes, proving that the Fe-doped Ni 3 Se 4 nanorod/nanosheet hierarchical array structure material can continuously drive total water splitting using low voltage.
上述参照实施例对一种Fe掺杂四硒化三镍纳米棒/纳米片分级阵列结构材料、制备方法及其应用进行的详细描述,是说明性的而不是限定性的,可按照所限定范围列举出若干个实施例,因此在不脱离本发明总体构思下的变化和修改,应属本发明的保护范围之内。The above-mentioned detailed description of a Fe-doped nickel tetraselenide nanorod/nanosheet hierarchical array structure material, preparation method and application thereof with reference to the examples is illustrative rather than restrictive, and can be used according to the limited scope. Several embodiments are listed, so changes and modifications without departing from the general concept of the present invention should fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910521779.4A CN110280275B (en) | 2019-06-17 | 2019-06-17 | Fe-doped trinickel selenide nanorod/nanosheet hierarchical array structure material, preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910521779.4A CN110280275B (en) | 2019-06-17 | 2019-06-17 | Fe-doped trinickel selenide nanorod/nanosheet hierarchical array structure material, preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110280275A CN110280275A (en) | 2019-09-27 |
CN110280275B true CN110280275B (en) | 2022-04-12 |
Family
ID=68005362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910521779.4A Expired - Fee Related CN110280275B (en) | 2019-06-17 | 2019-06-17 | Fe-doped trinickel selenide nanorod/nanosheet hierarchical array structure material, preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110280275B (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110823971B (en) * | 2019-11-20 | 2022-04-22 | 哈尔滨工业大学 | A kind of preparation method of flower-like structure NiSe2 and its application |
CN111020626B (en) * | 2019-12-09 | 2021-03-16 | 北京工业大学 | A kind of preparation method and application of 3D nanosheet-nanorod mixed structure nickel molybdenum oxide |
CN113512738B (en) * | 2021-06-24 | 2022-07-05 | 湖南师范大学 | Ternary iron-nickel-molybdenum-based composite material water electrolysis catalyst, and preparation method and application thereof |
CN113789535B (en) * | 2021-10-09 | 2022-11-01 | 华中科技大学 | Rod-shaped ruthenium particle/selenide composite catalyst and preparation method and application thereof |
CN114016073B (en) * | 2021-10-25 | 2023-12-19 | 吉林师范大学 | A preparation method for Fe-doped Ni0.85Se nanosheet array electrocatalyst |
CN114059082B (en) * | 2021-11-30 | 2024-03-19 | 安徽理工大学 | N, P co-doped NF@NiMoO 4 Hollow nanowire composite material and preparation method and application thereof |
CN114724866A (en) * | 2022-03-11 | 2022-07-08 | 上海健康医学院 | Binder-free vanadium-doped nickel selenide nano array material and preparation method and application thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009019565A1 (en) * | 2009-05-02 | 2010-11-04 | Cfso Gmbh | Catalyst system and process for the photolysis of water |
CN104117366A (en) * | 2014-07-21 | 2014-10-29 | 安徽师范大学 | ZnO/ZnSe heterogeneous nanometer array structure material, preparation method and application of ZnO/ZnSe heterogeneous nanometer array structure material |
CN105753217A (en) * | 2016-04-11 | 2016-07-13 | 镇江市和云工业废水处置有限公司 | Nickel cyanide-containing wastewater treatment technology |
CN107818873A (en) * | 2017-10-10 | 2018-03-20 | 安阳师范学院 | Cellular nickelous selenide nano-chip arrays electrode material and preparation method thereof |
-
2019
- 2019-06-17 CN CN201910521779.4A patent/CN110280275B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009019565A1 (en) * | 2009-05-02 | 2010-11-04 | Cfso Gmbh | Catalyst system and process for the photolysis of water |
CN104117366A (en) * | 2014-07-21 | 2014-10-29 | 安徽师范大学 | ZnO/ZnSe heterogeneous nanometer array structure material, preparation method and application of ZnO/ZnSe heterogeneous nanometer array structure material |
CN105753217A (en) * | 2016-04-11 | 2016-07-13 | 镇江市和云工业废水处置有限公司 | Nickel cyanide-containing wastewater treatment technology |
CN107818873A (en) * | 2017-10-10 | 2018-03-20 | 安阳师范学院 | Cellular nickelous selenide nano-chip arrays electrode material and preparation method thereof |
Non-Patent Citations (3)
Title |
---|
"An Fe-doped nickel selenide nanorod/nanosheet hierarchical array for efficient overall water splitting";Zexian Zou et al.;《Journal of Materials Chemistry A》;20181221;第7卷;第2、4节 * |
"Hierarchical Fe-doped Ni3Se4 ultrathin nanosheets as an efficient electrocatalyst for oxygen evolution reaction";Jing Du et al.;《Nanoscale》;20180206;第10卷;第5164页左栏第1段、右栏第2段 * |
"不同镍基硒化物的可控制备及其析氢催化性能对比研究";王晓雪 等;《"一带一路,引领西部发展"——2017年中西部地区无机化学化工学术研讨会论文摘要》;20170428;第318页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110280275A (en) | 2019-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110280275B (en) | Fe-doped trinickel selenide nanorod/nanosheet hierarchical array structure material, preparation method and application thereof | |
CN110227496B (en) | Microspherical Fe-doped nickel disulfide nanostructure material composed of nanosheets, preparation method and application | |
Xu et al. | Charge transfer engineering via multiple heteroatom doping in dual carbon-coupled cobalt phosphides for highly efficient overall water splitting | |
Xu et al. | Template-directed assembly of urchin-like CoS x/Co-MOF as an efficient bifunctional electrocatalyst for overall water and urea electrolysis | |
CN111883367B (en) | Cu-doped cobalt hydroxide nanosheet array structure material and preparation method and application thereof | |
CN111871426A (en) | Pd nanoparticle-loaded nickel-iron double hydroxide nanosheet array structure material, preparation method and application thereof | |
Liu et al. | Ultrathin WS2 nanosheets vertically aligned on TiO2 nanobelts as efficient alkaline hydrogen evolution electrocatalyst | |
CN110479328B (en) | Fe-doped cobalt hydroxyphosphite nanosheet array structure material and preparation method and application thereof | |
Yan et al. | Defects-rich nickel nanoparticles grown on nickel foam as integrated electrodes for electrocatalytic oxidation of urea | |
Hu et al. | Urchin-like non-precious-metal bifunctional oxygen electrocatalysts: Boosting the catalytic activity via the In-situ growth of heteroatom (N, S)-doped carbon nanotube on mesoporous cobalt sulfide/carbon spheres | |
Shen et al. | Highly active bifunctional catalyst: Constructing FeWO4-WO3 heterostructure for water and hydrazine oxidation at large current density | |
Zhang et al. | Ni3S2-MoSx nanorods grown on Ni foam as high-efficient electrocatalysts for overall water splitting | |
Zhang et al. | A nickel molybdenum oxide nanoarray as an efficient and stable electrocatalyst for overall water splitting | |
CN110721749B (en) | NiCo coated with metal organic framework structure derived carbon composite2S4Nanowire array-shaped electrocatalyst and preparation method thereof | |
CN114318407A (en) | 1T-MoS for electrocatalytic hydrogen evolution2Catalyst with NiS heterogeneous interface structure and preparation method and application thereof | |
Feng et al. | Modulation electronic structure of NiS nanoarray induced by Fe, V doping for high efficiency water and urea electrolysis | |
Yang et al. | Electron induced construction of heterogeneous MoS2 for highly efficient hydrogen evolution reaction | |
Wang et al. | Electrochemical fabrication of FeS x films with high catalytic activity for oxygen evolution | |
CN115072674B (en) | A kind of sulfur ion doped copper selenide honeycomb flexible nanosheet array structure material, preparation method and application | |
Du et al. | Swapping catalytic active sites from cationic Ni to anionic F in Fe–F–Ni3S2 enables more efficient alkaline oxygen evolution reaction and urea oxidation reaction | |
Du et al. | Facile synthesis of MWO4 (M= Co, Ni, Zn and Cu) nanoarrays for efficient urea oxidation | |
Zhang et al. | Flower-like nanosheets directly grown on Co foil as efficient bifunctional catalysts for overall water splitting | |
He | Role of Zr in promoted activity of urea oxidation reaction and oxygen evolution reaction for NiFe layered double hydroxide | |
CN111822000A (en) | A kind of Pt nanoparticle supported molybdenum dioxide/nickel hydroxide nanosheet array structure material and its preparation method and application | |
CN108321388B (en) | Synthesis method of nickel-doped iron disulfide nanowire array structure on titanium substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220412 |
|
CF01 | Termination of patent right due to non-payment of annual fee |