CN110265504B - 一种紫外光电探测器及其制备方法 - Google Patents

一种紫外光电探测器及其制备方法 Download PDF

Info

Publication number
CN110265504B
CN110265504B CN201910588485.3A CN201910588485A CN110265504B CN 110265504 B CN110265504 B CN 110265504B CN 201910588485 A CN201910588485 A CN 201910588485A CN 110265504 B CN110265504 B CN 110265504B
Authority
CN
China
Prior art keywords
nanowire
quantum dot
ultraviolet
aluminum nitride
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910588485.3A
Other languages
English (en)
Other versions
CN110265504A (zh
Inventor
宋波
刘梦婷
王先杰
姚泰
韩杰才
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201910588485.3A priority Critical patent/CN110265504B/zh
Publication of CN110265504A publication Critical patent/CN110265504A/zh
Application granted granted Critical
Publication of CN110265504B publication Critical patent/CN110265504B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明提供了一种紫外光电探测器,包括衬底、设置在所述衬底上的源电极和漏电极,还包括设置在所述衬底上的量子点修饰的纳米线,所述量子点修饰的纳米线的两端分别与所述源电极和所述漏电极连接;所述量子点修饰的纳米线包括氮化铝纳米线和氧化镍量子点,所述氧化镍量子点附着在所述氮化铝纳米线表面且与所述氮化铝纳米线之间形成p‑n结。本发明提供的紫外光电探测器,利用氮化铝纳米线和氧化镍量子点之间形成的p‑n结,有效提高氮化铝纳米线载流子的浓度,从而提高紫外光电探测器的光电导增益,实现紫外光电探测器对VUV紫外线的探测。

Description

一种紫外光电探测器及其制备方法
技术领域
本发明涉及紫外光电探测器领域,具体而言,涉及一种紫外光电探测器及其制备方法和应用。
背景技术
大多数半导体紫外光探测器是基于半导体材料的光电导效应而工作,即利用紫外光照射具有合适禁带宽度的半导体材料,使位于价带的电子跃迁至导带形成非平衡载流子,显著地增加半导体材料的导电性,从而实现对紫外光信号的探测。其中,紫外光电探测器因其可见光透过率高、热稳定性及化学稳定性好的优点而受到关注,广泛应用于环境监测、导弹追踪、石油泄漏探测和建筑保护等,在军事,民用和航空航天领域均发挥着重要的作用。
紫外光主要可以分为UV A(400-320nm),UV B(320-280nm),UV C(280-200nm),VUV(200-10nm)。VUV半导体光电探测器因其在真空紫外光谱中的重要应用备受人们瞩目。然而大部分宽禁带半导体材料的禁带宽度均小于6eV,无法应用于VUV波段紫外光的探测,使得VUV波段的紫外光探测技术受到了阻碍。
氮化铝(AlN)是一种典型的III-V族氮化物半导体材料,其禁带宽度为6.2eV,具有较低的暗电流和较快的响应速度,是制备VUV紫外光电探测器的理想材料,因而备受人们的关注。然而AlN的载流子浓度较低,现有的AlN基紫外光电探测器存在光电导增益低的问题,这阻碍了AlN在紫外光探测技术上的实际应用。
因此,如何提高AlN的载流子浓度,增加其光电导增益,使之可以应用在紫外光探测器上,是现阶段亟待解决的问题。
发明内容
本发明解决的问题是:如何提高AlN的载流子浓度,增加其光电导增益,使之可以应用在紫外光探测器上。
为解决上述问题,本发明提供一种一种紫外光电探测器,包括衬底、设置在所述衬底上的源电极和漏电极,还包括设置在所述衬底上的量子点修饰的纳米线,所述量子点修饰的纳米线的两端分别与所述源电极和所述漏电极连接;所述量子点修饰的纳米线包括氮化铝纳米线和氧化镍量子点,所述氧化镍量子点附着在所述氮化铝纳米线表面且与所述氮化铝纳米线之间形成p-n结。
可选的,所述氮化铝纳米线的直径为100~250nm,长度为30~100μm。
可选的,所述氧化镍量子点的直径为5~7nm。
可选的,所述氧化镍量子点的附着面积小于所述氮化铝纳米线的表面积。
可选的,所述衬底的材质为氧化硅片、云母、PET或聚酰亚胺。
可选的,所述源电极和漏电极均为Au、Al、Ag、Cu或In电极。
可选的,所述源电极和漏电极的厚度均为130~170nm。
可选的,所述紫外光电探测器的光电导增益为9.96。
本发明的另一目的在于提供一种上述所述的紫外光电探测器的制备方法,包括以下步骤:
S1、利用物理气相传输法制备氮化铝纳米线;
S2、利用激光脉冲沉积法在氮化铝纳米线表面沉积氧化镍量子点,得到量子点修饰的纳米线;
S3、将所述量子点修饰的纳米线旋涂在衬底上,干燥后,所述量子点修饰的纳米线附着在所述衬底上;
S4、在所述量子点修饰的纳米线的两端图形化出源电极和漏电极,形成所述紫外光电探测器。
可选的,所述源电极和所述漏电极图形化的方法选至热蒸发镀膜技术、电子束蒸镀技术、磁控溅射技术中的至少一种。
相对于现有技术,本发明所述的光热焦耳热协同膜蒸馏组件具有以下优势:
(1)本发明提供的紫外光电探测器,利用氮化铝纳米线和氧化镍量子点之间形成的p-n结,有效提高氮化铝纳米线载流子的浓度,从而提高紫外光电探测器的光电导增益,实现紫外光电探测器对VUV紫外线的探测。
(2)本发明提供的紫外光电探测器的制备方法,工艺实施简单、可操作性好、可重复性好;且制备的紫外光电探测器在接受到193nm紫外辐射光时,能够在30-90ms范围内做出响应,光电流大小保持在200nA左右,而且光电导增益达到了9.96;紫外光电探测器的光电导增益高、响应速度快、稳定性好。
附图说明
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明所述的紫外光电探测器结构示意图;
图2为本发明所述的采用激光脉冲沉积的方法制备NiO量子点的示意图;
图3为本发明所述的利用紫外光刻技术制备成紫外光电探测器的示意图;
图4为本发明所述的紫外光探测器的测试***结构示意图;
图5为本发明所述的紫外光探测器在无光照与193nm光照射下的电压-光电流图;
图6为本发明所述的紫外光探测器在光电流随时间变化图;
图7为本发明所述的紫外光探测器的On-Off时间-光电流曲线图;
图8为本发明所述的紫外光电探测器高温环境下时间-光电流曲线图;
图9为本发明所述的紫外光探测器制备方法的流程图;
图10为本发明所述的紫外光电探测器在无量子点修饰与有量子点修饰,在光照下的电流-光电流图。
附图标记说明:
1-探针,2-氮化铝纳米线,3-电极,4-量子点,5-衬底,6-等离子体羽辉,7-靶材,8-气阀,9-窗口,10-透镜,11-激光束。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例中的特征可以相互组合。术语“包含”、“包括”、“含有”、“具有”的含义是非限制性的,即可加入不影响结果的其它步骤和其它成分。以上术语涵盖术语“由……组成”和“基本上由……组成”。如无特殊说明的,材料、设备、试剂均为市售。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
真空紫外指的是禁带宽度低于波长200nm的辐射光,由于低于200nm容易被大气中的氧气吸收,因此取名为真空紫外;而真空紫外光的探测在军事,民用和航空航天领域均发挥着重要的作用。氧化铝(AlN)的禁带宽度为6.2eV,根据能量与波长的计算公式,其可以用于探测波长低于193nm的辐射光。此外,AlN本身拥有较好的物理化学特性,例如:宽带隙、高熔点、高临界击穿场强、高温热稳定性和耐化学腐蚀等优异性质,因此AlN适合在恶劣的环境下工作。但由于AlN的载流子浓度较低,AlN基紫外光电探测器存在光电导增益低的问题。
为解决上述问题,本发明的实施例采用将氧化铝制备成一维AlN纳米线结构,并使一维AlN纳米线结构与氧化镍(NiO)构成p-n结,从而保证制备的紫外光电探测器既能具备超高的光电导增益,又能同时具备快的响应速度以及低的暗电流,实现对波长为193nm的VUV紫外光的探测。
结合图1所示,一种紫外光电探测器,包括衬底5、设置在衬底5上的源电极和漏电极,还包括设置在衬底5上的量子点修饰的纳米线,量子点修饰的纳米线的两端分别与源电极和漏电极连接;量子点修饰的纳米线包括氮化铝纳米线2和氧化镍量子点4,氧化镍量子点4附着在氮化铝纳米线2表面且与氮化铝纳米线2之间形成p-n结。
NiO是禁带宽度为3.6~4.0eV的p型半导体器件,具有良好的热敏性、光学性、电化学活性、催化活性、化学稳定性和导电性能,所以广泛应用于电池电极、催化、光电等领域。由于AlN为禁带宽度较大的n型半导体,接近绝缘体;所有p型氧化物半导体中,NiO的禁带宽度最接近AlN的禁带宽度,且能够与AlN晶格匹配形成p-n结。
具体的,本发明实施例提供的紫外光电探测器,用于对波长为193nm的紫外光电信号进行快速探测。其中,为避免衬底5对紫外光电探测器的测试造成不良影响,衬底5为绝缘衬底,衬底5材质可以为氧化硅片、云母、PET或聚酰亚胺中的一种,在本发明实施中,绝缘衬底5的材料为SiO2。量子点修饰的纳米线设置在衬底5的上端面(接受紫外光的照射的一面),且量子点修饰的纳米线的两端分别被源电极和漏电极覆盖住,以保证量子点修饰的纳米线和电极之间的良好接触。
量子点修饰的纳米线以一维AlN纳米线2为主体,在其表面生长具有高光电导增益的NiO量子点4;一维的AlN纳米线2结构具有较高的比表面积、较快的垂直方向电荷分离和传输速度、以及较短的横向电荷传输距离,可以提高AlN的载流子浓度,其制备的紫外光电探测器表现出更高的响应速度和响应率。
同时,NiO量子点4在AlN纳米线2表面均匀分布且彼此分散,由于紫外光电探测器的探测主体为AlN纳米线2,NiO量子点4的设置是为了形成p-n结,增强AlN纳米线2载流子浓度,从而达到增强光电流信号的目的。因此,氧化镍量子点4的附着面积小于氮化铝纳米线2的表面积,也即,NiO量子点4并没有完全包覆住AlN纳米线2,这样使得紫外光可以有效的同时照射在AlN纳米线2和NiO量子点4上。
NiO量子点和AlN纳米线相结合形成p-n异质结时会形成内建电场,对电荷分离有驱动作用。当193nm的紫外辐射光照射到样品上时,产生大量的电子空穴对。NiO和AlN中的电子均吸收能量,从价带跃迁到导带;但由于NiO和AlN的导带具有能级差,在NiO中的电子从其导带转移到AlN的导带过程中,大量的电子会注入到AlN纳米线中,而大量的空穴被NiO量子点捕获,这样减少了载流子的复合;电子和空穴分别向正极和负极移动。因此,在紫外辐射光照射下,光电流迅速增加,NiO量子点的修饰有效的增加了AlN纳米线的光电导增益。
其中,氮化铝纳米线的直径为100~250nm,长度为30~100μm;氧化镍量子点的直径为5~7nm。
源电极和漏电极均为金(Au)、铝(Al)、银(Ag)、铜(Cu)或铟(In)电极中的一种,在本发明实施中,制备的两个电极3的材料为金属Au,且源电极和漏电极的厚度均为130~170nm。
本发明实施例提供的紫外光电探测器,利用氮化铝纳米线和氧化镍量子点之间形成的p-n结,有效提高氮化铝纳米线载流子的浓度,从而提高紫外光电探测器的光电导增益,实现紫外光电探测器对VUV紫外线的探测。且基于氮化铝与氧化镍的性能,所述紫外光电探测器可实现在恶劣环境,如低温真空环境下工作。
结合图9所示,上述基于量子点修饰的纳米线的紫外光电探测器的制备方法,包括以下步骤:
S1、利用物理气相传输法的方法制备氮化铝纳米线;
S2、利用激光脉冲沉积法在步骤S1制备的氮化铝纳米线表面沉积氧化镍量子点,得到量子点修饰的纳米线;
S3、将步骤S2制备的量子点修饰的纳米线分散在溶液中,并将所述溶液旋涂在衬底上,自然风干后,量子点修饰的纳米线附着在衬底上;
S4、在量子点修饰的纳米线的两端图形化出源电极和漏电极,形成紫外光电探测器。
具体的,在步骤S1中,氮化铝(AlN)纳米线利用物理气相传输法制备的步骤包括:利用纯度为99.999%的AlN粉末原料为蒸发源,置于感应加热炉中;将感应加热炉抽真空至3×10-4Pa,并使用99.999%的氮气清洗3次,在感应加热炉内的氮气气压在6.5×104~8×104Pa条件下,以22~26℃/min的速率将炉内温度升至1900~1950℃,并保温30~45min,然后自然冷却。
反应得到一维AlN纳米线的直径为100~250nm,长度为30~100μm。
结合图2所示,具体的,在步骤S2中,将NiO量子点修饰在AlN纳米线上的步骤包括:
将步骤S1中制备的AlN纳米线置于图2中衬底的位置,AlN纳米线放入脉冲激光沉积法***的真空腔内;使用NiO原料作为靶材,在室温下利用机械泵和分子泵将真空腔抽真空,然后通入氧气,并保持内部压强为15Pa。KrF准分子激光器发射的紫外激光通过透镜聚焦后,入射到NiO靶材上,NiO靶材受到激光的轰击后产生等离子体羽辉,NiO等离子体羽辉沉积在了AlN纳米线上,最终得到了NiO量子点修饰的AlN纳米线。
其中,靶材是通过将纯度为99.999%的NiO粉体在600℃马弗炉中烧结48-72h,制成的直径为11mm的NiO陶瓷圆盘。
制备过程中,真空腔的真空度不超过2×10-3Pa;激光器的输出能量和频率分别为150~200mJ和1~3Hz;KrF准分子激光器发射的紫外激光的波长为248nm;透镜聚焦的焦距为30cm;NiO等离子体羽辉沉积的时长为10~30min。
步骤S2制得的NiO量子点修饰的AlN纳米线的直径为3-6nm。
可以理解的是,将NiO量子点修饰在AlN纳米线上是为了形成p-n结,增强AlN纳米线载流子浓度。因此,在保证NiO和AlN中的电子均吸收能量的前提下,NiO量子点在AlN纳米线表面的密度越大越好,这样有利于在不增加光电探测器暗电流和响应时间的情况下充分提高紫外光电探测器的光电导增益。
具体的,步骤S3,将量子点修饰的纳米线附着在衬底上,包括步骤:
(1)配置量子点修饰的纳米线溶液
向步骤2制备的NiO量子点修饰的AlN纳米线中,加入适量体积的酒精溶液,配置成溶液,并将溶液在超声机中超声10分钟,使NiO量子点修饰的AlN纳米线在溶液中分散均匀。其中,溶液的浓度可以根据需要进行调整,且酒精溶液可以用异丙醇等其他可以分散纳米线的溶液代替。
(2)将量子点修饰的纳米线溶液转移到衬底上
将商用晶面的SiO2衬底切割成方形小块(尺寸可以根据需要改变),利用浓度为75%的硫酸双氧水溶液在85℃下浸泡30min,分别用丙酮、异丙醇、乙醇和去离子水依次超声10min,然后氮气吹干,待用。
取出清洗好的一片SiO2衬底,利用匀胶机将混合均匀的量子点修饰的纳米线溶液滴旋涂在衬底上,自然风干,待酒精完全挥发后,量子点修饰的纳米线就均匀的散落在SiO2衬底上,也即,量子点修饰的纳米线就被转移到衬底上了。
其中,衬底还可以采用其他绝缘表面且表面较为平整的衬底,比如云母、PET或聚酰亚胺等。
步骤S4中,在量子点修饰的纳米线的两端图形化出源电极和漏电极,图形化的方式包括热蒸发镀膜技术、电子束蒸镀技术或磁控溅射技术中的一种。
本发明实施例采用电子束蒸镀技术,包括光刻、电子束曝光、打印电极或用镂空掩膜板遮挡衬底直接蒸镀电极等方式实现图形化源、漏电极的制备,从而得到基于NiO量子点修饰的AlN纳米线的紫外光电探测器。
源电极和漏电极的尺寸可以通过掩膜板的镂空设计限定,本领域技术人员可根据实际的需要,选择相应尺寸的源电极和漏电极,下面以一种花式的掩膜版为例,结合图3具体说明源、漏电极的制备工艺:
首先,将光刻胶和掩模板覆盖在SiO2衬底附着有量子点修饰的纳米线的一面,结合图a)、b)所示,样品从下至上依次为SiO2衬底,光刻胶,掩模板;结合图c)所示,使用紫外光刻机进行曝光,除去没有被掩膜板遮盖的光刻胶,也即被掩模板遮住的光刻胶还存在,但是没有被掩模板遮住,暴露在光照下的光刻胶产生化学变化被洗掉;结合图d)、e)所示,取走掩模板,利用电子束蒸发在其光刻胶上沉积了约130~170nm厚的金膜,金膜覆盖在样品的正上方,其中,金膜优选为150nm;结合图f)所示,再一次使用紫外光刻机进行曝光,除去光刻胶,同时附着在光刻胶上的金膜被出去,剩下掩膜板的镂空形状的电极。
在本发明实施例中,制得的电极(源电极与漏电极)分别连接量子点修饰的纳米线的两端,源电极与漏电极之间的间距约可以根据需要实际需求变化,在此不做限定。
结合图4所示,本发明实施例提供的紫外光电探测器的探测方法包括:将基于NiO量子点修饰的AlN纳米线的紫外光电探测器放置在探针台上,并将两个探针分别扎在源电极与漏电极上,即可进行光电探测。
具体的,将紫外光电探测器的源电极与漏电极通过探针与测试仪器相连,在无光照和紫外光照条件下给其施加连续变化的偏压,可以得到对应偏压的光电流曲线,便于测定制备的基于NiO量子点修饰的AlN纳米线的紫外光电探测器的性能是否有提高。
结合图5所示,当没有光照时,光电流的大小仅为10-3nA数量级;当波长为193nm、能量为3.49W/cm2的紫外光入射到紫外光电探测器表面时,其光电流可以达到216nA,光电流大小提高了105倍。也即,基于NiO量子点修饰的AlN纳米线的紫外光电探测器实现了光电流的超高增益。
未被NiO量子点修饰的AlN纳米线基的紫外光电探测器的光电导增益仅为0.368,基于NiO量子点修饰的AlN纳米线的紫外光电探测器的光电导增益为9.96,也即,经NiO量子点修饰后AlN纳米线的紫外光电探测器的光电导增益倍率约为27倍。
结合图10所示,是否采用量子点修饰后的纳米线对于AlN纳米线紫外光电探测器有着较大的影响。在使用未经NiO量子点修饰的AlN纳米线时,紫外光电探测器探测到的光电流约为8.67nA;而使用经NiO量子点修饰的AlN纳米线时,紫外光电探测器探测到的光电流约为216nA。可以看出,本发明实施例采用基于NiO量子点修饰的AlN纳米线来制备紫外光电探测器,可以有效增强AlN纳米线紫外光电探测器探测到的光电流的大小。
图6为在波长为193nm的紫外光照射下,紫外光电探测器工作时,探测到的光电流随时间变化图。图6使用仪器为keithley公司生产的2602B,Rt为从10%的光电流变换到90%的光电流的时间间隔,相当于激光开启之后,探测器的电流从暗电流上升到光电流的时间间隔,也称为上升沿时间。相应的,Dt为从90%的光电流变换到10%的光电流的时间间隔,相当于激光关闭之后,探测器的光电流下降到暗电流的时间间隔,也称之为下降沿时间。从图6可以看出,基于NiO量子点修饰的AlN纳米线的紫外光电探测器的响应时间为30-90ms,紫外光电探测器的响应速度较快。
图7为在波长为193nm的紫外光照射下,紫外光电探测器在2500s的长时测试中,间歇开启及关闭紫外光(紫外光开启时间为150s~250s,关闭时间为3501s~500s),测试不同电压条件下,紫外光电探测器的On-Off时间-光电流曲线。
从图7中可以看出,在2500s的长时探测过程中,在5V电压下,光电流的大小保持在30nA左右,并没有随着时间的增加而减小。这说明,本发明实施例提供的基于NiO量子点修饰的AlN纳米线的紫外光电探测器具有非常好的稳定性。
从图8可以看出,本发明提供的基于NiO量子点修饰的AlN纳米线紫外光电探测器在393K的高温环境下,光电流大小保持在250nA,响应时间为375ms。可以看出,本发明提供的基于NiO量子点修饰的AlN纳米线的紫外光电探测器在高温环境下仍然拥有较好的性能。
本发明实施例提供的紫外光电探测器的制备方法,工艺实施简单、可操作性好、可重复性好。且制备的紫外光电探测器在接受到193nm紫外辐射光时,能够在30-90m s范围内做出响应,光电流大小保持在200nA左右,而且光电导增益达到了9.96,相比于纯AlN纳米线的紫外光电探测器的光电导增益提高了约27倍;紫外光电探测器的光电导增益高、响应速度快、稳定性好。
虽然本公开披露如上,但本公开的保护范围并非仅限于此。本领域技术人员,在不脱离本公开的精神和范围的前提下,可进行各种变更与修改,这些变更与修改均将落入本发明的保护范围。

Claims (10)

1.一种紫外光电探测器,包括衬底、设置在所述衬底上的源电极和漏电极,其特征在于,还包括设置在所述衬底上的量子点修饰的纳米线,所述量子点修饰的纳米线的两端分别与所述源电极和所述漏电极连接;所述量子点修饰的纳米线包括氮化铝纳米线和氧化镍量子点,所述氧化镍量子点附着在所述氮化铝纳米线表面且与所述氮化铝纳米线之间形成p-n结;所述紫外光电探测器为VUV紫外光电探测器。
2.根据权利要求1所述的紫外光电探测器,其特征在于,所述氮化铝纳米线的直径为100~250nm,长度为30~100μm。
3.根据权利要求2所述的紫外光电探测器,其特征在于,所述氧化镍量子点的直径为5~7nm。
4.根据权利要求1所述的紫外光电探测器,其特征在于,所述氧化镍量子点的附着面积小于所述氮化铝纳米线的表面积。
5.根据权利要求1所述的紫外光电探测器,其特征在于,所述衬底的材质为氧化硅片、云母、PET或聚酰亚胺。
6.根据权利要求1所述的紫外光电探测器,其特征在于,所述源电极和漏电极为Au、Al、Ag、Cu或In电极。
7.根据权利要求6所述的紫外光电探测器,其特征在于,所述源电极和所述漏电极的厚度均为130~170nm。
8.根据权利要求1-7中任一项所述的紫外光电探测器,其特征在于,所述紫外光电探测器的光电导增益为9.96。
9.一种权利要求1-8中任一项所述的紫外光电探测器的制备方法,其特征在于,包括以下步骤:
S1、利用物理气相传输法制备氮化铝纳米线;
S2、利用激光脉冲沉积法在所述氮化铝纳米线表面沉积氧化镍量子点,得到量子点修饰的纳米线;
S3、将所述量子点修饰的纳米线旋涂在衬底上,干燥后,所述量子点修饰的纳米线附着在所述衬底上;
S4、在所述量子点修饰的纳米线的两端图形化出源电极和漏电极,形成所述紫外光电探测器。
10.根据权利要求9所述的紫外光电探测器的制备方法,其特征在于,所述源电极和所述漏电极图形化的方法选自热蒸发镀膜技术、电子束蒸镀技术、磁控溅射技术中的至少一种。
CN201910588485.3A 2019-07-01 2019-07-01 一种紫外光电探测器及其制备方法 Active CN110265504B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910588485.3A CN110265504B (zh) 2019-07-01 2019-07-01 一种紫外光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910588485.3A CN110265504B (zh) 2019-07-01 2019-07-01 一种紫外光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN110265504A CN110265504A (zh) 2019-09-20
CN110265504B true CN110265504B (zh) 2021-04-02

Family

ID=67923767

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910588485.3A Active CN110265504B (zh) 2019-07-01 2019-07-01 一种紫外光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN110265504B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111123759A (zh) * 2019-11-22 2020-05-08 江苏紫翚光电科技有限公司 一种uvc紫外led控制的纳米线光隔离器及其制作工艺
CN113540284B (zh) * 2020-04-17 2023-03-24 中国科学院苏州纳米技术与纳米仿生研究所 一种氮化铝纳米片阵列及其制作方法
CN111739963B (zh) * 2020-06-10 2022-07-22 中国科学院上海微***与信息技术研究所 一种硅基宽光谱光电探测器的制备方法
CN112582486B (zh) * 2020-12-15 2023-09-26 广西大学 一种NiO紫外光电探测器及其制备方法
CN112599622B (zh) * 2020-12-15 2023-09-26 广西大学 一种三明治结构阵列式多孔紫外光电探测器及其制备方法
CN113328004B (zh) * 2021-04-23 2022-11-01 深圳大学 一种利用硒化亚锡纳米晶进行表面修饰的硒化铟光电探测器及其制备方法
CN113517363B (zh) * 2021-05-19 2022-11-11 西安电子科技大学 红外光电探测器及其制作方法
CN115274891B (zh) * 2022-07-04 2024-07-02 深圳大学 一种真空紫外光电探测器及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102543731A (zh) * 2012-02-29 2012-07-04 中国科学院宁波材料技术与工程研究所 一种量子点接触的制备方法
CN109713058A (zh) * 2017-10-25 2019-05-03 中国科学院物理研究所 表面等离激元增强的氧化镓紫外探测器及其制备方法和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050082562A1 (en) * 2003-10-15 2005-04-21 Epistar Corporation High efficiency nitride based light emitting device
CN114566579A (zh) * 2016-07-05 2022-05-31 苏州乐琻半导体有限公司 半导体元件
KR101701192B1 (ko) * 2016-12-05 2017-02-01 인천대학교 산학협력단 투명 광전 소자 및 그 제조 방법
CN108695406B (zh) * 2017-04-11 2019-11-12 Tcl集团股份有限公司 一种薄膜光探测器及其制备方法
CN108400196A (zh) * 2018-03-01 2018-08-14 无锡华亿投资有限公司 一种具有超晶格结构氮化镓基紫外光电探测器及其制备方法
CN108321076A (zh) * 2018-03-21 2018-07-24 华南理工大学 一种二维AlN材料及其制备方法与应用
CN109301026A (zh) * 2018-09-18 2019-02-01 浙江师范大学 氮掺杂氧化镍-氧化锌近紫外光探测器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102543731A (zh) * 2012-02-29 2012-07-04 中国科学院宁波材料技术与工程研究所 一种量子点接触的制备方法
CN109713058A (zh) * 2017-10-25 2019-05-03 中国科学院物理研究所 表面等离激元增强的氧化镓紫外探测器及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"氮化铝纳米线制备及微结构分析";张学星;《工程科技Ⅰ辑》;20071115;第B020-174页 *

Also Published As

Publication number Publication date
CN110265504A (zh) 2019-09-20

Similar Documents

Publication Publication Date Title
CN110265504B (zh) 一种紫外光电探测器及其制备方法
JP4980238B2 (ja) 光電導デバイス
CN114220878B (zh) 一种具有载流子传输层的Ga2O3/GaN日盲紫外探测器及其制备方法
CN110164997B (zh) 一种基于高空穴迁移率GaSb纳米线的高性能红外探测器及其制备方法
CN113097334B (zh) 一种SiC基二硫化钨紫外-可见光电探测器及其制备方法和应用
CN109037374A (zh) 基于NiO/Ga2O3的紫外光电二极管及其制备方法
CN113555466B (zh) 一种SiC基氧化镓微米线的光电探测器及其制备方法
Anitha et al. Large area ultraviolet photodetector on surface modified Si: GaN layers
CN113594291A (zh) 通过极性半导体的热释电效应调控金属/半导体肖特基结来实现红外光电探测的方法
Ali et al. Ultraviolet ZnO photodetectors with high gain
CN109166935B (zh) 一种Al组分过渡型日盲紫外探测器及其制备方法
CN110364582A (zh) 一种基于石墨烯模板上AlGaN纳米柱基MSM型紫外探测器及其制备方法
Yang et al. The effect of Ga doping concentration on the low-frequency noise characteristics and photoresponse properties of ZnO nanorods-based UV photodetectors
Vasudevan et al. On the responsivity of UV detectors based on selectively grown ZnO nanorods
CN115295676B (zh) 一种高光响应Te/MoS2异质结光探测器及制备方法
CN210092100U (zh) 一种基于石墨烯模板上AlGaN纳米柱基MSM型紫外探测器
CN113054050B (zh) 一种V2O5-Ga2O3异质结自供电日盲光电探测器及制备方法
Liu et al. A GaN nanowire-based photodetector with Ag nanowires as transparent electrodes
KR20110107934A (ko) 탄소나노튜브/ZnO 투명태양전지 및 그 제조방법
CN108649095A (zh) 基于纳晶结构碳膜的场效应管结构光电器件及其制备方法
Gezgin et al. Diode Property Of n-ZnO/p-Si Heterojunction Structure in the Dark and Illumination Condition
CN116154030B (zh) 极紫外至紫外波段的碳化硅雪崩光电探测器及其制备方法
CN115172512B (zh) 一种β-Ga2O3基紫外探测器及其制备方法
Amirpoor et al. Fabrication of UV detector by Schottky Pd/ZnO/Si contacts
Liu et al. Investigation of p-GaN/N-Mg₀. ₃Zn₀. ₇O: In Heterojunction Photodiode for Dual-Band UV-B/UV-A Detection

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant