CN110276109B - 一种高超声速飞行器等离子体鞘套电磁特性的仿真方法 - Google Patents

一种高超声速飞行器等离子体鞘套电磁特性的仿真方法 Download PDF

Info

Publication number
CN110276109B
CN110276109B CN201910472857.6A CN201910472857A CN110276109B CN 110276109 B CN110276109 B CN 110276109B CN 201910472857 A CN201910472857 A CN 201910472857A CN 110276109 B CN110276109 B CN 110276109B
Authority
CN
China
Prior art keywords
plasma
current density
boundary
vector
follows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910472857.6A
Other languages
English (en)
Other versions
CN110276109A (zh
Inventor
李猛猛
胡燕萌
陈如山
周仕浩
李帅帅
周全恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201910472857.6A priority Critical patent/CN110276109B/zh
Publication of CN110276109A publication Critical patent/CN110276109A/zh
Application granted granted Critical
Publication of CN110276109B publication Critical patent/CN110276109B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Plasma Technology (AREA)

Abstract

本发明公开了一种高超声速飞行器等离子体鞘套电磁特性的仿真方法。该方法为:首先根据高超声速飞行器的几何外形及飞行参数进行流体仿真,由仿真信息确定施加电磁场条件下空间各处的等离子体碰撞频率、等离子体震荡频率及电子回旋频率参数;然后提取等离子体目标的网格文件,设置入射电磁波参数;接着使用等离子体的迭代方法计算区域内等离子体介质部分的电流密度,使用磁场边界条件计算等离子体介质与空气分界面处的电流密度,使用电流密度矢量单步更新公式进行迭代更新;最后通过分析时域波形获得等离子体电磁特性。本发明具有编程简单、计算效率高的优点,实现了对高超声速飞行器等离子体鞘套的高效分析。

Description

一种高超声速飞行器等离子体鞘套电磁特性的仿真方法
技术领域
本发明涉及电磁仿真技术领域,特别是一种高超声速飞行器等离子体鞘套电磁特性的仿真方法。
背景技术
当飞行器超高声速飞行时,飞行器表面与空气产生激烈的摩擦,并且挤压周围空气,飞行器附近的空气处于粘滞状态,形成一个几千开氏温度的高温区域,使周边空气发生电离,形成高温高压等离子体鞘套。一般情况下,等离子体鞘套中的电子密度可达到1016~1018m-3。高电子数密度会对飞行器的通讯造成严重的负面影响,所以需要利用数值方法对电磁波在等离子体鞘套中的传播特性进行分析,为实现高超声速飞行器黑障条件下通信提供技术基础。
目前利用时域有限差分法分析高超声速飞行器等离子体鞘套的电磁特性,存在两个问题:(1)高回旋频率磁化等离子体的高效仿真难以实现:由于Nyquist采样定理要求现有有限差分法中电流密度、电场、磁场时间步长足够小,从而使等离子体的电磁仿真难以高效实现;(2)对于等离子体介质与空气分界面处难以处理,且易导致边界处数值不稳定,从而使得对等离子体介质电磁特性的仿真难以实现。
发明内容
本发明的目的在于提供一种适应性好、计算效率高的高超声速飞行器等离子体鞘套电磁特性的仿真方法。
实现本发明目的的技术解决方案为:一种高超声速飞行器等离子体鞘套电磁特性的仿真方法,包含以下步骤:
步骤1、根据高超声速飞行器的几何外形、飞行参数及施加电磁场进行流体仿真,由仿真信息确定空间各处的等离子体碰撞频率、等离子体震荡频率参数及电子回旋频率参数分布;
步骤2、提取等离子体目标的网格文件,设置入射电磁波参数;
步骤3、使用等离子体的迭代方法计算区域内等离子体介质部分的电流密度,使用磁场边界条件计算等离子体介质与空气分界面处的电流密度,然后使用电流密度矢量单步更新公式进行迭代更新;
步骤4、通过分析时域波形获得等离子体鞘套电磁特性。
本发明与现有技术相比,其显著优点为:(1)电流密度矢量的时间步长与电场和磁场的时间步长不同,这样电流密度矢量采用小于电场和磁场的时间步长进行差分使得电场和磁场的迭代步数减少,继而减少了计算时间,实现了对等离子体目标电磁特性的高效分析;(2)对于等离子体介质与空气分界面的处理,提高了分界面处的数值稳定性,提高了对等离子体目标电磁特性分析的准确性。
附图说明
图1是本发明高超声速飞行器等离子体鞘套电磁特性的仿真方法的流程示意图。
图2是本发明中电流密度矢量空间分布示意图。
图3是本发明中时间步长分布示意图。
图4是本发明实施例中使用本发明方法验证等离子体目标结构的示意图。
图5是本发明实施例中使用本发明方法与商业软件CST、龙格库塔指数时程差分时域有限差分法分析磁化等离子体雷达散射截面积的结果对比图。
图6是本发明实施例中本发明方法在磁化等离子体高电子回旋频率条件下,电流密度时间步长与电场、磁场时间步长随电子回旋频率变化的分布对比图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细描述。
对于超高速飞行器,在高速飞行过程中飞行器周围会形成等离子鞘套,等离子体鞘套与电磁波相互作用机理较为复杂,现有时域有限差分法难以高效分析。
本发明高超声速飞行器等离子体鞘套电磁特性的仿真方法,包含以下步骤:
步骤1、根据高超声速飞行器的几何外形、飞行参数及施加电磁场进行流体仿真,由仿真信息确定空间各处的等离子体碰撞频率、等离子体震荡频率参数及电子回旋频率参数分布;
步骤2、提取等离子体目标的网格文件,设置入射电磁波参数;
步骤3、使用等离子体的迭代方法计算区域内等离子体介质部分的电流密度,使用磁场边界条件计算等离子体介质与空气分界面处的电流密度,然后使用电流密度矢量单步更新公式进行迭代更新;
步骤4、通过分析时域波形获得等离子体鞘套电磁特性。
进一步地,步骤3中所述的使用等离子体的迭代方法计算区域内等离子体介质部分的电流密度,具体如下:
使用等离子体的迭代公式进行区域内等离子体介质部分的电流密度的计算,公式如下:
Figure BDA0002081271910000031
式中
Figure BDA0002081271910000032
C=A-1B,A-1为矩阵A的逆矩阵,
Figure BDA0002081271910000033
均为三阶方阵;Δtc为电流密度矢量更新的时间步长,ε为真空中介电常数,n为时间步长,M为电流密度矢量单步更新总步长,k为电流密度矢量单步更新过程中的第k步,ωp为等离子体振荡频率,I为三阶单位方阵,J=[Jx Jy Jz]T为等离子体中电流密度矢量;E=[Ex Ey Ez]T为等离子体中电场强度;v为等离子体碰撞频率,ωx、ωy、ωz为电子回旋频率的x、y、z方向分量。
进一步地,步骤3中所述的使用磁场边界条件计算等离子体介质与空气分界面处的电流密度,具体如下:
等离子体区域的电流密度矢量处于Yee网格中心,计算边界处电流密度的公式如下:
Figure BDA0002081271910000034
其中ΔHx=H1x-H2x、ΔHy=H1y-H2y、ΔHz=H1z-H2z分别为边界面两侧磁场变化量的x、y、z方向分量,H1x、H1y、H1z为介质1中磁场大小x、y、z方向分量,H2x、H2y、H2z为介质2中磁场大小x、y、z方向分量,nx、ny、nz分别为分界面外单位法向量x、y、z方向分量,式(2)离散格式则如下:
对于法向量为x方向的分界面,边界处在y方向与z方向上的切向电流密度的离散格式分别如下:
Figure BDA0002081271910000035
Figure BDA0002081271910000036
对于法向量为y方向的分界面,边界处在x方向与z方向上的切向电流密度的离散格式分别如下:
Figure BDA0002081271910000041
Figure BDA0002081271910000042
对于法向量为z方向的分界面,边界处在x方向与y方向上的切向电流密度的离散格式分别如下:
Figure BDA0002081271910000043
Figure BDA0002081271910000044
其中,i、j、k分别为x、y、z方向上的空间节点,
Figure BDA0002081271910000045
Figure BDA0002081271910000046
分别为x、y、z方向上的i、j、k空间节点向前或向后平移
Figure BDA0002081271910000047
为在x方向上空间节点为
Figure BDA0002081271910000048
的电流密度,
Figure BDA0002081271910000049
为在y方向上空间节点为
Figure BDA00020812719100000410
的电流密度,
Figure BDA00020812719100000411
为在z方向上空间节点为
Figure BDA00020812719100000412
的电流密度。
实施例1
本实施例分析高超声速飞行器等离子体鞘套电磁特性的仿真方法,在时域有限差分法的基础上提出电流密度矢量单步更新公式方法对等离子体电磁特性进行仿真模拟,具体步骤如下:
步骤1、根据高超声速飞行器的几何外形、飞行参数及施加电磁场进行流体仿真,由仿真信息确定空间各处的等离子体碰撞频率、等离子体震荡频率参数及电子回旋频率参数分布;
步骤2、提取等离子体目标的网格文件,设置入射电磁波参数;
步骤3、使用等离子体的迭代方法计算区域内等离子体介质部分的电流密度,使用磁场边界条件计算等离子体介质与空气分界面处的电流密度,然后使用电流密度矢量单步更新公式进行迭代更新,具体如下:
所述的使用电流密度矢量单步更新公式进行迭代,更新区域内等离子体介质部分的电流密度,结合图1,具体如下:
步骤3.1:面中心处n+1/2时刻磁场H由棱边处n时刻电场E进行计算;
步骤3.2:中心处n时刻电场E由棱边处n时刻电场E求解过程,具体如下:
电流密度矢量空间分布如图2所示,处于Yee网格的中心。而电场在Yee元胞中有三个方向分量,分别定义在Yee元胞的棱边位置非中心位置,所以处于中心位置的电场矢量不可以直接获取,而是需要进行空间插值,其公式为:
Figure BDA0002081271910000051
Figure BDA0002081271910000052
Figure BDA0002081271910000053
步骤3.3:Yee中心位置n+1/2时刻电流密度Jn+1/2由Yee中心处n时刻电场En进行计算,具体如下:
电流密度矢量与电场、磁场采用不同的时间步长,如图3所示,公式如下:
Figure BDA0002081271910000054
式中
Figure BDA0002081271910000055
C=A-1B,A-1为矩阵A的逆矩阵,
Figure BDA0002081271910000056
均为三阶方阵;Δtc为电流密度矢量更新的时间步长,ε为真空中介电常数,n为时间步长,M为电流密度矢量单步更新总步长,k为电流密度矢量单步更新过程中的第k步,ωp为等离子体振荡频率,I为三阶单位方阵,J=[Jx Jy Jz]T为等离子体中电流密度矢量;E=[Ex Ey Ez]T为等离子体中电场强度;v为等离子体碰撞频率,ωx、ωy、ωz为电子回旋频率的x、y、z方向分量。
步骤3.4:Yee网格棱边处的电流密度J由Yee网格中心处的电流密度Jn+1/2进行计算,若当前计算的棱边不处于计算区域边界处,则用式(5a)~(5c)计算;若当前计算位置处在计算区域边界处,则用式(7a)~(7f)计算;具体如下:
求得的电流密度矢量处于Yee元胞的中心位置,在参与电场更新时,电场与电流密度处于的空间位置不同。电场位置定义在棱边上,与电流密度矢量处于Yee元胞的中心位置不同,继而需要进行空间插值获得棱边位置的电流密度矢量J,其公式为:
Figure BDA0002081271910000061
Figure BDA0002081271910000062
Figure BDA0002081271910000063
边界处的电流密度计算计算公式为:
Figure BDA0002081271910000064
其中ΔHx=H1x-H2x、ΔHy=H1y-H2y、ΔHz=H1z-H2z分别为边界面两侧磁场变化量的x、y、z方向分量,H1x、H1y、H1z为介质1中磁场大小x、y、z方向分量,H2x、H2y、H2z为介质2中磁场大小x、y、z方向分量,边界处电流密度式(6)离散格式如下:
对于法向量为x方向的分界面,边界处在y方向与z方向上分别的切向电流密度的离散格式如下:
Figure BDA0002081271910000065
Figure BDA00020812719100000714
对于法向量为y方向的分界面,边界处在x方向与z方向上分别的切向电流密度的离散格式如下:
Figure BDA0002081271910000071
Figure BDA0002081271910000072
对于法向量为方向的z分界面,边界处在x方向与y方向上分别的切向电流密度的离散格式如下:
Figure BDA0002081271910000073
Figure BDA0002081271910000074
其中,i、j、k分别为x、y、z方向上的空间节点,
Figure BDA0002081271910000075
Figure BDA0002081271910000076
分别为x、y、z方向上的i、j、k空间节点向前或向后平移
Figure BDA0002081271910000077
为在x方向上空间节点为
Figure BDA0002081271910000078
的电流密度,
Figure BDA0002081271910000079
为在y方向上空间节点为
Figure BDA00020812719100000710
的电流密度,
Figure BDA00020812719100000711
为在z方向上空间节点为
Figure BDA00020812719100000712
Figure BDA00020812719100000713
的电流密度。
磁场的迭代公式与普通时域有限差分法相同
步骤3.5:n+1时刻的电场值E由Yee元胞面中心处n+1/2时刻磁场H和棱边处n+1/2时刻电流密度J计算而得,并作为计算n+2刻电场E的初始值,返回步骤3.1,直到n等于规定时间迭代步数,迭代结束。
步骤4,通过分析时域波形,获得等离子体鞘套电磁特性。
结合图4、图5,根据本发明所述方法对磁化等离子体介质立方体进行了仿真,磁化等离子体立方体的空间尺寸长宽高为0.6m×0.6m×0.6m;外加沿Z轴正方向的磁场;等离子体的角频率ωp=2π×28.7×108rad/s,碰撞频率vc=2×108Hz,电子回旋频率ωce=2π×108rad/s,满足稳定性条件;平面波是沿+Z轴入射,极化方向为X方向;网格剖分尺寸为0.005m,观察频率300MHz;总时间迭代步数为2000步。计算结果如图5所示,验证本发明方法的正确性。
如图6为在磁化等离子体高电子回旋频率条件下,电流密度时间步长与电场、磁场时间步长随电子回旋频率变化分布对比图。针对高电子回旋频率条件下的磁化等离子体,现有龙格库塔指数时程差分时域有限差分法(RKE-FDTD)中对电场、磁场和电流密度的差分采用相同的时间步长,而电流密度矢量的时间步长与电场和磁场的时间步长不同,前者小于后者,这样电流密度矢量采用小于电场和磁场的时间步长进行差分使得电场和磁场的迭代步数减少,继而减少了计算时间。
综上所述,本发明中在高超声速飞行器等离子体区域计算时采用电流密度矢量单步更新公式进行迭代更新,其余部分采用传统时域有限差分法迭代,可以准确地模拟计算高电子回旋频率等离子体鞘套电磁特性。

Claims (2)

1.一种高超声速飞行器等离子体鞘套电磁特性的仿真方法,其特征在于,包含以下步骤:
步骤1、根据高超声速飞行器的几何外形、飞行参数及施加电磁场进行流体仿真,由仿真信息确定空间各处的等离子体碰撞频率、等离子体震荡频率参数及电子回旋频率参数分布;
步骤2、提取等离子体目标的网格文件,设置入射电磁波参数;
步骤3、使用等离子体的迭代方法计算区域内等离子体介质部分的电流密度,使用磁场边界条件计算等离子体介质与空气分界面处的电流密度,然后使用电流密度矢量单步更新公式进行迭代更新;
步骤4、通过分析时域波形获得等离子体鞘套电磁特性;
步骤3中所述使用等离子体的迭代方法计算区域内等离子体介质部分的电流密度,具体如下:
使用等离子体的迭代公式进行区域内等离子体介质部分的电流密度的计算,公式如下:
Figure FDA0002535223440000011
式中
Figure FDA0002535223440000012
C=A-1B,A-1为矩阵A的逆矩阵,
Figure FDA0002535223440000013
均为三阶方阵;Δtc为电流密度矢量更新的时间步长,ε为真空中介电常数,n为时间步长,M为电流密度矢量单步更新总步长,k为电流密度矢量单步更新过程中的第k步,ωp为等离子体振荡频率,I为三阶单位方阵,J=[Jx Jy Jz]T为等离子体中电流密度矢量;E=[Ex Ey Ez]T为等离子体中电场强度;v为等离子体碰撞频率,ωx、ωy、ωz为电子回旋频率的x、y、z方向分量。
2.根据权利要求1所述的高超声速飞行器等离子体鞘套电磁特性的仿真方法,步骤3中所述使用磁场边界条件计算等离子体介质与空气分界面处的电流密度,具体如下:
等离子体区域的电流密度矢量处于Yee网格中心,计算边界处电流密度的公式如下:
Figure FDA0002535223440000021
其中ΔHx=H1x-H2x、ΔHy=H1y-H2y、ΔHz=H1z-H2z分别为边界面两侧磁场变化量的x、y、z方向分量,H1x、H1y、H1z为介质1中磁场大小x、y、z方向分量,H2x、H2y、H2z为介质2中磁场大小x、y、z方向分量,nx、ny、nz分别为分界面外单位法向量x、y、z方向分量,式(2)离散格式则如下:
对于法向量为x方向的分界面,边界处在y方向与z方向上的切向电流密度的离散格式分别如下:
Figure FDA0002535223440000022
Figure FDA0002535223440000023
对于法向量为y方向的分界面,边界处在x方向与z方向上的切向电流密度的离散格式分别如下:
Figure FDA0002535223440000024
Figure FDA0002535223440000025
对于法向量为z方向的分界面,边界处在x方向与y方向上的切向电流密度的离散格式分别如下:
Figure FDA0002535223440000026
Figure FDA0002535223440000027
其中,i、j、k分别为x、y、z方向上的空间节点,
Figure FDA0002535223440000028
Figure FDA0002535223440000029
分别为x、y、z方向上的i、j、k空间节点向前或向后平移
Figure FDA00025352234400000210
为在x方向上空间节点为
Figure FDA00025352234400000211
的电流密度,
Figure FDA00025352234400000212
为在y方向上空间节点为
Figure FDA00025352234400000213
的电流密度,
Figure FDA00025352234400000214
为在z方向上空间节点为
Figure FDA00025352234400000215
的电流密度。
CN201910472857.6A 2019-05-31 2019-05-31 一种高超声速飞行器等离子体鞘套电磁特性的仿真方法 Active CN110276109B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910472857.6A CN110276109B (zh) 2019-05-31 2019-05-31 一种高超声速飞行器等离子体鞘套电磁特性的仿真方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910472857.6A CN110276109B (zh) 2019-05-31 2019-05-31 一种高超声速飞行器等离子体鞘套电磁特性的仿真方法

Publications (2)

Publication Number Publication Date
CN110276109A CN110276109A (zh) 2019-09-24
CN110276109B true CN110276109B (zh) 2020-08-11

Family

ID=67961816

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910472857.6A Active CN110276109B (zh) 2019-05-31 2019-05-31 一种高超声速飞行器等离子体鞘套电磁特性的仿真方法

Country Status (1)

Country Link
CN (1) CN110276109B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110837688B (zh) * 2019-09-30 2021-11-16 西安电子科技大学 等离子体鞘套3d-fdtd建模中总场/散射场平面波源产生方法
CN111259514B (zh) * 2019-12-26 2022-11-25 兰州空间技术物理研究所 霍尔推力器的全流程数值仿真***及使用该***的全流程数值仿真方法
CN111665014B (zh) * 2020-05-20 2022-02-22 中国科学院力学研究所 一种基于高频静电探针的高超声速飞行器边界层电子密度诊断***
CN112257261B (zh) * 2020-10-22 2022-09-09 西安电子科技大学 天线、飞行器平台及等离子体鞘套一体化仿真分析方法
CN116008946B (zh) * 2023-03-27 2023-06-09 中国人民解放军63921部队 临近空间高动态飞行器等离子鞘套自动判别方法及***
CN117217065A (zh) * 2023-10-07 2023-12-12 北京航空航天大学 基于动态鞘层分析的燃油***缝隙射频放电特性分析方法
CN117864385B (zh) * 2024-03-11 2024-05-14 中国空气动力研究与发展中心超高速空气动力研究所 高超声速飞行器等离子体鞘套控制装置及流场参数算法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107729608A (zh) * 2017-09-13 2018-02-23 南京理工大学 基于时域谱元法的短间隙气体放电数值仿真方法
CN108152799A (zh) * 2017-12-04 2018-06-12 上海无线电设备研究所 超高音速飞行器的雷达散射截面快速计算方法
CN108170948A (zh) * 2017-12-27 2018-06-15 西安电子科技大学 高超音速飞行目标流场模型与电磁模型耦合方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107729608A (zh) * 2017-09-13 2018-02-23 南京理工大学 基于时域谱元法的短间隙气体放电数值仿真方法
CN108152799A (zh) * 2017-12-04 2018-06-12 上海无线电设备研究所 超高音速飞行器的雷达散射截面快速计算方法
CN108170948A (zh) * 2017-12-27 2018-06-15 西安电子科技大学 高超音速飞行目标流场模型与电磁模型耦合方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《Electromagnetic scatteringbymultipledielectricparticles under theilluminationofunpolarizedhigh-orderBesselvortexbeam》;Mei PingYu 等;《Journal ofQuantitativeSpectroscopy&RadiativeTransfer》;20171231;正文第107-113页 *
《等离子体鞘套包覆目标电磁散射特性研究》;仲维伟;《中国优秀硕士学位论文全文数据库(电子期刊)信息科技辑》;20130430;I135-11 *

Also Published As

Publication number Publication date
CN110276109A (zh) 2019-09-24

Similar Documents

Publication Publication Date Title
CN110276109B (zh) 一种高超声速飞行器等离子体鞘套电磁特性的仿真方法
Sumithra et al. Review on computational electromagnetics
Li et al. Recent developments to the microwave tube simulator suite
CN111159637B (zh) 一种应用于磁化等离子体计算的电磁波时域精细积分方法
CN110837688B (zh) 等离子体鞘套3d-fdtd建模中总场/散射场平面波源产生方法
CN113158527B (zh) 一种基于隐式fvfd计算频域电磁场的方法
CN112733364B (zh) 一种基于阻抗矩阵分块的箔条云散射快速计算方法
Munteanu et al. It's about time
Dadash et al. Analytical adjoint sensitivity formula for the scattering parameters of metallic structures
Wang et al. Application of tree-cotree splitting to the time-domain finite-element analysis of electromagnetic problems
CN113987792B (zh) 一种fdtd算法中实现模式源精确输入的方法
CN113567943B (zh) 基于saim与cat获取载体平台宽带rcs的方法
CN116401921B (zh) 一种各项异性磁化等离子体媒质处理方法及***
CN108090296B (zh) 基于高阶辛紧致格式的波导全波分析方法
CN114626268B (zh) 一种高精度强电磁脉冲传播过程时域计算方法
Lin et al. Accurately and efficiently studying the RF structures using a conformal finite-difference time-domain particle-in-cell method
Munir Computational approach for resonant frequency calculation of coaxial cavity resonator using cylindrical coordinate system-based FDTD method
Kaufmann The meshless radial point interpolation method for electromagnetics
Jithesh et al. A review on computational EMI modelling techniques
Zheng et al. Hybrid simulation method for EM wave generation and propagation of streamer discharges
Rius et al. Spectral iterative algorithm for RCS computation in electrically large or intermediate perfectly conducting cavities
CN116720407A (zh) 基于各向异性媒质条件的电磁波时域有限差分方法及***
CN110398635B (zh) 接地电阻的计算模型
Liu et al. A New Hybrid Scheme Of FEBI And PO For Analyzing Inhomogeneous Objects With PEC Plate
Zhao et al. An alternative solution method for hybrid discrete singular convolution-method of moments modeling of reverberation chambers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant